
The POEtic Electronic Tissue and its Role in the
Emulation of Large-Scale Biologically Inspired Spiking
Neural Networks Models

Short title: POEtic tissue

J. Manuel Moreno1, Yann Thoma2, Eduardo Sanchez2, Jan Eriksson3, Javier
Iglesias3,4, Alessandro Villa4

1Technical University of Catalunya, Dept. of Electronic Engineering,
Barcelona, Spain, moreno@eel.upc.edu
2Swiss Federal Institute of Technology Lausanne, Logic Systems
Laboratory, Lausanne, Switzerland, {Yann.Thoma,
Eduardo.Sanchez}@epfl.ch
3Laboratory of Neuroheuristics, Information Systems Department
INFORGE, University of Lausanne, Lausanne, Switzerland,
jan@lnh.unil.ch, Javier.Iglesias@unil.ch
4Laboratory of Neurobiophysics, INSERM U318, University Joseph-
Fourier, Grenoble, France, Alessandro.Villa@ufj-grenoble.fr

Corresponding author:
Juan Manuel Moreno Arostegui
Technical University of Catalunya
Department of Electronic Engineering
Campus Nord, Building C4
c/Jordi Girona 1-3
08034 – Barcelona – Spain
E-mail: moreno@eel.upc.edu
Phone: +34 93 401 56 91
Fax: +34 93 401 67 56

Keywords: Artificial tissue, phylogenesis, ontogenesis, epigenesis, learning, spiking neural
networks models, STDP rule, programmable hardware, POEtic.

Abstract:
One of the major obstacles found when trying to construct artefacts derived from principles
observed in living beings is the lack of actual dynamic hardware with autonomous capabilities.
Even if programmable devices offer the possibility of modifying the functionality implemented
in the device, they rely on external hardware and software elements to provide its physical
configuration. In this paper we shall present a new family of electronic devices, called POEtic,
whose architecture has been derived from the basic properties that can be extracted from the
three major organisation principles present in living beings: phylogenesis, ontogenesis and
epigenesis. We shall demonstrate that the capabilities present in these new programmable
devices make them an ideal candidate for the real-time emulation of large-scale biologically
inspired spiking neural networks models.

1. Introduction

Even if there is a huge variability in the external features and functions associated with the
living beings we can observe on the earth, their organisation is driven by principles that can be
grouped around three main axes:

Phylogenesis: Also called evolution, it includes all the mechanisms that, driven by the pressure
posed by nature, permit to determine the genetic information for a population of individuals that
best fits to a given environment.
Ontogenesis: Ontogenetic mechanisms permit the development of a single individual driven by
the information contained in its genome. Apart from developmental capabilities, self-replication
and self-repair (what for most living beings means healing abilities) constitute clear examples of
ontogenetic processes.
Epigenesis: It includes all the mechanisms that permit a single individual to efficiently interact
with its direct environment. Epigenetic mechanisms include those plasticity-oriented processes
that, driven by a sensor-actuator loop, permit an organism to modify its internal structure or its
behaviour in order to adapt to the specific conditions present in a given environment at any time.
Examples of biological subsystems showing epigenetic principles can be found in the central
nervous system of mammals and in the immune system.

Taking inspiration from these organisation principles, the main goal of the POEtic project was
the development of a flexible hardware substrate showing the basic features that permit living
beings to show evolutionary, developmental or learning capabilities. The hardware substrate, in
the form of a new electronic device, should permit the construction of electronic tissues able to
solve tasks where these bio-inspired features represent a clear advantage over classical
techniques.

The paper is organised as follows: In the next section we shall present the overall organisation
of the POEtic tissue, describing the details of its main constituent parts. Then we shall introduce
the features of a new learning model for spiking neural networks models that, when used in
large-scale networks, shows interesting feature extraction capabilities. Once physically
implemented into the POEtic devices, it will be demonstrated that these provide an efficient
prototyping instrument for neuroscience research. The paper will finish presenting the
conclusions and our current work.

2. Overall organisation of the POEtic tissue

The POEtic tissue is organised as a homogeneous bi-dimensional array of POEtic chips, each

one of them being able to implement a given number of cells as required by the application to
be handled. The organisation of a single POEtic chip is presented in figure 1.

Environment
subsystem
Environment
subsystem

System
interface
System

interface

Organic
subsystem
Organic

subsystem
O

I

to other POEtic chips

to other POEtic chips

sensors

actuators

system bus

POEtic chip

Figure 1. Organisation of a POEtic chip

From a structural point of view the organisation of a POEtic chip is divided in three main
sections: the environment subsystem, the organic subsystem and the system interface. The
environment subsystem is in charge of managing the interactions with the environment, and also
of implementing the phylogenetic mechanisms of the tissue. The organic subsystem manages
the physical realisation of the epigenetic and ontogenetic processes to be exhibited by the tissue.
Finally, the system interface takes care of the efficient communication between these two
subsystems. It also provides the mechanisms that permit the tissue to exhibit scalable properties.

The overall organisation of the resulting tissue is depicted in figure 2.

P P
II

OO P

I O I O I OII OO II OO II OO

II

OO

P

II OO

P

II OO

II

OO P

II OO

II

OO

P

II OO

I

O

I

O

I

O

II

OO

II

OO

II

OO P

II OO

II

OO P

II OO

II

OO

I O I O I OII OO II OO II OO

I

O

I

O

I

O

II

OO

II

OO

II

OO

Figure 2. Overall organisation of the POEtic tissue

The squares in figure 2 represent POEtic chips, so that the sample tissue represented in the
figure is constituted by 9 POEtic chips (the squares labelled as P) organised as a 3x3 matrix. As
it can be deduced from the figure, the local communication between chips is separated in two
different sections. The bidirectional lines labelled as I represent those connections associated
with the system interface, while the bidirectional lines labelled as O indicate the connections
established between the organic subsystems included in every chip. As it will be explained later
the connections corresponding to the system interface provide the scalability features required

by the POEtic tissue, meaning that it can be constituted by as many chips as required by the
actual application to be tackled. The connectivity between the organic subsystems is established
at the routing plane level, and they allow for an effective communication mechanism between
cells that are physically implemented in different chips.

Even if the POEtic tissue may be constructed from an arbitrary number of POEtic chips, each of
them with their own functional subsystems, the system interface and the choice of the system
bus makes it possible to handle the final tissue as a single POEtic chip. The only difference
between a single chip and a tissue is the actual size of the organic subsystem, which in the later
case is an aggregation of all the organic subsystems present in the tissue.

2.1. The environment subsystem

Figure 3 shows the internal organisation of the environment subsystem.

16 x 16
booth
mult.

µP core AHB bus
controller

AHB Bus

APB
bridge

APB Bus

16-bit
timer

16-bit
timer

Communications
unit

Clock
manager

External memory
unit

Figure 3. Internal organisation of the environment subsystem

As it can be deduced from figure 3 the architecture of the environment subsystem is structured
around a specific microprocessor core. It is a 32-bit custom RISC processor, with dedicated
instructions for developing evolutionary algorithms. A pseudo-random number generator is
included in the ALU of the processor. The organisation of the environment subsystem is
organised around the AHB (Advanced High-performance Bus) bus corresponding to the AMBA
specification [1]. Simple peripherals are placed in a separate bus section, called APB (Advanced
Peripheral Bus) that interfaces with the AHB bus through a bridge.

All the subsystems included in the POEtic tissue can be managed by the environment subsystem
through a careful design of its memory map, whose structure is presented in table 1. The
numbers provided in table 1 are specified in hexadecimal format. Even if the organic subsystem
of the POEtic tissue is mapped in only one memory section, in fact this section maps the organic
subsystems of all the chips that are present in the tissue for a given application.

The first 25 words of the program data section are reserved for the interrupt vectors of the
microprocessor. Table 2 summarises the organisation of this interrupt vector table. The content
of each of these memory positions is a JUMP instruction that points to the start address of the
corresponding interrupt service routine.

The priority of the interrupt sources is directly related to the value of its associated interrupt
vector, being thus the internal interrupt 0 the interrupt source with the highest priority.

Section Start address End address
Program 0x0000_0000 0x3FFF_FFFF
Data 0x4000_0000 0x7FFF_FFFF
Multiplier 0xC000_0000 0xC000_0003
Communications unit 0xD000_0000 0xD000_0150
Timers 0xE000_0000 0xE000_0007
Clock manager 0xE000_0008 0xE000_000F
Organic subsystem 0xF000_0000 0xFFFF_FFFF

Table 1. Memory map organisation of the POEtic tissue

Interrupt source Interrupt vector
Main program 0x0000_0000
Timer 0 0x0000_0001
Timer 1 0x0000_0002
Multiplier 0x0000_0003
Clock manager 0x0000_0004
UART 0 TX 0x0000_0008
UART 0 RX 0x0000_0009
UART 1 TX 0x0000_000A
UART 1 RX 0x0000_000B
I2C 0x0000_000B
SPI 0x0000_000C
Parallel port 0x0000_000D
External interrupt 1 0x0000_0010
External interrupt 0 0x0000_0018

Table 2. Organisation of the interrupt vector table of the microprocessor

The communications unit included in the environment subsystem permits to implement an 8-bit
bi-directional port, two UARTs, one SPI interface and one I2C interface. The functionality of
these interfaces can be programmed by the user to match the requirements of a given application.

The clock manager unit has been added to the environment subsystem of the POEtic tissue in
order to facilitate the hardware debugging procedures for the functionality implemented in the
organic subsystem. This unit permits to generate a clock signal for the organic subsystem whose
frequency is divided with respect to that associated to the system clock. Furthermore, if desired,
this unit permits also to stop the clock signal provided to the organic subsystem after a specified
number of clock cycles (from 1 to 65535). This feature allows for advancing the state of the
organic subsystem edge-by-edge and then observing it (note that the environment subsystem has
access through the system interface to the configuration and state of the organic subsystem).

From an architectural point of view the organisation of the external memory unit of the
environment subsystem is divided in three main parts: the boot ROM, the program ROM and
the data RAM.

The presence of a boot ROM section permits the user to load upon a power up sequence a
program that may be transferred to the microprocessor using any one of the peripherals included
in the communications unit. This means that the physical architecture of the memory unit of the
microprocessor has two possible configurations, as depicted in figure 4.

The organisation depicted in figure 4(a) corresponds to a situation where the program to be
executed by the microprocessor is fixed and already stored in a ROM. In this case after the
power up sequence the microprocessor starts executing directly from this memory section.
Figure 4(b) shows an organisation corresponding to a case where there is just a boot loader
program stored in a boot ROM that takes care of capturing through one of the peripherals
included in the communications unit the actual program to be executed by the microprocessor.
This program is stored in the program ROM section that is physically implemented by means of
a Flash or a SRAM unit. In order to permit the microprocessor to physically write the program
Rom section during this boot sequence the memory map is slightly changed, so that the program
ROM section is mapped in the memory area starting at address 0x6000_0000.

Program ROM
(Flash, EEPROM,

EPROM, ...)

Program ROM
(Flash, EEPROM,

EPROM, ...)

Data RAM
(SRAM)

Data RAM
(SRAM)

Boot ROM
(Flash, EEPROM,

EPROM, ...)

Boot ROM
(Flash, EEPROM,

EPROM, ...)

Program ROM
(Flash, SRAM)
Program ROM
(Flash, SRAM)

Data RAM
(SRAM)

Data RAM
(SRAM)

(a) (b)

Figure 4. Physical architecture of the external memory unit of the environment subsystem

2.2. The organic subsystem

The organic subsystem is made up of 2 layers, as depicted in figure 5: a two-dimensional array
of basic elements, called molecules, and a two-dimensional array of routing units. Each
molecule is connected to its four neighbours in a regular structure. Mainly containing a 16-bit
look-up table (LUT) and a flip-flop (DFF), it has the capability of accessing the routing layer
that is used for inter-cellular communication. This second layer implements a dynamic routing
algorithm allowing the creation of data paths between cells at runtime.

Figure 5. Organisation of the organic subsystem

A molecule is the smallest programmable element of the POEtic tissue. It is mainly composed

of a flip-flop (DFF), and a 16-bit look-up table (LUT) (figure 5). Eight modes of operation are
supplied to ease the development of applications that need cellular systems and/or growth and
self-repair. The LUT is composed of a 16-bit shift register that can be split in two, used as a
shift register, or as a normal look-up table.

A molecule has eight different operational modes, to speed up some operations, and to use the
routing plane. The functional modes provided for the molecules are the following:

• In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four inputs.
• In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a result

depending on three inputs. The first result can go through the flip-flop, and is the first
output. The second one can be used as a second output, and is directly sent to the south
neighbor (can serve as a carry in parallel operations).

• In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift register. This
mode could be used to compare a serial input data with a data stored in the 8-bit shift
register.

• In Shift Memory mode, the 16 bits are used as a shift register, in order to store data, for
example a genome. One input controls the shift, and another one is the input of the shift
memory.

• In Input mode, the molecule is a cellular input, connected to the inter-cellular routing
plane. One input is used to enable the communication. When inactive, the molecule can
accept a new connection, but won’t initiate a connection. When active, a routing process
will be launched at least until this input connects to its source. A second input selects
the routing mode of the entire POEtic tissue.

• In Output mode, the molecule is a cellular output, connected to the inter-cellular
routing plane. One input is used to enable the communication. As in Input mode, when
inactive the molecule can accept a new connection, but won’t initiate a connection.
When active, a routing process will be launched at least until this output connects to one
target. Another input supplies the value sent to the routing plane, as so to another cell.

• In Trigger mode, the 16-bit shift register should contain "000...01" for a 16-bit address
system. It is used by the routing plane to synchronize the address decoding during the
routing process. One input is a circuit enable, that can disable every DFF in the tissue,
and another one can reset the routing plane, and so start a new routing.

• In Configure mode, the molecule can partially configure its neighborhood. One input is
the configuration control signal, and another one is the configuration shifting to the
neighbors.

Long distance inter-molecular communication is possible by the way of switch boxes. Each
switch box consists of eight input lines (two from each cardinal direction) and eight
corresponding output lines, and is implemented with eight inputs multiplexers. Two outputs are
sent into each of the four neighbors of the molecule, as shown in figure 6.

Each output line can be connected to one of the six input lines from the other cardinal directions
(no u-turns allowed) or to one of two possible outputs of the molecules (the output or the
inverted output).

A molecule is defined by 75 configuration bits. They are configured by loading them in parallel,
from the micro-controller. A partial reconfiguration is also possible, a molecule being able to
shift configuration bits of its neighbourhood. Actually, when shifting, 76 bits are used, as the
value of the flip-flop has to be in the configuration chain, in order to be able to retrieve its value.

The configuration system of the molecules can be seen as a shift register of 76 bits split into 5
blocks: the LUT, the selection of the LUT’s input, the switch box, the mode of operation, and an
extra block for all other configuration bits. Each block contains, as shown in figure 7, together

with its configuration, one bit indicating, in case of a reconfiguration coming from a neighbour,
if the block has to be bypassed. This bit can only be loaded from the micro-processor, and
remains stable during the entire lifetime of the organism.

Figure 6. Nine molecules, connected through their switchboxes, and detailed view of a switchbox

Figure 7. Organisation of the configuration bits for partial reconfiguration

The special configure mode allows a molecule to partially reconfigure its neighbourhood. It
sends bits coming from another molecule to the configuration of one of its neighbours. By
chaining the configurations of neighbouring molecules, it is possible to modify multiple
molecules at the same time, allowing, for example, the synaptic weights in a neuron to be
changed.

Three configuration bits are used to define the possible origin of a partial reconfiguration: two
bits for selecting the origin, and one bit that enables the partial configuration. In case of a
neighbor tries to partially reconfigure the molecule, if this config_partial_enable bit is set to ’1’,
then the molecule is partially reconfigured, and it tries to partially reconfigure its neighbors, by
chaining the output of the configuration stream. If the config_partial_enable bit is set to ’0’,
then no partial reconfiguration is executed, and no signal is sent to the neighbors.

This partial reconfiguration allows for instance to use the configuration bits of a molecule to
store information. A maximum of 54 bits can be stored in only one molecule, allowing for
efficiently implementing genome storage. By modifying the LUT content, a cell can also
modify its behaviour, that is a useful feature for evolvable hardware.

The second plane of the organism subsystem implements a dynamic routing algorithm to allow
the circuit to create paths between different parts of the molecular array. The possibility of
having a pseudo-static routing has also been added, to ease the development of applications that
only need local connections between cells.

The dynamic routing system is designed to automatically connect the cells’ inputs and outputs.
Each output of a cell has a unique identifier, at the organism level. For each of its inputs, the
cell stores the identifier of the source from which it needs information. A non-connected input
(target) or output (source) can initiate the creation of a path by broadcasting its identifier, in
case of an output, or the identifier of its source, in case of an input. The path is then created
using a parallel implementation of the breadth-first search algorithm. When all paths have been
created, the organism can start operation, and execute its task, until a new routing is launched,
for example after a cell addition or a cellular self-repair.

Our approach has many advantages, compared to a static routing process. First of all, a software
implementation of a shortest path algorithm, such as Dijkstra’s [2], is very time-consuming for a
processor, while our parallel implementation requires a very small number of clock cycles to
finalize a path. Secondly, when a new cell is created it can start a routing process, without the
need of recalculating all paths already created. Thirdly, a cell has the possibility of restarting the
routing process of the entire organism, if needed (for instance after a self-repair). Finally, our
approach is totally distributed, without any global control over the routing process, so that the
algorithm can work without the need of the central micro-processor.

Every routing unit is composed of a switch box and a finite state machine. The switch box
contains five multiplexers that can select the value sent to each of the four neighbors, and to the
molecules underneath. The state machine is responsible for correctly configuring the
multiplexers, and implements the distributed routing algorithm, by communicating with the
other routing units.

The routing algorithm is executed in four phases:

Phase 1: Finding a Master
In this phase, every target or source that wants to and is not connected to its correspondent
partner tries to become master of the routing process. A simple priority mechanism chooses the
most bottom-left routing unit to be the master, as shown in figure 8. Note that there is no global
control for this priority, every routing unit knowing whether or not it is the master. This phase is
over in one clock cycle, as the propagation of signals is combinational.

Figure 8. Three consecutive steps of the routing algorithm. The black routing unit will be the master, and

therefore will perform its routing

Phase 2: Broadcasting the Address
Once a master has been selected, it sends its address in case of a source, or the address of the
needed source in case of a target. It is sent serially, in n clock cycles, where n is the size of the
address. The same path as in the first phase is used to broadcast the address, as shown in figure
9.

Figure 9. The propagation direction of the address: north → south | east → south, west, and north | south

→ north | west → north, east, and south | routing unit → north, east, south, and west

Every routing unit, except the one that sends the address, compares the incoming value with its
own address (stored in the molecule underneath). At the end of this phase, that is, after n clock
cycles, each routing unit knows if it is involved in this path. In practice, there has to be one and
only one source, and at least one target.

Phase 3: Eliminating sources and targets
In some situations, a source should start a routing process, for instance, in a developmental
process. In such a process, it would be useful to have many sources and targets with the same
ID. So at this stage, it is possible there is more than one source involved in the routing process.
In order to avoid multiple sources, in this phase that lasts only one clock cycle, if a source is at
the origin of the routing process, it sends a signal to every other routing unit, to let them know a
source is at the origin. Then every other source with the same ID disabled its participation in the
current process, and during the next phase, the source will connect to the nearest target.
The same disable is performed in case a target launched the routing process. Every target that is
not the master disables its participation to the current process, to ensure that the target that
started the process will be the only one connected to a source. In this case, the nearest source
will be connected to this target.

Phase 4: Building the Shortest Path
The last phase, largely inspired by [3], creates a shortest path between the selected source and
the selected targets. An example involving 8 sources and 8 targets is shown in figure 10, for a
densely connected network.

Figure 10. Test case with a densely connected network

A parallel implementation of the breadth-first search algorithm allows the routing units to find
the shortest path between a source and many targets. Starting from the source, an expansion
process tries to find targets. When one is reached, the path is fixed, and all the routing resources
used for the path will not be available for the next successive iterations of the algorithm.

Figure 11 shows the development of the algorithm, building a path between a source placed in
column 1, row 2 and a target cell placed in column 3, row 3. After 3 clock cycles of expansion,
the target is reached, and the path is fixed, prohibiting the use of the same path for a successive
routing.

Figure 11. Step (a) one, (b) two, (c) three and (d) four of the path construction process between the
source placed in column 1, row 2 and target cell placed in column 3, row 3

Based on addresses, the dynamic routing presented above is very flexible. However, for some
applications, this flexibility can become a disadvantage, for example if we only need local
communications between cells like a 4-neighborhood.

A second mode of routing has been added for this purpose. A flip-flop in the tissue can be
configured by the molecules to choose the mode to use for a specific application. The pseudo-
static mode uses the fact that every switch boxes are pass-through after a hardware reset. When
in pseudo-static mode, the routing units that are connected to input or output molecules only
shift the content of the molecule LUT into the configuration of the switchbox. By this way, in
16 clock cycles, the inter-cellular routing is completed, and the circuit can start its task. The
only limitation is that a path between two cells can only be a vertical or a horizontal one,
without more complex possibilities (figure 12).

2.3. The system interface

As it has been mentioned previously, the system interface of the Poetic tissue plays a major role
in allowing for its scalability features. This means that the physical size of the tissue can be
accommodated to the actual needs of a given application without posing specific constraints
neither on the system architecture nor in the connectivity pattern among the POEtic chips that
constitute the tissue.

The POEtic tissue, as it was presented in figure 1, can be constructed as a bidimensional array
constituted by POEtic chips. The connectivity between these chips, as depicted in this figure, is
based on two different buses, named organic (O) and interface (I) buses. The signals that
constitute the organic bus allow the organic subsystems present in every POEtic chip to

communicate (at a cellular level).

Figure 12. A pseudo-static communication scheme between four cells

The interface bus carries those signals that permit to handle the collection of POEtic chips as a
single tissue, so that from a user point of view the tissue has only one environment subsystem
and one organic subsystem. This is represented in figure 13.

Regarding the scalability of the environment subsystem, even if every POEtic chip contains a
single environment subsystem, only one of them will be active in the tissue. This is
accomplished by a specific signal present in every POEtic chip, called master, that indicates
(when set to a value ‘0’) that the environment subsystem of a specific chip will be managing the
complete tissue.

The 68 signals (32 data lines, 32 address lines, sahbi_hsel, sahbi_hready, sahbi_hwrite and
sahbo_hready) that constitute the AHB bus used for the POEtic tissue are connected to all the
POEtic chips. This means that the chip identified as a master of the system can access the
resources present in any other chip. A specific chip is identified within the array using Cartesian
coordinates that correspond to the physical position of the chip in the array. This means that a
chip with coordinates (X,Y) is placed in column X and row Y within the array.

P P
I

O P

I O I O I O

I

O

P

I O

P

I O

I

O P

I O

I

O

P

I O

I

O

I

O

I

O P

I O

I

O P

I O

I

O

I O I O I O

I

O

I

O

I

O

P P
I

O P

I O I O I O

I

O

P

I O

P

I O

I

O P

I O

I

O

P

I O

I

O

I

O

I

O P

I O

I

O P

I O

I

O

I O I O I O

I

O

I

O

I

O

P P
II

OO P

I O I O I OII OO II OO II OO

II

OO

P

II OO

P

II OO

II

OO P

II OO

II

OO

P

II OO

I

O

I

O

I

O

II

OO

II

OO

II

OO P

II OO

II

OO P

II OO

II

OO

I O I O I OII OO II OO II OO

I

O

I

O

I

O

II

OO

II

OO

II

OOEnvironment
subsystem

Organic
subsystem

sensorsactuators

POEtic chip

Environment
subsystem
Environment
subsystem

Organic
subsystem
Organic

subsystem

sensorsactuators

POEtic chip

Environment
subsystem

Organic
subsystem

sensorsactuators

POEtic tissue

Environment
subsystem
Environment
subsystem

Organic
subsystem
Organic

subsystem

sensorsactuators

POEtic tissue

Figure 13. Scalability properties of the POEtic tissue

The coordinates of a given chip are not pre-programmed, but are calculated for a given array
configuration during a coordinate propagation phase that should be performed before the tissue
is operational. For this purpose every POEtic chip has two inputs, named Xin and Yin, and two
outputs, Xout and Yout. The Xin input of a given chip is connected to the Xout output of the
chip placed in the same row and in the previous column within the array. The Yin input of a
given chip is connected to the Yout output of the chip placed in the same column and in the
previous row within the array.

Every POEtic chip receives in serial mode its X coordinate through its Xin input and its Y
coordinate through its Yin input. The coordinates are received in serial mode, so that by default
the Xin and Yin inputs are in idle state (i.e., with a value ‘0’), and after one of these input is set
to value ‘1’ the POEtic chip should recognise that during the next 4 (in the current version of
the POEtic chip the X and Y coordinates are 4-bit wide, but this can be easily extended to any
desired size) cycles its X or Y coordinate will be received through the corresponding input.
Once a given chip has received its X and Y coordinates it calculates and sends the coordinates
for its direct neighbours. The coordinate propagation process is started by the chip whose
environment subsystem has been identified as a master. The coordinate propagation process is
started when the microprocessor included in the environment subsystem of the master chip
performs a write cycle on the address 0xF000_0004 (as it was indicated in table 1, the organic
subsystem is mapped in the memory space ranging from 0xF000_0000 to 0xFFFF_FFFF).

Once all the chips have got their actual coordinates within the Poetic tissue it is quite simple for
the environment subsystem to access to the organic subsystem present in any chip. In order to
access (either in read or write mode) the configuration of a specific molecule present in a
POEtic chip placed at coordinates (X,Y) the environment subsystem should perform a read or
write access to the memory position 0xF00X_YABC, where:

• X: Row where the POEtic chip is placed
• Y: Column where the POEtic chip is placed
• A(3:0)B(3:0)C(3:2): These 10 bits indicate the address of the molecule within the chip.

One POEtic chip contains 144 molecules, and their mapping ranges from 0x002 to
0x091.

• C(1:0): These 2 bits indicate which one of the 3 configuration words of the molecule
are to be read or written. A value “01” implies the activation of the cs1 signal, a value
“10” implies the activation of the cs2 signal, while a value “11” implies the activation
of the cs3 signal.

Bearing this in mind, the final organisation of the system interface included in every POEtic
chip is that depicted in figure 14.

The wen signal depicted in this figure indicates if the access to the configuration of a given
molecule is in read or write mode. The bidirectional configuration data bus is in fact constituted
by two independent 32-bit buses, one for read access and the other for write access.

2.4. Physical implementation

The POEtic chip has been implemented and fabricated as an ASIC of 54 mm2 using a 0.35 µm
CMOS process. The chip, whose layout is depicted in figure 15, contains 144 molecules
organised as an 8x18 array and the complete environment subsystem explained in previous
sections.

X registerCoordinate
handling

unit

AHB Bus

AHB
Controller

Y register

Row & Column
decoder

Organic subsystemXout

configuration
data

wen

cs

YoutXinYin

Figure 14. Internal organisation of the system interface

Figure 15. Layout of the POEtic chip

3. Emulation of large-scale spiking neural networks models

The spiking neural network model considered in our approach is that presented in [4]. This
model outperforms previous approaches for implementing Spike Time Dependent Plasticity
(STDP)-like learning methods when dealing with dynamic input stimuli.

Basically, this model consists in a leaky Integrate-And-Fire scheme, in which synapses can
change their weights depending on the time difference between spikes. The outputs of the
synapses are added until their result Vi(t) overcomes a certain threshold θ. Then a spike is
produced, and the membrane value is reset.
The simplified equation of the membrane value is:







=+⋅

=
=+

∑ 0)()()(
1)(0

)1(
tSwhentJtVk
tSwhen

tV
iijimem

i
i

(1)

Where kmem=exp(-∆t/τmem), Vi(t) is the value of the membrane, Jij is the output of each synapse
and Si(t) is the variable which represents when there is a spike.

The goal of the synapse is to convert the spikes received from other neurons in proper inputs for
the membrane. When there is a spike in the pre-synaptic neuron, the actual value of the output Jij
is added to the weight of the synapse multiplied by its activation variable. But if there is no pre-
synaptic spike then the output Jij is decremented by the factor ksyn. The output J of the synapse i-
j is ruled by:







=⋅

=⋅+
=+

0)()(

1)())(()(
)1(

tSwhentJk
tSwhentAwtJ

tJ
jijsyn

jRiRjRiRjij
ij

(2)

Where j is the projecting neuron and i is the actual neuron. R is the type of the neuron:
excitatory or inhibitory, A is the activation variable which controls the strength of the synapse,
and ksyn is the kinetic reduction factor of the synapse. If the actual neuron is inhibitory, this
synaptic kinetic factor will reset the output of the synapse after a time step, but if the actual
neuron is excitatory, it will depend on the projecting neuron. If the projecting neuron is
excitatory the synaptic time constant will be higher than if it is inhibitory. The weight of each
synapse also depends on the type of neuron it connects. If the synapse connects two inhibitory
neurons, the weight will always be null, so an inhibitory cell can not influence another
inhibitory cell. If a synapse is connecting two excitatory neurons, it is assigned a small weight
value. This value is higher for synapses connecting an excitatory neuron to an inhibitory one,
and it takes its maximum value when an inhibitory synapse is connected to an excitatory cell.
In order to strengthen or weaken the excitatory-excitatory synapses, the variable A will change
depending on an internal variable called Lij which is ruled by:

 Lij(t+1)=kact*Lij(t) + (YDj(t)*Si(t)) – (YDi(t)*Sj(t)) (3)

Where kact is the kinetic activity factor, which is the same for all the synapses.
YD is the learning variable that measures, with its decay, the time separation between a pre-
synaptic spike and a post-synaptic spike. When there is a spike, YD will have its maximum
value in the next time step, but when there is not, its value will be decremented by the kinetic
factor klearn, which is the same for all synapses.
When a pre-synaptic spike occurs just before a post-synaptic spike, then the variable Lij
increases and the synapse strengthens. This means it reinforces the effect of a pre-synaptic spike
in the soma. But when a pre-synaptic spike occurs just after a post-synaptic spike, the variable
Lij decreases, the synapse weakens and the effect of a pre-synaptic spike in the soma will
descend. For other kind of synapses, the activation variable is always equal to 1.
Regarding the network configuration, 80% of the neurons are excitatory, while the remaining
20% are inhibitory. Each cell makes connections with other neurons within a 5x5
neighbourhood, i.e. 24 neurons. Figure 16 represents this connectivity pattern.

Figure 16. Connectivity of a single neuron.

The parameters that govern the functionality of the neuron block are:
• The membrane path has a resolution of 12 bits, with a range [-2048, 2047], and the

threshold is kept fixed to +640.
• The membrane decay function has a time constant value of τ=20.
• The refractory time is set to 1.

The decay block will be used both in the learning and synapse blocks. Its goal is to have a
logarithmic decay of the input; it is obtained with a subtraction and controlling the time when it
is done depending on the input value. Taking into account that this block is used in many parts
of the design, the variable decayed has been called x.
The block diagram is represented in figure 17. First of all, a new value of x should be obtained.
It will be the input of a shift register which is controlled by the most significant bit of x and the
external parameter mpar.
The output of this shift register will be subtracted from the original value of x. This operation
will be done when the time control indicates it. The time control is done with the value of a
counter that is compared with the result of choosing between the external value step or the
multiplication of (MSB – mpar) by step. The decay variable τ depends on the input parameters
mpar and step.

SHIFT
REG

- FF

6

1

load

init_x

MSB

- *
>

mpar step

dec_x

>

counter
rst

Figure 17. Block diagram of the decay block.

The learning block “measures” the time difference between a spike in the projecting neuron (j)
and the actual neuron (i). Depending on these time differences and the types of the neurons, the
synapse will be more or less active.

When a spike is produced in the projecting neuron, the variable YD loads its maximum value
and starts to decay slowly. Then, if the actual neuron spikes, the value of YDj is added to the
decayed value of the L variable. On the other hand, if a spike is produced first in the actual
neuron and after in the projecting neuron, the value of YDi is subtracted to the decayed value of
the L variable.

When the L variable overcomes a certain threshold (L_th), positive or negative, the activation
variable (A) increases or decreases respectively, unless it is already in its maximum or
minimum. If A is increased, L is reset to the value L-2*L_th, but if it is decreased, then L is
reset to L+2*L_th. Figure 18 presents the organisation of this learning block.

Figure 18. Organisation of the learning block.

The parameters that govern the functionality of the learning block are:

• The YD variable has a resolution of 6 bits and the learning variable (L) of 8 bits. The
activation variable (A) can have four states.

• The time constant for the variable YD is τ=20.
• L_th= [-128,127]

To improve the sensitivity of the block for long time differences spikes, the time constant for
the variable L is 4000, but it can change depending on the size of the network where the neuron
works.

When there are spikes in the actual neuron after the spikes in the projecting neuron, the value of
L increases, and the value of A also increases, so the synapse becomes more active.

The goal of the synapse block is to set the value of J (the input value added to the membrane)
and it depends on four factors: the synapse activation level (A), the spikes of the projecting
neuron (sj) and the type of the actual neuron and the projecting neuron (ri and rj).
For each synapse a certain weight is set. This weight is multiplied by the activation variable (A).
For this purpose, a shift register is used, so when A=0, the weight becomes 0, when A=1 the
weight rests the same, when A=2 the weight is multiplied by 2 and when A=3 it is multiplied by
4.
This output weight is added to the decayed value of the output J. But the decay curve depends
on the type of the actual and the projecting neurons (ri and rj).
There are two possible types for each neuron, excitatory and inhibitory, so we should obtain
four possible values for the time constant which will decrease the addition. But, when both
neurons are inhibitory, the weight of the synapse is always 0, so the J value is also always 0 and
therefore it is nonsense to decrease it. Due to this reason, there are only three possible decay
time constants.
The three time constants are multiplexed, and the multiplexer is controlled by the types of
neurons (ri,rj). The multiplexer output controls the decay block, and finally we obtain the J value
at the output of this decay block. Figure 19 shows the organisation of the synapse block.

Figure 19. Organisation of the synapse block.

The parameters that govern the functionality of the synapse block are:

• The internal resolution of the block is 10 bits. But the output resolution is of 8 bits, due
to the internal value of J is divided by 4 to keep the correct scaling.

• The time constants used by this block are presented in Table 3.

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Sj

YDj

A(L)
reg

reg

Lth

+/-

YDi

Si

A
reg

Shift regw

A

+

sj
Jτ

ri,rj

20 reg
3
0

Shift regw

A

+

sj
Jτ

ri,rj

20 reg
3
0

Time Constant
(τ)

Projecting
Neuron Type (rj)

Actual Neuron
Type (ri)

20 0 0
0 0 1
3 1 0
0 1 1

Table 3. Time constants for different synapse types.

In this table r=0 means an excitatory neuron, while r=1 indicates an inhibitory neuron.

The high resolution needed for the variables, as well as the number of operations to be
performed may pose a serious limitation for the final implementation. Therefore, the first step in
the physical realisation of the model has consisted in an evaluation of the minimum resolution
to be used in the neuron data path.

In a first attempt the resolution of the parameters has been reduced by two bits and some values
and time constants have been changed to keep the correct scaling. Table 4 shows the new values
of the internal parameters after this optimisation process. The final organisation resulting from
this optimisation process is depicted in figure 20.

Due to the complexity of the design, the simplification of the model is very important to avoid
redundancy or to use just the necessary components. For this reason, a further simplification of
all the building blocks that constitute the model has been performed [5].

Parameter New value
Membrane resolution 10
Threshold +160
Input (J) resolution 6
Weights [0:8],[64:128],[128:256],[0:0]
YD resolution 4
L resolution 6
Membrane decay time constant 20
YD decay time constant 20
L decay time constant 4000
J decay time constants (00,01,10,11) 20,0,3,0 (keep the same values)

Table 4. Resolution of the parameters for an optimised implementation.

Once the model has been optimised it has been physically translated into the molecules that
constitute the basic building blocks of the organic subsystem of the POEtic tissue. Figure 21
shows this physical realisation.

The molecule organisation shown in figure 21 corresponds to the actual structure of the organic
subsystem present in the POEtic tissue, which is arranged as an 8x18 array of molecules.

After designing the neuron model the VHDL models developed for the POEtic tissue have been
configured and simulated to validate its functionality.

After this validation stage the strategy for the simulation of large-sale SNN models has been
considered. Since in its actual implementation the POEtic chip only allows for the
implementation of a single neuron and the current number of POEtic chips is far less than 10000
it will be necessary to use a smaller array of POEtic chips whose functionality should be time
multiplexed in order to emulate the whole network.

reg-L

reg-tL

reg-A

reg-J
comp

reg

reg
+ reg reg

reg

reg
learning

reg-tJ

synapse

reg

reg

sj

YDj

ns,tm

ns

YDi

si

Vth

Vi
reg-w

ns,tm

-

reg-Lreg-L

reg-tLreg-tL

reg-Areg-A

reg-Jreg-J
comp

reg

reg
+ reg reg

reg

reg
learning

reg-tJreg-tJ

synapse

reg

reg

sj

YDj

ns,tm

ns

YDi

si

Vth

Vi
reg-w

ns,tm

-

Figure 20. Block diagram for the serial implementation of the neuron model.

Figure 21. Molecule-level implementation of the neuron model.

This means that every POEtic chip should be able to manage a local memory in charge of
storing the weights and learning variables corresponding to the different neurons it is emulating
in time.

A 16-neuron network organised as a 4x4 array has been constructed using this principle. This
would permit the emulation of a 10000-neuron network in 625 multiplexing cycles. Bearing in
mind that each neuron is able to complete a single cycle in 150 clock cycles, this means that the
minimum clock frequency required to handle input stimuli in real time (i.e., to process visual
input stimuli at 50 frames/second) is around 5 MHz, far less than the actual clock frequency
achievable by the organic subsystem of the POEtic tissue.

The visual stimuli will come from an OmniVision OV5017 monochrome 384x288 CMOS
digital camera. Specific VHDL and C code have been developed in order to manage the digital
images coming from the camera. To test the application, artificial image sequences have been
generated on a display and then captured by the camera for its processing by the network.

4. Conclusions

In this paper we have presented a new family of programmable integrated electronic systems,
called POEtic, that include features derived from some of the properties present in living beings,
like evolution, development, self-repair, self-replication and learning.

The combination of partial and total dynamic reconfiguration, as well as the self-configuration
and dynamic routing capabilities make these devices an ideal candidate for the efficient
implementation of bio-inspired artefacts.

After describing in detail the different building blocks that constitute the tissue, an
implementation approach for the emulation of large-scale spiking neural network models has
been presented. The results derived from this implementation demonstrate that an electronic
tissue built around these devices will permit the real-time emulation of this kind of models, thus
serving as an excellent development and experimentation instrument for neuroscientists.

After receiving the first POEtic chips specific development boards have been constructed to
develop applications to be solved using the bio-inspired features offered by the tissue.

Acknowledgements

The work presented in this paper has been funded by the grant IST-2000-28027 (POEtic) of the
European Union (FET Proactive initiative on Neuroinformatics for living artefacts) and by grant
OFES 00.0529-2 of the Swiss government. The information provided is the sole responsibility
of the authors and does not reflect the Community’s opinion. The Community is not responsible
for any use that might be made of data appearing in this publication.

References

[1] ARM. Amba specification, rev 2.0. advanced risc machines ltd (arm).

http://www.arm.com/armtech/amba_spec, 1999.
[2] Edsger. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.
[3] J. M. Moreno Arostegui, E. Sanchez, and J. Cabestany. An in-system routing strategy for

evolvable hardware programmable platforms. In Proc. 3rd NASA/DoD Workshop on
Evolvable Hardware, pages 157–166. IEEE Computer Society Press, 2001.

[4] J. Eriksson, O. Torres, A. Mitchell, G. Tucker, K. Lindsay, D. Halliday, J. Rosenberg, J.M.
Moreno, A.E.P. Villa, “Spiking Neural Networks for Reconfigurable POEtic Tissue”,
Evolvable Systems: From Biology to Hardware, A.M. Tyrrell, P.C. Haddow, J. Torresen
(eds.), pp. 165-173, Springer-Verlag, 2003.

[5] O. Torres, J. Eriksson, J.M. Moreno, A. Villa, ”Hardware optimization and serial
implementation of a novel spiking neuron model for the POEtic tissue”, BioSystems, Vol.
76, No. 1-3, pp 201-208, August_October 2004.

