
DATA STREAM COMPUTATION FOR MONITORING
STATISTICS OF MASSIVE WEBGRAPHS

LUCIANA S. BURIOL*, DEBORA DONATO*, STEFANO LEONARDI*
AND TOBIAS MATZNER+

Abstract. We are interested in computing properties of large graphs,
as the webgraph, using data stream algorihtms. In this work we report
results on computing the indegree rarity distribution of a graph obtained
as a stream of edges. We implement a rarity algorithm proposed in
the literature and show experimentally that the results approximate
very well the optimal value with very limited use of memory and time.
Moreover, considering some structure in the stream, we present results
for the algorithm adapted for maintaining the rarity distribution of the
number of cliques of size three.

1. Introduction

Data stream algorithms aim to maintain the underlying information of a
stream of data, using small memory space. The data is processed on the
fly, as it is generated, or it can also be read from second memory devices.
Typical applications of data stream algorithms are originated from mas-
sive datasets such as network traffic measurements, telephone call records,
biological datasets and atmospheric observations. In these applications is
unnecessary or impractical to read data multiple times. In many cases, the
data is not even stored. This paper focuses on a ”new” natural application
for data streams. We are interested in using data stream algorithms for
monitoring statistical and topological properties of large graphs such as the
webgraph. By webgraph we mean the directed graph generated from the
link structure of webpages: each webpage is a node and each hyperlink is
an arc in this graph. The graph read in a streaming fashion considers each
edge as an item and the stream is not required to be structured.

Several theorical results have been proposed in this new research field,
some of them have not yet been implemented and experimented, some of
them are not practical. In this paper we observe how a data stream algo-
rithm behaves in practice for computing the indegree rarity distribution of a
graph over the arc arrivals. More specifically, we maintain the distribution
of the number of nodes that has a given indegree over the total number of
different nodes seen in the stream so far. We use the algorithm proposed
by Datar and Muthukrishnan [5] and show experimentally that the results
are very close to the optima even when a low precision is requested. The
original algorithm proposes the use of min-wise hash functions, whereas we

1

2 BURIOL, DONATO, LEONARDI AND MATZNER

use universal hashing [5]. This decision is due to the fact that computing
min-wise hashing consumes about two orders of magnitude more time than
universal hashing without providing better results in practice for the graphs
we have tested.

When considering a specific structure in the data stream, other properties
can be computed. For example, reading the stream in an adjacency list
fashion, the same rarity algorithm can be used for estimating the density of
minors such as small bipartite cliques.

The indegree of webpages is an important measure of their popularity.
The experimental observation of the indegree distribution has been the
subject of seminal works aimed to characterize the structure of the web-
graph [2, 3]. This study has also revealed a surprising number of dense
subgraphs, specifically bipartite cliques, of moderately small size [8], consid-
ered as cores of hidden web communities.

In the next section we present the α-rarity algorithm of Datar and Muthukr-
ishnan [5]. Section 3 describes the adaptations of the α-rarity algorithm for
computing indegree rarity distribution, as well as for computing minors of
small size. In section 4 we present experimental results for rarity of in-
degree e bipartite cliques of size three (k3,3) and for the minors k(1,3)
and k(2,3). We generalize the set of all minors mentioned above using
the term k(i,3), where i denotes the number of nodes in the graph that
points to each node of a triple (set of three nodes). Comparison with the
results of an optimal computation shows excellent practical results of our
implementations.

2. Estimating rarity over data stream windows

We use the α−rare algorithm of Datar and Muthukrishnan [5] for driving
our experiments. Consider a stream of items ai generated in a universe
U=[1,..,n]. A stream is a set of m elements a1, a2, ..., am such that ai ∈ U .
An item i is called α − rare if it appears exactly α times in the stream.
Let’s call #α − rare the number of elements that appear exactly α times
in the stream. Likewise, #distinct denotes de number of distinct items in
the stream. The α-rarity ρα is defined as the ratio ρα = #α−rare

#distinct . In other
words, the α-rarity of a stream is the measure of number of items that repeat
exactly α times in the stream.

The algorithm proposed by Datar and Muthukrishnan [5] for computing
the α-rarity of a stream uses min-wise hash functions. Min-wise independent
permutation families are defined in [4]. The referred algorithm uses only
O(log N + log u) space, and O(log log N) per item processing time. It
estimates ρ by ρ̂ ∈ [1± ε]ρ+ ερ for a given fraction ε, with hight probability.
The algorithm uses h = 2ε−3p−1logτ−1 hash functions and two |h|-vectors,
min and count, in main memory. Each position i of the vector min contains
the minimum value found so far by the min-wise hash hi, whereas count
maintains, for each position i, the number of times that the current minimum

DATA STREAM COMPUTATION FOR MONITORING STATISTICS OF MASSIVE WEBGRAPHS3

min-wise value was found. For each value of α, ρ̂ is computed as the ration
between the number of counters that have exactly value α and h.

A slightly different algorithm is proposed for computing the α-rarity of
a windowed stream. E.g, Considering a fix window size equal to W, the
algorithm maintains the α-rarity of the last W items seen in the stream.

3. Computing the rarity distribution of indegree and k(i,3)

In this sections we describe how the not-windowed algorithm described
in the previous section is adapted to compute the α-rarity algorithm for
computing the indegree and k(i,3) rarity distributions of a graph.

Consider an arbitrary scan of a digraph G=(V,E). The items of the
stream, in this case, are the list of edges. The α-rarity of the stream can be
understood as the percentage of nodes that has indegree α. With the un-
derlying data stored for estimating α, we can compute the αi- rarity for any
value of i. The rarity distribution can be computed for a complete stream,
or for the window of the last W items seen in the stream.

Reading the stream in an adjacency list fashion, the same rarity algorithm
can be used for approximating the density of minors, such as small bipartite
cliques. Such kind of structured data stream can be found naturally on some
applications. For example, during a crawling process, each current fetched
page is parsed and all outgoing links of this page identified. In this case
G is also read in a streaming fashion, but considering all outgoing links of
a node i ∈ V in sequence. The lists of outgoing edges are not required to
be in any specific order, as well as the edges intern to each list. So, for
each node u, for each outgoing edge (−→u, a) ∈ OUT (u), triples are calculated
considering node a and all combinations two by two of the head-node of
the edges seen so far in OUT (u). E.g, triples (a,b,c) are calculated for
nodes b, c ∈ OUT (u) considering edges (

−→
u, b) and (−→u, c) previously located

in OUT (u) than (−→u, a). So, the overall number of triples (T) of the graph is
the sum of the combination three by three of head-nodes of the outgoing list
of each node u ∈ V , e.g., T =

∑i
i=1

di∗(di−1)∗(di−2)
6 where di = |OUT (i)| is

the outdegree of the node i. We require to store in main memory the whole
outgoing adjacency list of the current node.

4. Experimental Results

In this section we describe the experimental results we performed us-
ing the α-rarity algorithm applied in maintaining the indegree and k(i,3)
distributions.. The algorithms were coded in g++ version 3.3.2. The ex-
periments were conducted in a Intel Pentium IV, with 1GB RAM, running
Mandrake 9.0.

Due to the excessive computational time spent by min-wise hash func-
tions, we use universal hash functions instead. We used the hash function
(hash31) and the random number generator (prng int) from the online
available codes from the MassDAL group of Rutgers

4 BURIOL, DONATO, LEONARDI AND MATZNER

(http://www.cs.rutgers.edu/ muthu/massdal-code-index.html). We use an
optimized version of Jerry Zhao’s implementation [10] of an approximate
restricted min-wise independent permutation family proposed by Alon et
al. [1].

We conducted our experiments on streams of Wikipedia graphs. A graph
of this type is generated from the link structure of the online and free-content
encyclopedia Wikipedia (www.wikipedia.org). Following the definition of
a webgraph, each article is a node, and each hyperlink is a link in the
graph. One graph is extracted for each language. We generate streams
of edges of the wikipedia graphs following their generation on time. Due
to space restrictions, we limited the presentation of experimental results
in this extended abstract to the wikiEN and wikiPT graphs. The graphs
were obtained from an old dump of July 2004. Some comments are added
about the experimental results on the other three graphs. Graph wikiPT
contains 8,131 nodes and 48,168 edges, while graph wikiEN is two orders of
magnitude larger containing 286,754 nodes and 4,065,530 edges.

Figure 1 presents results for the rarity for the unbounded case, using 100
(right) and 1000 (left) hash functions. The lines are plot for a logarithmic
number of indegree values. For a good approximation, a larger number
of hash functions are required. But we observed, that even with a small
number of hash functions, the results are close to the optima. The plot
omits results for indegree higher than 63 for the sake of clarity of the figure,
but a complete plot would present additional lines on the bottom of the
figure, appearing on increasing order of the number of edges processed.

For the windowed case, similar quality of results were found, but spending
more time, as it was expected.

We also found good approximation when using the α-rarity algorithm
for computing the rarity distribution of k(i,3) on the graph. Results for
i=1,2,3 are plot in Figure 2. The plot is in log scale to be able to visualize all
three distributions clearly on the same plot. Usually the number of k(1,3)
$ k(2,3) $ k(3,3). The difference between this values decrease with the
increase of i. Observe, for example, the precision on results between the
estimated and exact computation of k(1,3) and k(2,3). Since k(1,3) is
found many more times than k(2,3), the results are more accurate. For
values of i > 4 we did not plot for the sake of clarity of the plot, but the
precision on the results decrease with the increase of i. As expected, we have
less precision for computing ρ̂ of α-rare elements that occur less frequently.

5. Concluding remarks

In this paper we use in practice data stream algorithms for computing sta-
tistical and topological properties of large graphs. We presented experimen-
tal results for the α-rarity algorithm applied on webgraphs for computing
the rarity distribution of indegree and k(i,3) and obtained very good ap-
proximations. For the windowed case, applied for the indegree distribution,

DATA STREAM COMPUTATION FOR MONITORING STATISTICS OF MASSIVE WEBGRAPHS5

50%

40%

30%

20%

10%

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

pe
rc

en
ta

ge
 o

f n
od

es

#edges

Estimated rarity for indegree 1
Exact rarity for indegree 1

Estimated rarity for indegree 2-3
Exact rarity for indegree 2-3

Estimated rarity for indegree 4-7
Exact rarity for indegree 4-7

Estimated rarity for indegree 8-15
Exact rarity for indegree 8-15

Estimated rarity for indegree 16-31
Exact rarity for indegree 16-31

Estimated rarity for indegree 32-63
Exact rarity for indegree 32-63

50%

40%

30%

20%

10%

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

pe
rc

en
ta

ge
 o

f n
od

es

#edges

Estimated rarity for indegree 1
Exact rarity for indegree 1

Estimated rarity for indegree 2-3
Exact rarity for indegree 2-3

Estimated rarity for indegree 4-7
Exact rarity for indegree 4-7

Estimated rarity for indegree 8-15
Exact rarity for indegree 8-15

Estimated rarity for indegree 16-31
Exact rarity for indegree 16-31

Estimated rarity for indegree 32-63
Exact rarity for indegree 32-63

Figure 1. Estimated and exact indegree rarity distribution
computed for edges arrivals of graph wikiEN. The estimation
makes use of 1000 (graph on the left) and 100 (graph on the
right) universal hashing functions. Values are presented to α
up to 63, presented as log2 plot. This plot presents the per-
centage of nodes with a given indegree (y-basis) considering
the amount of edges processed so far (x-basis). Results are
plot every 100,000 items processed.

1%

10%

100%

 100000 1e+06 1e+07

pe
rc

en
ta

ge
 o

f n
od

es

Thirty billion triples generated for 48166 edges arrivals

Estimated rarity for k1,3
Exact rarity for k1,3

Estimated rarity for k2,3
Exact rarity for k2,3

Estimated rarity for k3,3
Exact rarity for k3,3

Figure 2. Plot in log scale of the estimated and exact ki,3
rarity distribution, for i=1,2 and 3, computed for edges ar-
rivals of graph wikiPT. The estimation makes use of 1000
universal hash functions. This plot presents the percentage
of triples pointed by exactly i nodes (y-basis) considering the
amount of triples seen so far (x-basis). The triples are com-
puted accordingly with the edges arrivals. Results are plot
every 10,000 triples processed.

we observed again good approximation in a reasonable time. For the k(i,3)
estimation we obtained good approximations, but spending long time. That
happens because, in this case, all triples obtained are hashed by the #h hash
functions. For the wikiPT graph, we observe a total of 624 triples generated
for each edge processed.

6 BURIOL, DONATO, LEONARDI AND MATZNER

We conclude that using universal hashing by this algorithm speed up a
lot the codes, maintaining good approximations.

As further work, we would like to test other algorithms that estimates
interesting statistical and topological properties of webgraphs. Moreover,
dynamic aspects of webgraphs also could be explored, as edges being inserted
and removed over time. The α-rarity algorithm does not have solution for
deletions. But a recent publications [6, 7] support also deletions.

6. Acknowledgements

We are very thankful to Jerry Zhao for providing the first version of the
min-wise hash functions and for the suggestions for its optimization. We
also thanks S. Muthukrishnan for several helpful discussions.

References

[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost
k-wise independent random variables. Journal of Random structures and Algorithms,
3(3):289–304, 1992.

[2] A.L. Barabasi and A. Albert. Emergence of scaling in random networks. Science,
(286):509, 1999.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, S. Stata, A.
Tomkins, and J. Wiener. Graph structure in the web. Computer Networks, 33:309–
320, June 2000.

[4] A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. Proc. of STOC, pages 327–336, 1998.

[5] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream
windows. LNCS, 2461:323–334, 2002.

[6] Irina Rozembaum G. Cormogode, S. Muthukrishnan. Summarizing and mining in-
verse distributions on data streams via dynamic inverse sampling. Proccedings of the
31st VLDB Conferenct, 2005.

[7] C. Sohler G. Frahling, P. Indyk. Sampling in dynamic data streams and applications.
21st Annual Symposium on Computational Geometry, 2005.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for
emerging cyber communities. pages 403–416, 1999.

[9] D. Sivakumar Z. Bar-Yosseff, R. Kumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 623–632, 2002.

[10] J. Zhao. An implementation of min-wise independent permutation family. 2005.
http://www.icsi.berkeley.edu/ zhao/minwise/.

(*) Dipartimento di Informatica e Sistemistica, Universitá di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

E-mail address: {buriol,donato,Stefano.Leonardi}@dis.uniroma1.it

(+) Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany
E-mail address: tobias.matzner@rechnerpost.de

