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[...] the best material model for a cat is another, or preferably the same
cat. - N. Wiener and A. Rosenblueth [24]

Abstract. What exactly is a small-world? Watts and Strogatz [23] de-
fine every network with a high clustering coefficient and a low diameter
to be a small-world. We will show here that for this classic definition
there are some counter-intuitive examples where either false-negative or
false-positive classifications of network models occur.

To bring forth a new definition for small-world generating network mod-
els, we will first introduce a slightly varied small-world network model.
This model is based on a regular grid graph and an added G(n, p)[13]
random graph. We will then give an upper bound for the diameter of the
generated networks dependent on p and n. This upper bound is general-
ized to combinations of a so-called ’locally clustered’ graph family with
a G(n, p) graph. On the basis of this general method we propose a new
definition for small-world generating models.

1 Introduction

The ’small-world effect’ has long been a part of folklore. It describes the fact that
most of us are tightly knit into small social clusters while on the other hand we
need just a short chain of acquaintances to connect us to any other human on the
world. Milgram estimated the number of persons in such a chain to be around
six [19] which is why this observation is also known under the title ’six degrees
of separation’. The first formal approach to explain this astonishing result was
made by Watts and Strogatz in a seminal paper [23] in which they gave a rough
definition of small-world networks and presented a model for their generation.
They defined a small-world to be every network with a high clustering coefficient
and a low diameter.

Following their publication, several real-world networks such as the WWW
or file-sharing communities were analyzed and shown to be small-worlds (e.g. [1,
2, 11, 14]). A second research area deals with network-based processes on small-
world networks, like the behavior of neural networks on small-worlds [17] or
disease spreading in small-worlds [21]. Other directions of research tried to find
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more rigorous analytical results on the properties of either the classic small-
world model or on variants of the small-world model that were easier to analyze
or captured new aspects of small-worlds [20, 12, 16, 15, 3, 10, 4, 7].

In the classical model of Watts and Strogatz, n vertices are placed equidis-
tantly on a ring and every vertex is connected with its k next neighbors. Every
edge has a probability of p′ to be rewired, i.e., one of the endpoints is fixed and
the edge is rewired to a new, randomly drawn target vertex [23]. For p′ = 1 a
certain kind of random graph emerges. A variant proposed by Watts together
with Newman [20] is based on the same basic ring graph but instead of rewiring,
a special kind of random graph is added to this basic graph. It is not quite clear
how this random graph is generated but the number of its edges is restricted to
pkn which makes it impossible that a proper G(n, p) random graph instance is
added for k < n − 1. Watts and Newman state that there is a single threshold
value for p′ such that the scaling of the diameter changes from a linear behaviour
to a logarithmic scaling.

We see three main objections regarding the classic small-world model [23]
and the variant in [20]:

Random Graph Component In the classic small-world model, the rewired
random edges are not building an instance of the commonly known and analyzed
random graph families G(n, m) or G(n, p), not even for p = 1 [8, 6]. In a G(n, m)
instance, a fixed number of m random edges is drawn between n vertices, in a
G(n, p) instance every possible edge between the vertices exists with probability
p. The diameter of these graph classes is O(log n). In the classic small-world
model [23], not all possible instances of the G(n, m) or G(n, p) sets can be re-
alized by the described process. This is mainly due to the fixation of one of
the endpoints in the rewiring process. Nonetheless, it is claimed in [23] that the
emerging random graph for p = 1 has a diameter that scales with O(log n). In
the variant of [20], the type of the added random graph is unclear. Thus, the
scaling of the diameter of this random graph component is possibly not given by
O(log n) but the calculated threshold value depends heavily on this assumption.

Clustering Coefficient and Diameter as Indicators for Small-Worldness
The model Watts and Strogatz proposed for generating small-world networks is
based on the rewiring process in which edges are generated randomly. The main
problem with the classic definition of small-world networks is that it cannot
determine whether some random process was involved in the generation of a
given network. We will illustrate this point:

It is very easy to construct a network with a high clustering coefficient and
a small diameter by first building a balanced tree, e.g., a quaternary tree, and
then adding edges between those leaves of the tree that have only distance 2 to
each other (Fig. 1). The balanced tree will then provide a diameter of O(log n)
for the whole network and more than half of the vertices are leaves with a
clustering coefficient of 1, which generates an average clustering coefficient of
> 0.5 for the whole graph. This network model is based on a hierarchical tree that
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connects locally dense clusters with each other. For example, the power grid of
the U.S. may rather be based on a hierarchical backbone that spans the network
rather than that it is the result of a process where random edges are added to a
locally clustered network [23]. This example shows that the clustering coefficient
identifies networks as small-worlds that are generated by another network model,
and thus it identifies false-positives.
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Fig. 1. Hybrid graphs of small cliques and a balanced tree as a counterexample for
the classic definition of small-worlds: Each block of four vertices constitutes a clique
in which every vertex has a clustering coefficient of 1. These blocks are combined to a
connected graph by a quaternary tree where every vertex has exactly four children and
most of the vertices in the tree have a clustering coefficient of 0. The clique component
consists of 64 vertices, the added tree component consists of 21 vertices and thus the
combined graph shows an average clustering coefficient of at least 0.75. The diameter
of this graph is determined by the diameter of the tree component which scales with
O(log n).

Also, networks with a small clustering coefficient can be considered as small-
world networks. We want to illustrate this point with some citations: Regular
grid graphs with a degree of 2d show a clustering coefficient of 0. Nonetheless,
also those graphs constitute a small-world if they are combined with random
graphs: Kleinberg bases his searchable small-worlds on regular grid graphs with
a clustering coefficient of 0 [15, 16]. Networks representing mostly hetero-sexual
relationships contain very little triangles. Rather, the graph forms nearly a bi-
partite graph between males and females [5]. Nonetheless these networks are
normally classified as small-worlds because of their combination of mainly local
relationships with some additional long range contacts [18, 22]. Chung et al. gen-
eralize the idea behind the clustering coefficient to include more models into the
general framework of small-world generating models [10, 4]: Their small-world
model combines a so-called (k, l)-local graph with a power-law random graph. A
graph is a (k, l)-local graph if for each edge e = (v, w), v and w are connected
by at least k edge-disjoint paths of at most length l. Summarizing, the intu-
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ition is that not all small-worlds can be detected with the help of the clustering
coefficient: it gives false-negatives.

Missing Generalizability The small-world model of Watts and Strogatz is
attractive because of its simplicity. On the other hand it lacks some extendability
to create more practical small-world generating models [10, 4].

Our goal is to build a generalized framework for small-world generating mod-
els that removes the objections given above. To deal with the first point we will
simplify the small-world model of Newman and Watts by adding a G(n, p)[13]
instance to a regular, d-dimensional grid. We will give an upper bound on the di-
ameter of this basic hybrid graph. The notion of the clustering coefficient will be
semantically replaced by the notion of locally clustered graph families. Then, the
upper bound on the diameter of our basic hybrid graphs can be generalized to
any combination of a locally clustered graph family with certain random graph
families. Thus, we offer possible building blocks for constructing small-world
generating models that are based on two components: a local and a random
component. This allows for more complex small-world generating models that
may be the basis for the simulation of real-world complex systems. We will fur-
ther use the building-block framework to give a new definition of small-world
generating models that incorporates all classic small-world models.

The paper is organized as follows: In Sec. 2 we give some basic definitions
needed in the concourse of the article. Sec. 3 is structured into three subsections:
Subsec. 3.1 introduces the main model, Subsec. 3.2 gives the upper bound for
this model and in Subsec. 3.3 we generalize the analysis to any combination
of locally clustered graph families with G(n, p). In Sec. 4 the new definition for
small-world generating models is introduced and discussed. Sec. 5 concludes with
a summary and discussion of the results.

2 Definitions

A graph family G(n) in this article denotes any set of graphs generated by the
same algorithm and parameterized by the number of vertices in it. For non-
random graph families and a fixed set of parameters only one specific graph is
generated. For graph families generated partly by probabilistic processes, G(n)
is defined as the set of all possible realizations. Statements about G(n) are then
interpreted as statements about expected characteristics of this set. We will use
the notation G(n) interchangeably for the set or a specific realization of this set.

A regular d-dimensional, equilateral grid (hypercubical lattice) Gd(n) is de-
fined as a set of vertices, placed on integer positions in d dimensions. a ∈ N
denotes the number of vertices placed in each of the d dimensions. The number
of vertices in this grid is then given by n = ad, where every possible position -
identified by a d-dimensional vector (1 ≤ b1 ≤ a, 1 ≤ b2 ≤ a, . . . , 1 ≤ bd ≤ a)
- is occupied with one vertex. The degree deg(v) of a vertex is defined as the
number of incident edges and equals the number of direct neighbors of v. Every
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vertex v is connected by an edge to those vertices that differ in their position
by exactly one in exactly one dimension from the position of v, i.e., every vertex
has at most degree 2d. For these grids, the graph theoretic distance d(v, w) of
any two vertices v, w, i.e., the minimal number of traversed edges to walk from
v to w, coincides with the Manhattan distance dM (v, w) of these vertices which
is defined by:

dM (v, w) =
∑

1≤i≤d

|bi(v)− bi(w)| (1)

The diameter D(G) of any graph G is defined as the maximal distance of any
two vertices within the graph. The diameter D(Gd(n)) is given by the maximal
Manhattan distance of any two vertices in Gd(n) and can be calculated by:

D(Gd(n)) =
∑

1≤i≤d

a− 1 = d(a− 1) (2)

A graph is connected if there is a way from every vertex v to any other vertex
w.

The clustering coefficient C(v) of a vertex v is defined as the number of edges
e(v) between direct neighbors of v and the maximal possible number of edges
between direct neighbors [23]:

C(v) =
e(v)

deg(v)(deg(v)− 1)
(3)

The clustering coefficient C(G) of a graph G is defined as the average clustering
coefficient of G’s vertices.

A G(n, p) random graph is defined as an instance of all possible graphs with
n vertices where every of the

(
n
2

)
edges exists with probability p [13]. A G(n, m)

random graph is defined as an instance of all possible graphs with n vertices and
exactly m edges, drawn uniformly at random from all possible edges.

We will use the following theorem on the diameter of random graphs G(n, p)
[8]:

Theorem 1. If pn/ log n → ∞ and log n/ log(np) → ∞ then D(G(n, p)) is
asymptotically equal to log n/ log(np) with high probability.

Note that this theorem implicitly includes that the random graph is connected
with high probability. To simplify the following proofs we will use a stricter
version of the theorem and require additionally that p ≥ (log n)1+ε/n.

3 A Framework for Small-World generated Models

3.1 A first Starting Point

As argued in the introduction, the Watts-Strogatz- and the Newman-Watts-
model suffer from some problems. We replace their models by a simplified version
composed of a random graph G(n, p) and a regular d-dimensional grid in the
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following way: The basic regular graph is the d-dimensional grid of n vertices,
where each vertex is connected to its 2d next neighbors, combined with a G(n, p)
random graph on the same n vertices. We will denote by Gd(n, p) a graph from
our model, which is given by the combination of a Gd(n) regular grid and a
random graph G(n, p).

The remaining part of this section gives answers to the following question:
How does the diameter of regular networks combined with a small set of random
edges scale?

Since the basic network is a d-dimensional grid, the diameter of it without
any added random edges will scale with a−1 for a fixed dimension d: D(Gd(n)) =
d · (a− 1). If the added random graph has a probability of (log p)1+ε/n then the
combined graph will have a diameter that is dominated by the diameter of the
random graph and thus is asymptotical to at most log n/ log(np) (Theorem 1).

What happens in the regime where p lies below (log p)1+ε/n ? When will the
diameter of the combined graphs scale at most (poly-) logarithmically?

In Theorem 5 we will give a detailed upper bound for the diameter of the
combined graph for a given number of random edges.

3.2 The Diameter of Gd(n, p)-Graphs

For the above given model of a graph Gd(n, p) the following lemma holds:

Lemma 2. For p = 1
cn , c ∈ R+ the diameter of Gd(n, p) is asymptotically

bounded by at most

d ·
(⌈

d
√

c · (log n)1+ε
⌉
− 1

)
·
(

log n

(1 + ε) log log n− log 2
+ 1

)
(4)

Proof. The proof proceeds in four steps:

1. To prove the lemma we partition Gd(n, p) into nS connected d-dimensional
equilateral subgraphs Si, 1 ≤ i ≤ nS with a side length l such that each
subgraph contains at least s = ld ≥ c(̇ log n)1+ε vertices (Figure 2).

2. For any a, we can only build ba/lc full subgraphs per dimension. n∗ denotes
the number of all vertices contained in a full subgraph. We will show that the
n− n∗vertices that are not contained in any full subgraph build a vanishing
fraction of all vertices for n →∞. We will thus base our proof on a reduced
regular d-dimensional grid of size n∗ that contains only the full subgraphs.

3. We construct a supergraph GS(nS) = (S, E′) where each vertex vi ∈ S
uniquely represents the subgraph Si for 1 ≤ i ≤ nS . e = (vi, vj) ∈ E′ iff
there is at least one random edge from any vertex in Si to any vertex in Sj .
We will prove that Theorem 1 is applicable on GS(nS).

4. Then we will expand GS(nS) to gain a bound on the diameter of the original
but reduced graph Gd(n∗, p). The diameter of Gd(n∗, p) is bounded by the
product of the diameter of the subgraphs D(Si) and the diameter D(GS). We
will show that there are numerous partitions of Gd(n, p) into nS subgraphs.
Especially, for any pair of vertices v, w there is at least one partition of
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Fig. 2. Valid partitions for a 2-dimensional grid with side length a. Full equilateral
subgraphs with side length l may be placed arbitrarily as long as their number is
maximal. Therefore numerous partitions exist and for each pair of vertices numerous
partitions can be found where both are contained in full subgraphs.

Gd(n) such that both, v and w, are contained in full subgraphs. Since every
supergraph based on a possible partition obeys Theorem 1, we will therefore
have shown that the whole graph Gd(n, p) obeys Lemma 2 and the case is
proven.

We will start by partitioning a Gd(n, p) graph. Let Si, 1 ≤ i ≤ nS denote
an equilateral subgraph that has a side length of l =

⌈
d
√

c · (log n)1+ε
⌉

in each
dimension. The number s of vertices contained in one (full) subgraph is bounded
by:

c · (log n)1+ε ≤ s =
⌈

d
√

c · (log n)1+ε
⌉d

< 2d · c · (log n)1+ε (5)

We will now partition Gd(n, p) into the subgraphs as shown in Figure 2. Ob-
viously, incomplete subgraphs exist if a/l is not integer. The leftover vertices
can be placed arbitrarily between full subgraphs as indicated in Figure 2 b). For
simplicity we will consider instead of Gd(n) a smaller hypercube Gd(n∗) con-
taining all full subgraphs. Note that now a∗ with d

√
n∗ = a∗ ≤ a is the maximal

integer smaller than a that is a multiple of l. Let q = a∗/l denote the number of
subgraphs in one dimension.

The relative fraction of vertices not contained in full subgraphs is approaching
0 for n →∞:

n− n∗

n
≤ (l · (q + 1))d − (l · q)d

(l · q)d
(6)

=
(

q + 1
q

)d

− 1 (7)

Since q → ∞ for n → ∞, the relative fraction of ignored vertices is asymp-
totically 0. Note that nS = n∗

s ≥ n
2d·c·(log n)1+ε → ∞. Thus for n → ∞ we may
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safely use
n ≥ n∗ > n/2 (8)

In Gd(n∗, p) there are s2 possible random edges between any vertex from
subgraph Si and any vertex from subgraph Sj . Each of these edges exists inde-
pendently with probability p. It follows that for GS the probability pS is exactly
s2

cn .
We will now prove that Theorem 1 can be applied to GS(n). A basic ob-

servation is that for n → ∞, also nS → ∞. Additionally, we must show that
pSnS

log nS
→∞ and log nS

log(nSpS) →∞ for nS →∞.
Regarding, that for all nS > 1, n∗ > n/2 (eq. 8) the following two equations

hold:

pS · nS

log nS
=

s2

cn
· n∗

s
· 1
log n∗

s

(9)

≥ s

2c(log n∗ − log s)
(10)

≥ (log n)1+ε

2 log n− 2 log s
(11)

such that pS ·nS

log nS
→∞ for n →∞ and

log nS

log(pS · nS)
=

log n∗

s

log s·n∗
cn

(12)

≥ log n/2− log(2d · c(log n)1+ε)
log(2d(log n)1+ε)

(13)

such that also log nS

log(pS ·nS) → ∞. By theorem 1 we know that thus GS has a

diameter asymptotical to log nS

log(pS ·nS) . Regarding that n∗/n > 1/2 this is bounded
by

D(GS) =
log nS

log(pS · nS)
(14)

≤ log n

log s
2c

(15)

≤ log n

(1 + ε) log log n− log 2
(16)

≤ log n

log log n
(17)

Where the last inequality is valid for all n with ε log log n > log 2.
We will now expand GS(n) in order to get an upper bound for the diameter

of Gd(n, p).
Let v and w be two vertices in the original graph Gd(n, p). First, we will re-

duce Gd(n, p) to Gd(n∗, p) in such a way that v and w are contained in Gd(n∗, p).
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Then we know that there is a path from subgraph Si containing v to subgraph
Sj containing w with a length of no more than D(GS). This path is denoted by
(e1, e2, ..., ek), the sequence of edges to traverse to walk from Si to Sj .

To use this path in the original graph Gd(n, p), we will first have to walk
from vertex v to that vertex v′ from Si that is attached to e1. This will at
most take D(Si) = d · (

⌈
d
√

c · (log n)1+ε
⌉
− 1) steps. For every entered subgraph

Sx on the way to subgraph Sj , an additional distance of D(Sx) has at most
to be added to get from the random edge entering the subgraph to the edge
leaving this subgraph. Thus, the distance of v, w in the original graph Gd(n, p)
is asympotically given by at most

D(Si) ·(D(GS)+1) ≤ d ·
(⌈

d
√

c · (log n)1+ε
⌉
− 1

)
·
(

log n

(1 + ε) log log n− log 2
+ 1

)
(18)

With this, Lemma 2 is proven. ut

In the following we want to discuss what happens if the degree of the under-
lying grid graph is enlarged.

As stated in Lemma 2, the diameter of a Gd(n, p) graph is asymptotically
at most D(Si) · (D(GS) + 1). Let Gd(n, k, p) denote an extended regular grid,
in which every vertex is connected to its k next neighbors, combined with an
additional G(n, p) graph. The diameter D(Si) depends on the degree of the
vertices in the underlying grid graph. Thus, if we want to reduce the diameter
of the Gd(n, k, p) graph we just have to add some more edges to the grid. For
example, D(Si) is reduced to 1 if for p = 1

c·n we add edges from every vertes
to its c · (log n)1+ε next neighbors. The combined graph Gd(n, (log n)1+ε, p) has
now at most the diameter of GS .

3.3 Generalizing the Small-World Model

In this section we will generalize Lemma 2 in two ways:

1. The probability p of the added random graph G(n, p) can be as small as
1

f(n)·n as long as 1
(log n)1+(ε/2) ≤ f(n) ≤ 1

n1−δ for some constants δ, ε > 0 and
n →∞.

2. The basic regular d-dimensional grid can be replaced by certain graph fam-
ilies. This was already indicated at the end of section 3.2.

These two extensions lead finally to our generalized theorem on the diameter of
small-worlds generated by our model.

Generalizing the random graph component At first, we explain in which
range p can be chosen, such that the proof-technique can still be applied. In
section 3.2, we kept p = 1/cn. For smaller p = 1

f(n)·n , the size s of the subgraphs
has to be chosen larger such that Theorem 1 can be applied. Let again nS denote
the size of the supergraph.
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For simplicity we assume that nS = n/s ∈ N and p · s · n = (log n)1+ε ∈ N.
The general case follows the argumentation above.

The number of nodes in each subgraph will be chosen such that s = (log n)1+ε

p·n =
f(n) · (log n)1+ε. Again, Lemma 2 requires the validity of

pSnS

log nS
→∞ (19)

and
log nS

log(nSpS)
→∞ (20)

As before pS = s2 · p. We first analyze the condition given in equation (19):

pSnS

log nS
= s2 · p · n

s
· 1
log nS

(21)

> s · p · n

log n
(22)

= (log n)ε (23)

which tends to infinity for increasing n. The second condition (20) simplifies to

log nS

log(nSpS)
=

log
(

n
s

)
log

(
n
s · s2 · p

) (24)

=
log

( n
f(n)

(log n)1+ε

)
log(log n)1+ε

(25)

=
log

(
n

f(n)

)
log(log n)1+ε

− 1 (26)

which tends to infinity for f(n) ≤ 1
n1−δ , δ > 0. Therefore both conditions are

met and Theorem 1 can be applied to GS . If f(n) is too low than there will be
many random edges per vertex such that the subgraph size s < 1. To avoid this,
we restrict f(n) ≥

(
1

(log n)1+(ε/2)

)
in order to guarantee a reasonable size for the

subgraphs.
We summarize this result in

Lemma 3. For any function 1
(log n)1+(ε/2) ≤ f(n) ≤ 1

n1−δ , ε, δ > 0 and p =
1

f(n)·n , we can partition the grid graph within a Gd(n, p) graph into nS = n
s

subgraphs Si of size s = f(n) · (log n)1+ε such that Gd(n, p) shows a diameter of
asymptotically at most (Eq. 26)

d ·
(⌈

d
√

c · (log n)1+ε
⌉
− 1

)
︸ ︷︷ ︸

D(Si)

·
(

log(n/f(n))
log(log n)1+ε

)
︸ ︷︷ ︸

D(GS)

(27)
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Possible replacements of the regular grid graph In the general proof we
have used the following two properties of regular grid graphs: First, regular grid
graphs are partitionable for every n into Θ(n/s(n)) subgraphs of size s(n) for
any function s(n) ≤ n such that each of these subgraphs is a connected graph.
The second property used is that for any pair of vertices v, w there must be at
least one partition such that v and w are contained in any of the subgraphs.

To abstract from this special graph family to all graph families with these to
properties we introduce the following definition:

Definition 4. Let GL(n) be a graph family with the following two properties:

1. GL(n) is partitionable for every n into Θ(n/s(n)) subgraphs of size s(n)
for any function s(n) ≤ n such that each of these subgraphs is a connected
graph

2. For any pair of vertices v, w and every n there must be at least one partition
as described such that v and w are contained in proper subgraphs

GL(n) is called a locally clustered graph family.
Furthermore, a graph family can be restricted locally clustered with respect to

some function s(n) ≤ n if for every n and every pair v, w GL(n) is partitionable
into Θ(n/s(n)) connected subgraphs of size s(n) such that v and w are contained
in proper subgraphs.

The notion of (restricted) local clusters in a graph thus can simply be in-
terpreted as that every vertex in GL(n) can directly or indirectly reach at least
s(n) other vertices.

Classical small-world models are either based on the 1-dimensional ring lat-
tice [23, 12, 7] or on d-dimensional regular grids [20, 16] and thus are based on
locally clustered graph families. k-next neighborhood graphs in which n vertices
are distributed uniformly in a unit-square and where every vertex is connected
to its k geometrically next neighbors are also a locally clustered graph family.
The proof for this statement is kind of lengthy, so the interested reader will find
it in the appendix in Sec. 6.

Note that every graph family GL(n) is restricted locally clustered for at least
s(n) = 1. Let smax(n) be that function s′(n) that has the fastest growth of all
functions s(n) for which GL(n) is restricted locally clustered. If now smax(n) =
k, k ∈ N for GL(n) and GL(n) replaces the regular grid then it is clear that the
size of the subgraphs is also at most k to obey Θ(n/s). This implies that p of
the added random graph must be at least O

(
(log n)1+ε

n

)
in order to achieve a

supergraph that obeys Theorem 1. It follows that the diameter is reduced to the
diameter of a random graph because we added a random graph with the wanted
diameter. This is certainly not a very interesting combination of graph classes.
We will discuss this point further in Sec. 4.

We conclude this section with a theorem on the diameter of generalized small-
world models combining a locally clustered graph family with a thin random
graph:

11



Theorem 5. Let GL(n, p) denote the combination of instances of a locally clus-
tered graph family GL(n) and a G(n, p) graph where
p = 1

f(n)·n , 1
(log n)1+(ε/2) ≤ f(n) ≤ 1

n1−δ , ε > 0, δ > 0. D(s(n, p)) denotes the max-

imal diameter of any subgraph of GL(n, p) with size s(n, p) = (log n)1+ε

p·n , ε > 0,
the diameter of GL(n, p) is asymptotically at most:

D

(
s

(
n,

1
f(n) · n

))
·
(

log(n/f(n)
log(log n)1+ε

)
︸ ︷︷ ︸

D(GS)

(28)

As we will discuss in the next section, the surprise in the whole small-world
discussion lies in the fact that both graph components alone will have a much
higher diameter than O(log n). Nonetheless, in our small-world model that can
be based on any locally clustered graph family, also the use of cliques (complete
graphs) is possible. There, the diameter is still bound from above by Theorem 5
but this bound is not tight: the diameter is 1. This brings us to the questions:
What are small-worlds? We will discuss this question in the next section.

4 A new definition for small-world network models

We have shown in the introduction that the classic definition for small-worlds is
somewhat erroneous and misleading. Our impression is that this stems from the
following: The small-world generating process proposed by Watts and Strogatz
required a random process for creating short-cuts [23]. But the classification of
networks as small-worlds was not based on the recognition of this process but on
a combination of structural measurements, i.e., the high clustering coefficient and
the small diameter. This combination of network characteristics is not able to
differentiate between those networks that include a local network and a random
network and networks generated by other processes. In summary, the small-world
network generation was process-oriented whereas the classification of small-world
networks was result-oriented and there is no direct one-to-one matching between
both sets of networks.

The drastic interest in the small-world phenomenon based on the classic
small-world model seems to be based on two effects:

1. There is no centralized organization of the small-world network: every vertex
builds random edges independently from others

2. The hybrid graph of a local and a random network component has a signif-
icantly lower diameter than the minimum of the diameter of boths compo-
nents

To cover the first point there needs to be a process-oriented classification of
small-world networks because the result may not always tell which generation
process was behind it. The second effect excludes all those network models as
small-world models in which the small diameter is an inbuilt feature of one com-
ponent: If we have n unconnected vertices and add a dense random graph to it,

12



there is no surprise that the hybrid graph’s diameter scales with O(log n). Also,
the addition of some random edges to a clique will show the same diameter as
the clique alone.
These two aspects lead us to the following new definition for small-world gener-
ating models:

Definition 6. A small-world model is defined as any combination GLR(n) of
a restricted locally clustered graph family GL(n) and a random graph family
GR(n) where the diameter D(GLR(n)) is at most scaling poly-logarithmically
and where the following relations hold for n →∞:

D(GL(n))
D(GLR(n))

→∞ and
D(GR(n))
D(GLR(n))

→∞ (29)

A small-world network is then a network that is generated by a small-world
generating model - in real-world systems one may rather speak of small-world
generating processes. Note that for restricted locally clustered graph families not
any combination with a G(n, p) graph may be appropriate. If it is a locally
clustered graph family then it can be combined with any G(n, p) under the
conditions given in Theorem 5.

This definition removes the above given problems and captures - in our opin-
ion - both effects that are the basis for the small-world phenomenon. It includes
all classical small-world models because they are based on (restricted) locally
clustered graphs [23, 15, 16, 12, 10, 4]. Note that these models may not be classi-
fied as small-world generating models for all combinations of their parameters.
For the classic Watts-Strogatz-model or the Newman-Watts-model a very high
k, e.g., k = n−1 would result in a clique as the local component. The above given
definition restricts the models to those cases where the small-world effect is the
result of the combination of both components and not of one of the components
alone. The restriction on those cases reflects a similar decision made in the classic
definition where the number of local edges per vertex k was required to be much
smaller than n and also p � 1. We want to discuss two small-world generating
models a bit more detailed with respect to the above given definition: In the
case of the Kleinberg-small-world model the random graph component has not
yet been analyzed with respect to its diameter to our knowledge. Kleinberg uses
a random graph in which for each vertex v, q edges are added. Every vertex has
a position in a 2-dimensional grid and edge e = (v, w) is drawn with a probabil-
ity proportional to (d(v, w))−2 [16]. Kleinberg shows that a small-world network
emerges for q = 1. Although there is no analysis available on the diameter of
this random graph family, it seems quite likely that the described component
with only one random edge per vertex is not even connected and will thus show
a diameter of ∞.

The other small-world model to be analyzed was given by Chung et al. [10, 4].
In their basic model, the random graph component is a power-law random graph.
Following [9], this component alone has almost surely a diameter of O(log n). On
the other hand, Chung et al. have shown that for (k, l)-local graphs with certain
properties, the resulting hybrid graph has a diameter of, e.g., O(log log n). This is
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clearly a new, emerging characteristic of the hybrid graph that is not dominated
by one of the components alone. Thus, in the tradition of Watts and Strogatz
we regard only the second, specialized cases as small-world generating models.
We just want to mention here that it might be possible to make the power-law
random graph sparser in the general Chung-small-world model but this analysis
has not yet been conducted.

We summarize that these classic small-world models are represented by the
above given definition.

5 Discussion

In this paper we have proposed a general framework for the design of small-world
generating models: We have shown that they can be combined of (restricted)
locally clustered and random graph models. This provides high flexibility in
tuning a model to simulate a given real-world complex system. We have given
a generalized theorem that describes an upper bound for the diameter of these
hybrid graphs in dependence of the structure of both, the local and random
component. Based on this framework we have proposed a very broad definition
of small-world generating models, incorporating all classic small-world models.

Watts and Strogatz have provided us with the first formal model for gener-
ating small-world networks. The beauty of their model lies in its simplicity and
clarity. Although we have questioned the usefulness of measuring the clustering
coefficient as an indicator for small-worldness of real-world networks we have
not given an alternative with which real-world networks can be identified as
small-worlds. Admittedly, this is much more complicated in our framework than
in the simple model of Watts and Strogatz. The only way to decide whether a
real-world network is a small-world network in the above given definition is to
analyze its generating process. If this is based on a local and a random compo-
nent than the network should be regarded as a small-world if the diameter is
short and each component alone has a high diameter.

Chung and Lu proposed to partition a given real-world network in a local
and a global, random component [4]. They provide an approximative partitioning
algorithm which works fine but is depending on two parameters that may not
always be known in advance.

The partitioning into two components is also our suggestion: If there is any
additional information about the network this could be used to partition it into
its local and random component. For example, if the building of edges in a real-
network is associated with a cost this could be regarded as a measure of distance.
Then, both components can be separated and analyzed. Here, we can rehabili-
tate the clustering coefficient: If the global - presumably random - component
shows a high clustering coefficient then it can be safely concluded that with high
probability this component is not the result of a classic random process.

Of course, our definition of small-world generating components is somewhat
influenced by our personal impression of what small-worlds really are. Since
we are aware of that problem we want to conclude our discussion with the

14



introductory quotation of Wiener and Rosenblueth in “The Role of Models in
Science”:

[...] the best material model for a cat is another, or preferably the same
cat. - N. Wiener and A. Rosenblueth [24]
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6 Appendix: k-next neighborhood graphs are locally
clustered

The k-next neighbor graph family or in short, knn-graphs, belongs to the class
of locally clustered network families as we will show in this section. The proof
is applied only to 2-dimensional knn-graphs defined as:

A k-next neighborhood graph G(n, k) is any possible instance of n vertices,
uniformly distributed in a two-dimensional unit-square, where every vertex is
connected with its k geometrically next vertices.

Note that the relation is not symmetric and therefore the knn-graph is a
directed graph and thus we differentiate between the outgoing and ingoing edges
of a vertex.

In order to prove the given property we will proceed in the following steps:

1. Bound the distance to next neighbors from above and below.
2. Prove that a knn-graph is highly likely connected.
3. Show that a generic partition procedure yields the required n/s subgraphs.

6.1 A bound for the maximum distance of nearest neighbors

Let the knn-disk of any vertex v be defined as the minimal disk which contains
all of its k next neighbors. Note that the disc-radius is equal to the maximum
distance of any connected nearest neighbor to v.

The probability for any vertex v to be placed in some area A within the
unit square is exactly A. Thus, the placement of vertices into a given area is a
Bernoulli trial with p = A and q = 1 − A. Therefore the Chernoff bound may
be applied to yield an upper bound for the diameter. Moreover, the expected

radius is given by r̄ =
√

k
π·n . The result for the upper bound is given in

Lemma 7. Let r̂ =
√

ĉ · r̄ denote a knn-disk radius with ĉ = 3+
√

8. Further let
k ≥ log n.
With high probability (Pr[...] ≥ 1−1/n), no disk with radius r̂ around any vertex
v exists that does not contain at least k vertices.

Proof. Let Dv denote a knn-disk around v with an expected number of vertices
lying in that disk equal to k̄ = c · k. Xk denotes the number of vertices lying
inside of Dv. Now we apply a relaxed version of the Chernoff inequality for
independent Bernoulli trials. With µ = c · k and δ = 1− 1

c

Pr[Xk < (1− δ)µ] < e−
1
2 µδ2

= e−
ck
2 (1− 1

c )2 < n−
c
2 (1− 1

c )2 (30)

For c = ĉ = 3 +
√

8 we yield

Pr[Xk < (1− δ)µ] <
1
n2

(31)

Hence, the probability that there is a knn-disk with radius larger than r̂ =√
3 +

√
8 · r̄ in a knn-graph is < 1/n.
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The interpretation of this result is that it is almost impossible for n → ∞
that any knn-disk exists with a radius larger than r̂. Therefore in our following
theorems, we consider the radius of knn-discs to be bound by r̂ =

√
ĉ · r̄.

Note that theses equations are only valid for disks that do not intersect with
the unit squares border. If a vertex vc were to be positioned in a corner of the
unit disc, a factor of 2 would apply to the radius.

6.2 Connectedness of knn-graphs

We will now show that a knn-graph is whp connected.
The proof for the following lemma will be ommited. Here we will just sketch

it shortly: As can be seen in Fig. 6.2, in every unconnected knn-graph the pair
of closest vertices lying in different components have an angle of at least 120◦

in which none of their k next neighbors is placed. A simple stochastic argument
shows that the probability for this is given by (2/3)k. Equating this with the
probability bound of 1/n and solving the equation to k yields the needed k
such that with high probability not even one vertex with the above mentioned
property exists. This leads to the following lemma:

Lemma 8. A knn-graph is connected with high probability for k ≥ log n
log(3/2)

minimal distance r
v,w with

v

w

r
r
r

Fig. 3. v and w are two vertices from different connected components of a knn-graph
having minimal euclidian distance to each other. Two circles are drawn around v and
w, respectively, with a radius that equals the euclidian distance between v and w. The
figure shows that none of the k-next neighbors of neither v nor w can exist in the
intersection of these circles without contradicting the condition that v and w are the
pair of vertices from different connected components with minimal euclidian distance.

Note that the probability for an unconnected knn-graph is smaller than 1/n
since the existence of a vertex with the above given property is only necessary
for an unconnected graph but certainly not sufficient.

Having argued that knn-graphs are connected, we will now show that con-
nected commensurate partitions can be found.
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6.3 Constructing the partition

The following procedure constructs partitions as required by the definition for
locally clustered graph families. The size of the subgraphs is depending on the
added random graph family. Nevertheless, if the random graph is given, one
can easily calculate the fixed subgraph of size s. The definition requires that for
each pair of vertices a partition into Θ(n/s) subgraphs must exist, so that both
vertices are included in full subgraphs.

For each pair v, w of vertices we construct slightly different partitions. For
each of them, we start with a geometric partition, based on squares containing
at least 4/π · s vertices. The exact positions for the squares are chosen such
that both vertices are contained in full subgraphs. Beside this requirement the
positions of the squares are arbitrary as long as the number of squares placed
completely inside the unit square is maximal. Note, that a constant relative
fraction of vertices may exist, that is not contained in any subgraph. Each of the
squares covers an area As so that with high probability at least 4/π · s vertices
are geometrically contained in each of them. The area is given by As > 4/π ·π ·r̂2,
where r̂ denotes the maximal expected knn-disc radius (Lemma 7).
The maximal (centered) circle (Fig. 6.3) within each As contains only vertices
from the same connected component. Otherwise at least one vertex would have
an arc of more than 120◦ without any knn-edge which is highly unlikely as
was already shown in Lemma 6.2. The area of this circle covers π/4 of As. We
expect therefore that at least π/4 · 4/π · s = s vertices from the same connected
component for each As. As we explained before, for each constructed partition
a constant fraction of vertices can be disregarded.

The overall result of this section is summarized by

Lemma 9. The family of k-nearest neighbor graphs Gk(n, k) on a point set in
a 2-dimensional Euclidean space is locally clustered.

Figure 6.3 shows an example for a partition for s = 2.
Note that the expected diameter D(Si) of the subgraphs is expectedly scaling

with O( d
√

s) as it is the case with grid graphs.
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Fig. 4. This figure shows the result of the partitioning procedure for s = 2 as described
in 6.3. Each square contains more than 4/π · s ≈ 2.5 vertices. Each circle within any
quadratic region contains at least s = 2 vertices that must form a connected subgraph.
Note that the distribution of points is only schematic.
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