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Abstract
An improved inference method for densely connected systems is presented. The approach is based

on passing condensed messages between variables, representing macroscopic averages of microscopic
messages. We extend previous work that showed promising results in cases where the solution space is
contiguous to cases where fragmentation occurs, by considering average messages from a large number
of replicated systems. We present an application of the problem to the signal detection problem of
Code Division Multiple Access (CDMA) for demonstrating its potential. A highly e�cient practical
algorithm is also derived on the basis of insight gained from the analysis.
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1 Introduction
Graphical models (Bayes belief networks) provide a powerful framework for modelling statistical depen-
dencies between variables [1, 2, 3]. They play an essential role in devising a principled probabilistic
framework for inference in a broad range of applications from medical expert systems, to decoders in
telecommunication systems.

Message passing techniques are typically used for inference in graphical models that can be repre-
sented by a sparse graph with a few (typically long) loops. They are aimed at obtaining (pseudo) posterior
estimates for the system's variables by iteratively passing messages (locally calculated conditional proba-
bilities) between variables. Iterative message passing of this type is guaranteed to converge to the globally
correct estimate when the system is tree-like; there are no such guarantees for systems with loops even in
the case of large loops and a local tree-like structure (although message passing techniques have been used
successfully in loopy systems, supported by some limited theory [4]). A clear link has been established
between certain message passing algorithms and well known methods of statistical mechanics [5] such as
the Bethe approximation [6, 7].

These inherent limitations seem to prevent the use of message passing techniques in densely connected
systems due to their high connectivity, implying an exponentially growing cost (with the connectivity),
and an exponential number of loops that render the method inconsistent. However, an exciting new
approach has been recently suggested [8] for extending Belief Propagation (BP) techniques [1, 2, 3] to
densely connected systems. In this approach, messages are grouped together, giving rise to a macroscopic
random variable, drawn from a Gaussian distribution of varying mean and variance for each of the nodes.
This enables one to approximate local probability values in feasible time scales, by iteratively updating a
set of newly-de�ned macroscopic variables. The technique has been successfully applied to signal detection
in Code Division Multiple Access (CDMA) problems and the results reported are competitive with those
of other state of the art techniques. However, the current approach has some inherent limitations [8],
presumably due to its similarity to the replica symmetric solution in equivalent Ising spin models [9, 10]
and the existence of multiple competing solutions.

In a separate recent development [11], the replica-symmetric-equivalent BP has been extended to
Survey Propagation (SP), which corresponds to one-step replica symmetry breaking in diluted systems.
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This new algorithm, motivated by the theoretical physics interpretation of such problems, has been
highly successful in solving hard computational problem [11], far beyond other existing approaches.
This approach relies on considering message averages over a large number of replicated systems and
a decimation process that guides the process towards commonly-preferred speci�c solutions. The SP
algorithm also facilitated theoretical studies of the corresponding physical system and contributed to our
understanding of it [12] as well as of related systems [13].

Inspired by the extension of BP to SP we have extended the approach of [8], designed for inference
in densely connected systems, in a similar manner to include an average over multiple pure states.
The approach relies on averaging over messages in a large number of replicated systems given common
observables.

The paper is organised as follows, in section 2 we present the general formalism, followed by a speci�c
application (CDMA) in section 3. We will conclude the paper with a brief discussion on the applicability
of the method to a range of inference problems in a densely connected systems.

2 General formalism
The aim of this work is to develop an e�cient algorithm for obtaining solutions in a general inference prob-
lem that can be mapped onto a dense graph. This refers to obtaining variable estimates that maximise the
posterior distribution of K variables b =(b1, b2, . . . , bK) given N data (observables) y =(y1, y2, . . . , yN ).
Using Bayes rule we can rewrite the posterior to be maximised as

P (b|y) =

N∏
µ=1

P (yµ|b)P (b)

Tr
{bl6=k}

N∏
µ=1

P (yµ|b) P (b)

, (1)

where data is assumed to be independent, so that P (y|b) =
∏N

µ=1 P (yµ|b). Clearly the explicit expres-
sion for the likelihood depends on the particular problem studied. Here we will look at cases where b is
an unbiased vector in {±1}K and P (b) = 2−K . The estimates one would like to obtain are based on the
marginal posterior maximiser (MPM)

b̂k = argmax
bk∈{±}

Tr
{bl6=k}

P (b|y) . (2)

The number of operations required to obtain the MPM estimator is of order O (
2K−1

)
which is compu-

tationally infeasible where K is large.
To approximate the MPM estimator in problems that can be mapped onto a densely connected graph

one may employ a message passing technique such as BP [1, 3] that works e�ectively and e�ciently,
with a computational complexity that grows linearly with the system size, in cases characterised by a
contiguous space of solutions. In these cases, the approximate estimates slowly converge towards a single
solution. However, BP is based on local updates and ignores long range correlations that emerge with the
increase in the number of constraints in the system, or in other cases when there is a mismatch between
the prior used for the variables and the true values. Typically in these cases, multiple solutions emerge
and con�icting messages are being passed between variables leading to non-convergence.

To overcome the problem, it has been suggested [11] to extend the method such that estimates are
based on averages over a large number of replicated systems, each with its own messages, given a common
set of observables (data). These averaged messages, in conjunction with a decimation process that directs
the search towards solutions that are favoured by the majority of the replicated systems, form the powerful
SP algorithm [11].

However, we are interested in the application of BP to problems that can be mapped onto densely
connected graphs, similar to the one suggested in [8]. Similarly to BP, this method works very well when
the space of solutions is contiguous and the algorithm converges to a single solution and is bound to
fail, as has been observed, when the solution space becomes fragmented; for instance, when there is a
mismatch between the assumed and true noise levels.
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Figure 1: Replicated variable systems B=(b1, b2, ..,bK) given data y =(y1, y2, . . . , yN ).

We adopt a similar approach to that of SP by considering messages from n replicated systems in the
presence of common data. Figure 1 shows the detection problem we aim to solve as a bipartite graph
where B = (b1, b2, . . . , bK) the set of replicated (binary) variable vectors, bk =

(
b1
k, b2

k, . . . , bn
k

)
, where

n is the solution (replica) index.
Using Bayes rule one straightforwardly obtains the extended BP equations

P t+1 (yµ|bk, {yν 6=µ}) = ât+1
µk Tr

{bl6=k}
P (yµ|B)

∏

l 6=k

P t (bl| {yν 6=µ}) (3)

P t (bl| {yν 6=µ}) = at
µk

∏

ν 6=µ

P t (yν |bl, {yσ 6=ν}) (4)

where ât+1
µk and at

µk are normalisation constants. For calculating the posterior of Eq.(1) we have to assume
a certain form of data dependence on the variables. The dependence used here is still quite general,

yµ = F
(

K∑

l=1

εµlb
a
l ;γ

)
, (5)

where γ are some parameters that characterise the probabilistic dependency (e.g., the noise model) and
εµl ¿ O (1) are small variables as is typically assumed in densely connected systems (the exact scaling
of these variables will be discussed later).

Thus, we can expand for the likelihood with respect to εµl using the new variables

∆a
µk −

∑

l 6=k

εµlb
a
l

that correspond to the �rst argument of F() of equation (5) after omitting contribution of variables of
index k,

n∏
a=1

P (yµ|ba) P (ba) =
∫ 


n∏

a=1

d∆a
µkδ


∆a

µk −
∑

l 6=k

εµlb
a
l





 P (yµ|∆µk,bk; γ) P (∆µk) P (bk)

'
∫ 


n∏

a=1

d∆a
µk δ


∆a

µk −
∑

l 6=k

εµlb
a
l





 (6)

[
P (yµ|∆µk; γ) + εµk∇∆µk

P (yµ|∆µk; γ) · bk

]
P (∆µk)P (bk) .

2.1 Structure of the solutions
An explicit expression for inter-dependence between solutions is required for obtaining a closed set of
update equations. We assume a dependence of the form

P t (bk| {yν 6=µ}) ∝ exp
{
htT

µk bk +
1
2
bT

k Qt
µk bk

}
, (7)
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where ht
µk is a vector representing an external �eld and Qt

µk the matrix of cross-replica interaction.
Furthermore, we assume the following replica symmetry ansatz

(
Qt

µk

)ab = δab qt
µk +

(
1− δab

)
pt

µk (8)
ht

µk = ht
µku. (9)

where uT :=

n︷ ︸︸ ︷
(1, 1, · · · , 1). An expression for equation (7) immediately follows

P t (bk| {yν 6=µ}) = [Zt
µk]−1 exp



ht

µk

n∑
a=1

ba
k +

1
2
pt

µk

(
n∑

a=1

ba
k

)2


 , (10)

where Zt
µk is a normalisation constant.

We expect the free energy obtained from the well behaved distribution P t to be self-averaging, such
that

lim
n→∞

1
n

log
(
Zt

µk

)
= lim

n→∞
1
n

log
(Zt

µk

(
ht

µk, q0, p0

))
,

where the sub-index 0 represents the mean value of the parameters for the corresponding distributions
and the over-line represents the mean value of the partition function over such distributions.

To obtain the scaling behaviour of the various parameters we calculate Z (h, q, p) explicitly, assuming
the parameters q and p are taken from normal distributions Nq

(
q0, σ

2
q

)
and Np

(
p0, σ

2
p

)
. The partition

function takes the form (dropping the super-index t and sub-indices µ and k)

Z (h, q, p) = exp
{n

2
(q − p) + n ln(2)

} 1√
2πp

∫ ∞

−∞
dx exp

(
− (x− h)2

2p
+ n ln (cosh(x))

)
. (11)

The mean value of the partition function over the set of parameters becomes

Z (h, q, p) =
∫
Dq

∫
DpZ (h, q, p) ,

where Dq(p) = dq(p)Nq(p)

(
q0(p0), σ2

q(p)

)
denotes a Gaussian integration measure with the respective

mean and variance. After a straightforward but tedious calculation one obtains

Z (h, q, p) =
n∑

a=1

(
n
a

)
exp

{
n

[
−h

(
1− 2a

n

)
+

q0

2
+ p0

[(
1− 2a

n

)2

− 1
2n

]
n

+
σ2

q

8
n +

σ2
p

2

[(
1− 2a

n

)2

− 1
2n

]2

n3







'
√

2
π
A(n) exp

{
n

[
ln(2) + |h|+ q0

2
+ p0n +

σ2
q

8
n +

σ2
p

2
n3

]}
, (12)

where A(n) ∼ O(1). The scaling properties of the various variables immediately follow: h ∼ O (1),
q0 ∼ O (1), p0 ∼ O (

n−1
)
, σ2

q ∼ O (
n−1

)
, and σ2

p ∼ O (
n−3

)
. For brevity and transparency we will

change notation for the o�-diagonal elements
(
Qt

µk

)a 6=b

≡ gt
µkn−1, where gt

µk ∼ O (1).
The diagonal elements de�ne the zero of the energy, so we can take them equal to zero with no loss

of generality.
The marginalised posterior (10) at time t then reduces to

P t (bk| {yν 6=µ}) =

∫ ∞

−∞
dx exp




−n

(
x− ht

µk

)2

2gt
µk

+ x

n∑
a=1

bak





∫ ∞

−∞
dx exp

{−nΦ
(
x; ht

µk, gt
µk

)} , (13)
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where

Φ
(
x;ht

µk, gt
µk

)
= −

(
x− ht

µk

)2

2gt
µk

+ ln (cosh(x)) . (14)

As we plan on taking the limit n →∞, equation (13) can be solved using the saddle point method. More
speci�cally, we study the extrema points of the function Φ (x; h, g) to identify the dominant values as
described in Appendix A. From this study we �nd that the only non trivial solution, of two maxima, is
obtained when gt

µk > 1 and
∣∣∣ht

µk

∣∣∣ /gt
µk ¿ 1.

Using the marginalised distribution (13) one can then obtain mean values of solutions in each of the
replicated systems as well as cross-replica correlations

〈bak〉 = Tr
{bk}

P t (bk| {yν 6=µ}) bak

=

∫ ∞

−∞
dx exp

{−nΦ
(
x; ht

µk, gt
µk

)}
tanh(x)

∫ ∞

−∞
dx exp

{−nΦ
(
x; ht

µk, gt
µk

)} (15)

and
〈
bakbbk

〉
= Tr

{bk}
P t (bk| {yν 6=µ}) bakbbk

= δab +
(
1− δab

)
∫∞
−∞ dx exp

{
−nΦ

(
x;ht

µk, gt
µk

)}
tanh(x)2

∫∞
−∞ dx exp

{
−nΦ

(
x; ht

µk, gt
µk

)} . (16)

Cross replica and cross site averages factorise such that
〈
bakbbl

〉
= 〈bak〉

〈
bbl

〉
. (17)

It would also be useful to de�ne the magnetisation

∣∣mt
µk

∣∣ ≡ tanh
(∣∣xt

0,µk

∣∣) =

∣∣∣xt
0,µk

∣∣∣
gt

µk

,

to simplify some of the following equations.
Assuming that gt

µk > 1 and
∣∣∣ht

µk

∣∣∣ /gt
µk ¿ 1 (see Appendix A for details), and exploiting the rela-

tion sgn
(
mt

µk

)
= sgn

(
ht

µk

)
, we �nd that the positions of the two peaks of Φ

(
x; ht

µk, gt
µk

)
are nearly

symmetric, located at
xt
±,µk ' ±gt

µk

∣∣mt
µk

∣∣ +
1

1− gt
µk

[
1−

(
mt

µk

)2
]ht

µk. (18)

If n is large and the �eld is small, the mean values in equations (15) and (16) can be expressed as:

〈bak〉 ' at
+,µk tanh

(
xt

+,µk

)
+ at

−,µk tanh
(
xt
−,µk

)
(19)

〈
bakbbk

〉 ' at
+,µk tanh

(
xt

+,µk

)2 + at
−,µk tanh

(
xt
−,µk

)2
, (20)

where

at
±,µk '

exp
{
±n

∣∣∣mt
µk

∣∣∣ ht
µk

}

exp
{

nmt
µkht

µk

}
+ exp

{
−nmt

µkht
µk

} . (21)

Thus, if the covariance matrix
(
Ψt

µk

)ab ≡ 〈
bakbbk

〉− 〈bak〉
〈
bbk

〉

' 4at
+,µkat

−,µk

(
mt

µk

)2 (22)
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has nonzero entries at small �eld, we can choose the behaviour of the small �eld to be

mt
µkht

µk '
1
2n

ln
(
4n/

(
nt

µk

)2
)

, (23)

where the nt
µk are free parameters. The dominant peak is located at the position that shares a common

sign with the �eld. So, in the large n limit, at
sgn(ht

µk),µk
→ 1− (nt

µk)
2

4n and the product at
+,µkat

−,µk → (nt
µk)

2

4n

as desired. We also obtain the relation
〈bak〉 = mt

µk. (24)
If the εµk and ba

k are unbiased variables, the variable ∆a
µk =

∑
l 6=k εµlb

a
l , by virtue of the central limit

theorem, obeys a normal distribution, with mean value and covariance matrix given by
(
ut

µk

)a ≡ 〈
∆a

µk

〉

= Tr
{bl6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k

εµlb
a
l

=
∑

l 6=k

εµlm
t
µl (25)

(
Υt

µk

)ab ≡ 〈
∆a

µk∆b
µk

〉− 〈∆a
k〉

〈
∆b

k

〉
= Tr

{bl6=k}

∏

l 6=k

P t (bl| {yν 6=µ})
∑

l 6=k
j 6=k

εµlεµjb
a
l b

b
j −


∑

l 6=k

εµlm
t
µl




2

= δab
∑

l 6=k

ε2
µl

(
1− (

mt
µl

)2
)
− (

1− δab
) 1

n

∑

l 6=k

(
εµln

t
µlm

t
µl

)2

= δab
(
Xµk −Qt

µk

)− (
1− δab

) 1
n

Rt
µk, (26)

where Xµk ≡
∑

l 6=k ε2
µl, Qt

µk ≡
∑

l 6=k

(
εµlm

t
µl

)2

and Rt
µk ≡

∑
l 6=k

(
εµln

t
µlm

t
µl

)2

are macroscopic vari-
ables. It is important to notice that Rt

µk are free variables that can be used to optimise the inference
with respect to a given performance measure.

Given the covariance matrix values one can write down an explicit expression of the probability
P (∆µk)

P (∆µk) =
1√

(2π)n
∣∣∣Υt

µk

∣∣∣
exp

{
−1

2
(
∆µk − ut

µk

)T (
Υt

µk

)−1 (
∆µk − ut

µk

)}

=

√
n

(2π)n+1

[
Rt

µk

(
Xµk −Qt

µk

)n−2
]−1

exp




−n

2

(
ut

µk

)2

Xµk −Qt
µk + Rt

µk





×
∫

dω exp

{
−n

2
Xµk −Qt

µk

Rt
µk

(
Xµk −Qt

µk + Rt
µk

)
ω2

}

×
n∏

a=1

exp




−

(
∆a

µk

)2

2
(
Xµk −Qt

µk

) +

(
ω +

ut
µk

Xµk −Qt
µk + Rt

µk

)
∆a

µk





. (27)

6



2.2 Messages
From the original BP equations (3) and (4) and with using the explicit expression of the probability
P (∆µk) Eq.(27) in Eq.(7) we can express the message from nodes yµ to nodes ba

k at time t + 1

m̂t+1
µk = Tr

{bk}
P t+1 (yµ|bk, {yν 6=µ}) beak (28)

=
Tr
{B}

n∏
a=1

P (yµ|ba)P (ba)
∏

l 6=k

P (bl| {yν 6=µ}) beak

Tr
{B}

n∏
a=1

P (yµ|ba) P (ba)
∏

l 6=k

P (bl| {yν 6=µ})
.

After somewhat lengthy derivation, described in Appendix B, one obtains the following expression for
the message update m̂t+1

µk

m̂t+1
µk = εµk

∫ 
∏

l 6=k

dxl


 exp

{−nHt
µk (xl 6=k)

} ∂

∂z
ln P (yµ|z; γ) |z=vµk

∫ 
∏

l 6=k

dxl


 exp

{−nHt
µk (xl 6=k)

}
(29)

where vµk (xl 6=k) ≡ ∑
l 6=k εµl tanh (xl), and

Ht
µk (xl 6=k) =

∑

l 6=k

[
x2

l

2gt
µl

− ln cosh (xl)

]
+

(
ut

µk − vµk

)2

2
(
Xµk −Qt

µk + Rt
µk

) − ln P (yµ|vµk; γ) .

In the large n limit, only the solutions x̃l 6=k of ∇xl6=k
Ht

µk (xl 6=k) = 0, that correspond to the lowest
minimum, contribute to the integral. The expression for the message is therefore reduced to

m̂t+1
µk = εµk

∂

∂z
ln P (yµ|z;γ) |z=vµk(x̃l6=k). (30)

The expression for the messages from b-nodes to y-nodes is derived in a similar manner (details again
in Appendix C) to obtain

mt
µk = Tr

{bk}
beakP t (bk| {yν 6=µ}) = tanh


∑

ν 6=µ

arctanh
(
m̂t

νk

)

 . (31)

2.3 Obtaining solutions
To solve Eq.(29) we employ again the saddle point method, as n → ∞, obtaining a set of equations to
be solved

∂

∂xl
Ht

µk (xl 6=k) =
x̃l

gt
µl

− tanh (x̃l)− εµl

[
1− tanh2 (x̃l)

]

×



(
ut

µk − ṽµk

)
(
Xµk −Qt

µk + Rt
µk

) +
∂

∂z
ln P (yµ|z;γ) |z=ṽµk


 = 0 , (32)

where ṽµk = vµk (x̃l 6=k). To �nd the solution of Eq.(32) we will de�ne the value vµk such that

0 =

(
ut

µk − vµk

)
(
Xµk −Qt

µk + Rt
µk

) +
∂

∂z
ln P (yµ|z; γ) |z=vµk

. (33)
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After some calculations, detailed in Appendix D, this leads to a solution of the form

ṽµk ' ut
µk −

(ṽµk − vµk)(
Xµk −Qt

µk + Rt
µk

)W t
µk

=
Xµk −Qt

µk + Rt
µk

Xµk −Qt
µk + Rt

µk + W t
µk

ut
µk +

W t
µk

Xµk −Qt
µk + Rt

µk + W t
µk

vµk , (34)

where

W t
µk =

∑

l 6=k

ε2
µl

gt
µl

[
1−

(
mt

µl

)2
]

1− gt
µl

[
1−

(
mt

µl

)2
]

[
1− (

Xµk −Qt
µk + Rt

µk

) ∂2

∂z2
ln P (yµ|z; γ) |z=λvµk+(1−λ)ṽµk

]
.

A recursion is needed to determine both λ (from the �rst derivative of Eq.(61)) and ṽµk. Equation (34)
represents the value of v at which the expression for the message Eq.(30) has to be evaluated.

3 Application: CDMA
A number of inference problems in densely connected systems can be tackled by this approach. We focus
here on the CDMA detection problem as it is the only densely connected system we are aware of that
had been studied previously using a message passing algorithm [8]. This will enable us to demonstrate
the potential of our method and its relation to the algorithm of [8], mirroring the extension of BP to SP.

Multiple access communication refers to the transmission of multiple messages to a single receiver.
The scenario we study here is that of K users transmitting independent messages over an additive
white Gaussian noise (AWGN) channel of zero mean and variance σ2

0 . Various methods are in place
for separating the messages, in particular Time, Frequency and Code Division Multiple Access [14]. The
latter, is based on spreading the signal by using K individual random binary spreading codes of spreading
factor N . We consider the large-system limit, in which the number of users K tends to in�nity while
the system load β ≡ K/N is kept to be O(1). We focus on a CDMA system using binary phase shift
keying (BPSK) symbols and will assume the power is completely controlled to unit energy. The received
aggregated, modulated and corrupted signal is of the form:

yµ =
1√
N

K∑

k=1

sµkbk + σ0nµ ,

where bk is the bit transmitted by user k, sµk is the spreading chip value, nµ is the Gaussian noise
variable drawn from N (0, 1), and yµ the received message. According to previous notation, it holds that
εµk = sµk/

√
N . The goal is to get an accurate estimate of the vector b for all users given the received

message vector y by approximating the posterior P (b|y). An expression representing the likelihood is
required and is easily derived from the noise model (assuming zero mean and variance σ2)

P (yµ |B) =
1√

(2πσ2)n exp

{
− (yµ −∆µ)T (yµ −∆µ)

2σ2

}
, (35)

where yµ = yµu and uT ≡
n︷ ︸︸ ︷

(1, 1, · · · , 1).
To calculate correlation between replica we expand P (yµ |B) in the large N limit (Eq. 35), as shown

in Eq.(7). Following the model described in the previous chapters, one can map the CDMA macroscopic

8



variables onto the parameters used previously relationships:

ut
µk =

1√
N

∑

l 6=k

sµlm
t
µl (36)

Xµk ' K

N
≡ β (37)

Qt
µk =

β

K

∑

l 6=k

(
mt

µl

)2 (38)

Rt
µk =

β

K

∑

l 6=k

(
nt

µlm
t
µl

)2 (39)

Dt
µk ≡ β

K

∑

l 6=k

gt
µl

[
1−

(
mt

µl

)2
]

1− gt
µl

[
1−

(
mt

µl

)2
] . (40)

The mean value of ba
k at time t + 1 is then given by

m̂t+1
µk = At

(
Rt, Qt, β, σ2

) (
yµsµ√

N
− β (Pµ − I/K)mt

µ

)

k

(41)

where Pµ ≡ (1/K)sµksµl) and I ≡ δkl, respectively, and

At
(
Rt, Qt, β, σ2

)
=

β −Qt + Rt + Dt

σ2 (β −Qt + Rt) + (σ2 + β −Qt + Rt)Dt
.

We assume that the macroscopic variables are self averaging and omit the µ, k indices.
The main di�erence between Eq.(41) and the equivalent equation in [8] is the dependency of the

pre-factor At on Rt, re�ecting correlations between di�erent solutions groups (replica). To determine
this term we optimise the choice of Rt by minimising the bit error at each time step. To �nd the optimal
choice of the nt

µk appears to be di�cult. Instead we will choose an appropriate Rt that minimises the
error in the iterative calculation of the macroscopic variables. Following [8] one de�nes M t and writes
the following expressions for both M t and Qt

M t =
1

NK

N∑
µ=1

K∑

k=1

bkmt
µk =

∫
Dz tanh

(√
F tz + Et

)
(42)

Qt

β
=

1
NK

N∑
µ=1

K∑

k=1

(
bkmt

µk

)2 =
∫
Dz tanh2

(√
F tz + Et

)
, (43)

where Dz ≡ dz exp
[−z2/2

]
/
√

2π and

Et+1 ≡ 1
K

N∑
µ=1

K∑

k=1

bkm̂t+1
µk = At

(
Rt, Qt, β, σ2

)
(44)

F t+1 ≡
N∑

µ=1


 1

K

K∑

k=1

(
bkm̂t+1

µk

)2

− 1
K2

(
K∑

k=1

bkm̂t+1
µk

)2

 (45)

' 1
K

N∑
µ=1

m̂t+1
µ · m̂t+1

µ =
[
β − 2βM t + Qt + σ2

0

] (
Et+1

)2
. (46)

The function to be optimised is the bit error rate

P t
b ≡ 1

2K

K∑

k=1

(
bk − sgn

(
mt

k

))
=

∫ −Et/
√

F t

−∞
Dz (47)

9



and

mt
k ' tanh

(
N∑

µ=1

m̂t
µk

)
. (48)

To determine Rt we proceeded as follows. First we have to consider that the quotient

Et/
√

F t =
[
β − 2βM t−1 + Qt−1 + σ2

0

]−1

is a function of Rt−2 through M t−1 and Qt−1. To optimise it we have to �nd the roots of

∂P t
b

∂ (Rt−2)
= − 1√

2π
exp

{
− 1

β − 2βM t−1 + Qt−1 + σ2
0

}
∂

∂ (Rt−2)
Et

√
F t

= 0,

which implies that

2
∂M t−1

∂ (Rt−2)
− 1

β

∂Qt−1

∂ (Rt−2)
= 2

∂Et−1

∂Rt−2

∫ +∞

−∞

dz√
2πF t−1

exp

{
−

(
z − Et−1

)2

2F t−1

}
z

× [
1− tanh2(z)

]
[1− tanh(z)] = 0 . (49)

If the argument of the integral in Eq.(49) is an odd function, the integral is zero. The argument of the
integral at any time t, Ψ (z;Et, F t) can be expressed as

Ψ
(
z; Et, F t

)
= E (

z; Et, F t
)

z
[
1− tanh2(z)

]
[1− tanh(z)] .

Assuming that Ψ (z;Et, F t) = −Ψ (−z; Et, F t) then

E (
z; Et, F t

)
z

[
1− tanh2(z)

]
[1− tanh(z)] = −E (−z;Et, F t

)
(−z)

[
1− tanh2(z)

]
[1 + tanh(z)] ,(50)

leading to tanh(z) =
E (z;Et, F t)− E (−z; Et, F t)
E (z;Et, F t) + E (−z; Et, F t)

, (51)

which holds for all functions E (z; Et, F t) of the form

E (
z;Et, F t

)
= exp(z)G (

z; Et, F t
)

, (52)

where G (z; Et, F t) is an even function of z. In particular, for the Gaussian N
(
z; Et,

√
F t

)
we have

N
(
z; Et,

√
F t

)
=

1√
2πF t

exp
(

zEt

F t

)
exp

(
−z2 + Et

2F t

)

which satis�es Eq.(52) if and only if
Et = F t . (53)

In the same way one can �nd the condition at which Qt = βM t

Qt − βM t = β

∫ +∞

−∞

dz√
2πF t

exp

{
− (z −Et)2

2F t

}
tanh(z) [1− tanh(z)] ,

the argument of this integral can be expressed as

Ω
(
z; Et, F t

)
= F (

z;Et, F t
)

tanh(z) [1− tanh(z)] .

For Ω (z; Et, F t) be odd in z, F (z; Et, F t) has to satis�ed Eq.(51), so it is of the form

F (
z;Et, F t

)
= exp(z)G (

z;Et, F t
)

, (54)

where again G (z; Et, F t) is an even function of z. For the Gaussian function we obtain again the same
requirement (ie Eq.(53)). Setting Et = F t we then obtain M t = Qt.

10
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Figure 2: Error probability of the inferred solution evolving in time. The system load β = 0.25, true noise
level σ2

0 = 0.25 and estimated noise σ2 = 0.01. Squares represent results of the original algorithm [8],
solid line the dynamics obtained from our equations; circles represent results obtained from the suggested
practical algorithm. Variances are smaller than the symbol size. In the inset, Dt, a measure of convergence
in the obtained solutions, as a function of time; symbols are as in the main �gure.

For the calculation of Et one has to provide an estimate of the noise (σ0), but by condition (53) one
can compute Et using Eq.(46). From this equation one obtains:

Et+1 ' 1
K

N∑
µ=1

m̂t+1
µ · m̂t+1

µ =
(
Et+1

)2

{
1
N

N∑
µ=1

y2
µ − 2βM t + Qt

}
(55)

=
(
Et+1

)2

{
1
N

N∑
µ=1

y2
µ −Qt

}
=

{
1
N

N∑
µ=1

y2
µ −Qt

}−1

. (56)

Using Eq.(44) we conclude that Et+1 is equal to the pre-factor of the RHS of Eq.(41) and obtain a new
expression for m̂t+1

µk

m̂t+1
µk = At

(
yµsµ√

N
− β

(
Pµ −K−1I

)
mt

µ

)

k

At '
{

1
N

N∑
µ=1

y2
µ −Qt

}−1

(57)

where no estimate on σ0 is required at all. This is clearly of great signi�cance for practical CDMA
signal detection as no prior knowledge of the channel characteristics is required and there is no risk of a
mismatch between the assumed and true noise levels that may lead to errors.

3.1 Results
The inference algorithm requires an iterative update of Eqs.(56,57,48) and converges to a reliable estimate
of the signal, with no need for an accurate prior information of the noise level. The computational
complexity of the algorithm is of O(K2).

To test the performance of our algorithm we carried out a set of experiments of CDMA signal detection
problem under typical conditions. Error probability of the inferred signals has been calculated for a system
load of β = 0.25, where the true noise level is σ2

0 = 0.25 and the estimated noise is σ2 = 0.01, as shown
in Figure 2. The solid line represents the expected theoretical results (density evolution), knowing the
exact values of σ2

0 and σ2, while circles represent simulation results obtained via the suggested practical
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algorithm, where no such knowledge is assumed. The results presented are based on 105 trials per point
and a system size N =2000 and are superior to those obtained using the original algorithm [8].

Another performance measure one should consider is

Dt ≡ 1
K

(
mt −mt−1

) · (mt −mt−1
)

,

that provides an indication to the stability of the solutions obtained. In the inset of Figure 2 we see
that results obtained from our algorithm show convergence to a reliable solution in stark contrast to the
original algorithm [8]. The physical interpretation of the di�erence between the two results is assumed
to be related to a replica symmetry breaking phenomena.

4 Conclusions
In summary, we present a new approach for using belief propagation in densely connected systems. that
enables one to obtain reliable solutions even when the solution space is fragmented. It represents an
extension to existing algorithms of that type which is reminiscent to the extension of BP to SP.

The approach is presented in general terms and can potentially be used in a range of problems that
can be mapped onto a dense graph. For demonstrating the performance of the algorithm and to compare
it with the BP-equivalent algorithm of [8], we have derived explicit expressions for the CDMA signal
detection problem.

The algorithm we have obtained for this particular problem on the basis of the general formulation,
does not require any prior knowledge of the channel characteristics and is highly applicable. It has been
tested on the signal detection problem has showed superior results to other existing algorithms [8, 16].

Further research is required to fully determine the potential of the new approach and its applicability
for a variety of problems. Its application to problems with a real noise model (or likelihood term) is
rather straightforward although it would depend on the speci�c type of noise considered. Application to
cases with discrete noise models are likely to be more di�cult. Speci�c applications of the approach to
other densely connected problems, such as lossy compression are underway.
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A Extrema points of the function Φ (x; h, g)

Analysis of the equation
∂Φ (x;h, g)

∂x
=

x− h

g
− tanh(x) = 0 ,

shows that the function Φ (x;h, g) admits one or two maxima according to the following table

h g Number of max.
h ∈ R 0 < g ≤ 1 one max.
|h| = hc g > 1 one max. and one hump
|h| < hc g > 1 two max.

where hc =
√

g(g − 1) − cosh−1
(√

g
)
. The case of 2 maxima is presented in Fig. 3. Notice also that

the variable g plays a similar role to that of the inverse temperature and a spontaneous magnetisation
appears below a critical value gc = 1.
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B Deriving expressions for the messages - m̂µk

We derive expressions for the denominator and numerator of Eq.(29) separately. The denominator D can
be expressed as

D =
∫ 

∏

l 6=k

dxl


 exp



−

n

2

∑

l 6=k

x2
l

gt
µl





∫
dω exp

{
−n

2
Xµk −Qt

µk

Rt
µk

(
Xµk −Qt

µk + Rt
µk

)
ω2

}

∫ (
n∏

a=1

d∆a
µk dza

)
exp




−

∑n
a=1

(
∆a

µk

)2

2
(
Xµk −Qt

µk

) +
n∑

a=1

(
ω +

ut
µk

Xµk −Qt
µk + Rt

µk

− iza

)
∆a

µk





Tr
{bl6=k}

exp





∑

l 6=k

n∑
a=1

(iεµlz
a + xl) ba

l



Tr
{bk}

[
P (yµ|∆µk; γ) + εµk∇∆µk

P (yµ|∆µk; γ) · bk

]
,

and the numerator N

N =
∫ 

∏

l 6=k

dxl


 exp



−

n

2

∑

l 6=k

x2
l

gt
µl





∫
dω exp

{
−n

2
Xµk −Qt

µk

Rt
µk

(
Xµk −Qt

µk + Rt
µk

)
ω2

}

∫ (
n∏

a=1

d∆a
µk dza

)
exp




−

∑n
a=1

(
∆a

µk

)2

2
(
Xµk −Qt

µk

) +
n∑

a=1

(
ω +

ut
µk

Xµk −Qt
µk + Rt

µk

− iza

)
∆a

µk





Tr
{bl6=k}

exp





∑

l 6=k

n∑
a=1

(iεµlz
a + xl) ba

l



Tr
{bk}

bã
k

[
P (yµ|∆µk;γ) + εµk∇∆µk

P (yµ|∆µk;γ) · bk

]
.

Using the small εµl approximation as in Eq.(7) we can write

Tr
{bl6=k}

exp





∑

l 6=k

n∑
a=1

(iεµlz
a + xl) ba

l



 = 2n(K−1)

n∏
a=1

∏

l 6=k

cosh (xl) cos (εµlz
a) [1 + i tanh (xl) tan (εµlz

a)]

' 2n(K−1)
n∏

a=1

∏

l 6=k

cosh (xl) [1 + iεµlz
a tanh (xl)]

' 2n(K−1)
∏

l 6=k

coshn (xl)
n∏

a=1

exp



iza

∑

l 6=k

εµl tanh (xl)



 . (58)

Using P (yµ|∆µk;γ) =
∏n

a=1 P
(
yµ|∆a

µk; γ
)
, the traces on bk can be written as

Tr
{bk}

[
P (yµ|∆µk;γ) + εµk∇∆µk

P (yµ|∆µk;γ) · bk

]
= 2n

n∏
a=1

P
(
yµ|∆a

µk; γ
)

Tr
{bk}

bã
k

[
P (yµ|∆µk;γ) + εµk∇∆µk

P (yµ|∆µk;γ) · bk

]

= 2nεµk

(
n∏

a=1

P
(
yµ|∆a

µk;γ
)
)

∂

∂∆ã
µk

ln P
(
yµ|∆ã

µk; γ
)

.

Putting all together we �nd that the integrals over za generate the delta function

n∏
a=1

δ


∆a

µk −
∑

l 6=k

εµl tanh (xl)


 ,
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the integrals over ∆a
µk just replace all the ∆a

µk by vµk (xl 6=k) ≡ ∑
l 6=k εµl tanh (xl), and the integral over

ω gives an expression that is proportional to exp
{
−n

2

(ut
µk−vµk)2

Xµk−Qt
µk+Rt

µk

}
. Thus the �nal expression for the

message is

m̂t+1
µk = εµk

∫ 
∏

l 6=k

dxl


 exp

{−nHt
µk (xl 6=k)

} ∂

∂z
ln P (yµ|z; γ) |z=vµk

∫ 
∏

l 6=k

dxl


 exp

{−nHt
µk (xl 6=k)

}

where

Ht
µk (xl 6=k) =

∑

l 6=k

[
x2

l

2gt
µl

− ln cosh (xl)

]
+

(
ut

µk − vµk

)2

2
(
Xµk −Qt

µk + Rt
µk

) − ln P (yµ|vµk; γ) ,

as in Eq.(29).

C Deriving expressions for the messages - mµk

The expression for the messages from b-nodes to y-nodes is derived in a similar manner

mt
µk = Tr

{bk}
beakP t (bk| {yν 6=µ})

=
Tr
{bk}

beak
∏

ν 6=µ
Tr
{bl6=k}

P (yν |B)bl| {yσ 6=ν}
∏

l 6=k P t−1 (bl| {yσ 6=ν})

Tr
{bk}

∏

ν 6=µ
Tr
{bl6=k}

P (yν |B)
∏

l 6=k

P t−1 (bl| {yσ 6=ν})
(59)

'
Tr
{bk}

beak
∏

ν 6=µ

∫ 
∏

l 6=k

dxνl


 exp

{−nHt−1
νk (xν,l 6=k)

}
[
1 + ενk

∂

∂z
ln P (yµ|z; γ) |z=vνk

n∑
a=1

ba
k

]

Tr
{bk}

∏

ν 6=µ

∫ 
∏

l 6=k

dxνl


 exp

{−nHt−1
νk (xν,l 6=k)

}
[
1 + ενk

∂

∂z
lnP (yµ|z;γ) |z=vνk

n∑
a=1

ba
k

] (60)

=

∫



∏

ν 6=µ
l 6=k

dxνl


 exp



−n

∑

ν 6=µ

Ht−1
νk (xν,l 6=k)





∑

bãk=±1


bã

k

∏

ν 6=µ

(
1 + ενk

∂

∂z
ln P (yµ|z;γ)bã

k

)


∫



∏

ν 6=µ
l 6=k

dxνl


 exp



−n

∑

ν 6=µ

Ht−1
νk (xν,l 6=k)





∑

bãk=±1


∏

ν 6=µ

(
1 + ενk

∂

∂z
ln P (yµ|z; γ)bã

k

)


=

∏

ν 6=µ

(1 + m̂t
νk)−

∏

ν 6=µ

(1− m̂t
νk)

∏

ν 6=µ

(1 + m̂t
νk) +

∏

ν 6=µ

(1− m̂t
νk)

= tanh


∑

ν 6=µ

arctanh
(
m̂t

νk

)

 ,

to obtain Eq.(31), where we have used the approximation Eq.(58) to go from Eq.(59) to Eq.(60).
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D Obtaining the roots of ṽµk

Having de�ned vµk,as in Eq.(33), one can then rewrite Eq.(32) as

0 =
x̃l

gt
µl

− tanh (x̃l)− εµl

[
1− tanh2 (x̃l)

] (vµk − ṽµk)(
Xµk −Qt

µk + Rt
µk

) ×

×


1− (

Xµk −Qt
µk + Rt

µk

)
∂

∂z
ln P (yµ|z;γ) |z=vµk

− ∂

∂z
ln P (yµ|z;γ)|z=ṽµk

vµk − ṽµk


 , (61)

where, by continuity of the derivative of P we can write

0 =
x̃l

gt
µl

− tanh (x̃l)− εµl

[
1− tanh2 (x̃l)

] (vµk − ṽµk)(
Xµk −Qt

µk + Rt
µk

) ×

×
[
1− (

Xµk −Qt
µk + Rt

µk

) ∂2

∂z2
ln P (yµ|z; γ) |z=λvµk+(1−λ)ṽµk

]
,

for some λ ∈ (0, 1). The last term can be identi�ed with a small �eld

h̃t
µl ≡ εµlg

t
µl

[
1− tanh2 (x̃l)

] (vµk − ṽµk)(
Xµk −Qt

µk + Rt
µk

) (62)

×
[
1− (

Xµk −Qt
µk + Rt

µk

) ∂2

∂z2
ln P (yµ|z; γ) |z=λvµk+(1−λ)ṽµk

]
.

The �eld is small O (εµl), so the lower minimum should be located near by mt
µl. According to Eq.(18)

the minimum is located at
x̃l ' mt

µl +
1

1− gt
µl

[
1−

(
mt

µl

)2
] h̃t

µl .

Thus the position of the minimum is shifted by the action of the �eld. Equation (61) can be expressed as

tanh (x̃l) ' mt
µl − εµlAµl,k

[
1− tanh2 (x̃l)

]
, (63)

where

Aµl,k ≡
gt

µl

[
1−

(
mt

µl

)2
]

1− gt
µl

[
1−

(
mt

µl

)2
] (ṽµk − vµk)(

Xµk −Qt
µk + Rt

µk

) (64)

×
[
1− (

Xµk −Qt
µk + Rt

µk

) ∂2

∂z2
ln P (yµ|z; γ) |z=λvµk+(1−λ)ṽµk

]
.

The solution of Eq.(63) is:

tanh (x̃l) ' mt
µl − εµlAµl,k

[
1− (

mt
µl

)2
]

+O (
ε2
µl

)
,

so, multiplying both members by εµl and adding over all l 6= k one obtains Eq.(34).
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