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Abstract

The concept of elementary flux mode is a promising approach for pathway-oriented perspec-
tive of metabolic networks. This concept defines a unique set of pathways, which represents
a set of generating vectors of the solution space of feasible steady states. This set can be
determined from the stoichiometric matrix of the network only. However, in large networks
the combinatorial explosion of their number prevent to derive simple conclusions from their
analysis. We applied a clustering method to describe the decomposition in elementary flux
modes of the bioenergetic mitochondrial metabolism (Krebs cycle, S-oxidation of fatty-acids,
oxidative phosphorylation, etc.). This network involves 41 enzymatic reactions, 31 metabo-
lites. 7,250 elementary flux modes are derived from the stoichiometry matrix of the network.
We clustered them by similarity and described physiological properties of most of the groups,
which could in some instances be attached to specific types of mitochondria.

Introduction

With the increasing number of reconstructed reaction networks [11], there is a growing need
to assess the emerging properties of these networks. One current approach comes from
the concept of elementary flur mode (EFM). An EFM is a minimal set of enzymes that
can operate at steady state with all irreversible reactions proceeding in the appropriate
direction. A metabolic network with m metabolites and r reactions can be represented by a
stoichiometric matrix N of m rows and r columns 7] such that :

a  if a moles of metabolite ¢ comes from the reaction j
Ni; = ¢ —a if a moles of metabolite 7 are consumed in reaction j
0 otherwise

A vector e € IR" is an EFM if it fulfills the following conditions [9, 10] :
1. Ne = 0. (Steady state)
2. For all indice i of an irreversible reaction e; > 0. (feasibility)

3. Let supp(v) = {i € IN : v; # 0}. For all ¢ in the set of all elementary flux modes of
N, supp(e') C supp(e) = Ja € IR such that ' = ae. (minimality)

The concept of elementary fux modes provides a mathematical tool to define all metabolic
pathways that are feasible in a given metabolic network.

Most applications of EFMs avoid to analyze complexe networks due to the combinato-
rial explosion in the number of EFMs |5, 2|. In these conditions, it is difficult to give an
interpretation of their biological meaning. For this reason we developed a classification of a
great number of EFMs in few clusters with biological relevance. We applied this method to
the decomposition of mitochondrial metabolism in 7,250 EFMs .



1 Classification of EFMs

Our objective is to make an unsupervised classification (as clustering) of the EFMs set
because the label of the clusters and their number are a priori unknown. Our major concern
becomes to ‘“reveal” the organization of EFMs into clusters with biological meanings. In
order to organize these EFMs into clusters, we need to define a clustering criterion based
on features selection. This is an important step, because the process of assigning EFM to
clusters may lead to very different results, depending on the specific criterion used. This
lead us to discuss an EFM representation and a clustering criterion based on a proximity
measure to quantifies how “similar” or “dissimilar” two feature vectors are.

1.1 Feature selection : representation of the FFM

Our feature selection is the presence or the absence of a reaction in an EFM , without taking
into account the stoichiometry. Thus an EFM can be represented as a binary vector in the
order of the reactions v € IR" where r is the number of reactions such that

1 if the reaction j is present in the EFM

VI<j<r v;= { 0 otherwise

1.2 Proximity notion

The similarity between EFMs can be seen as the number of reactions they have in common
(i.e the number of places where two vectors have 1 in common). Let us consider the well-
known Euclidean distance, d :

d(z,y) =

where z, y € IR" and z;, y; are the i coordinates of  and y respectively. This is a
dissimilarity measure. For binary vector, the square of this measure give the number of places
where two vectors differ. The zero componants between vectors are taken as similarities as
well as the one componants, but the clusters which contain a very small distance due the
presence of zeros are not absorbed in the clusters which contain a lot of ones because they
are very dissimilar. Moreover, they contain fewer reactions motifs. This kind of group are
not significative and do not prevent the emerging pattern of the other group.

1.3 Clustering algorithm

The number of clusters where the set of EFMs can be merge are a priori unknown. A
hierarchical clustering [3] based on agglomerative method is used. The clusters are built
using the function hclust in the R software [1]. This function performs a hierarchical cluster
analysis using a set of dissimilarities for the n objets being clustered. Initially, each object is
assigned to its own cluster and then the algorithm proceeds iteratively, at each stage joining
the two most similar clusters, continuing until there is just a single cluster. At each stage,
distances between clusters are recomputed. hclust returns a dendrogram (figure 1) and the
number of clusters can be chosen by cutting the dendrogram at an appropriate distance.



R Graphics: Device 2 (ACTIVE) (=[]

Cluster Dendrogram

Height

ki

dist(x)
helust (*, "complete™)

Figure 1: Dendrogram of the mitochondria clusters

2 Application to the energetic metabolism of the mito-
chondria

2.1 Mitochondria model

We describe the bioenergetic mitochondrial metabolism (Krebs cycle, S-oxidation of fatty-
acids, oxidative phosphorylation, etc.) with 41 enzymatic reactions and carriers through
the inner mitochondrial membrane and 31 internal metabolites. Using Metatool [6, 8| or
FluxAnalyzer [4], 7,250 elementary flux modes are derived from the stoichiometry matrix of
the network.

2.2 Results

By applying hclust to our set of 7,250 EFMs we obtain the dendrogram represented in
figure 1. We decided to cut this dendrogram at a distance giving 12 groups. In order to
characterize each cluster, we looked for specific reactions motifs, which could be largely
represented in a given cluster. In most of the clusters, we found one motif which is present
in all the EFMs of the cluster. The results are summarized in table 1, indicating the size of
a cluster ¢ (i.e. the number of EFMs it contains) and the size of the common motif present
in all EFMs of a cluster. The last column indicates the occurrence of a given motif, common
to a cluster, in the whole set of EFMs . As a matter of fact, if a reactions motif appears in
an entire cluster, it is very probable that it will also appear frequently in other EFM outside
the cluster used to define the motif. For instance, the second pattern msy appears in 39% of
all the set, mi, appears in 28.7% and mg appears in 25%.
The analysis of the common motifs allows a characterization of each class :
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clusters size of the cluster size of the commmon pattern General occurence (%)
1 1272 0 0
2 734 3 39
3 171 0 0
4 861 0 0
) 130 3 9
6 789 7 11
7 1039 1 69
8 143 ) 6
9 1713 7 25
10 299 8 4.2
11 o7 4 28.7
12 42 3 2.5

Table 1: Pattern and size of the clusters

e Class 2 corresponds to the synthesis (or the consumption) of ketone bodies.

e Class b corresponds to the mitochondrial metabolism linked to the urea cycle in hepa-
tocytes.

e Class 6 corresponds to the mitochondrial metabolism linked to the synthesis (or the
consumption) of ketone bodies and the respiration on fatty acids compulsory linked to
FADH2 entry in respiratory chain.

e (Class 7 corresponds to all other elementary modes involving FADH2 utilization by the
respiratory chain.

e (Class 8 corresponds to the mitochondrial metabolism linked to the urea cycle and part
of the Krebs cycle.

e Class 9 correspond to the respiration on fatty acids with part of Krebs cycle.

e (Class 10 corresponds to an entry with pyruvate, part of the Krebs cycle and synthesis
of ketone bodies.

e Class 11 links the synthesis of FADH2 in the Krebs cycle to its utilization in respiratory
chain.

e Class 12 links the respiration on glutamate to ATP synthesis (or consumption 7).

Conclusion

We have presented a method, based on classical clustering techniques, to classify, with bio-
logical meaning, the great number of FFMs obtained in the study of metabolic networks.
An important step in our analysis is the distance at which the dendrogram is cut. Cutting
at too high value will give a too low number of class with no longer biological signification.
Cutting at a too low distance value will introduce a too great number of non-significant
differences and the biological meaning will again be lost. In our analysis, a slightly greater
number of classes could evidence common motifs in the sub-classes of the classes devoid of
common motif at step 12. We are analyzing other cutting distances leading to a number of



cluster between 12 and 18, the motifs involved in each cases, the way they appear when the
clusters are split.
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