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Abstract

It is shown that to describe the ”anomalous” stochastic transport
- random walks in complex systems the fractional calculus is neces-
sary to apply. The new generalized diffusion equations of fractional
order are deduced from microscopic models with anomalous diffusion
as Comb model, Continuous time random walks and Levy flights. It
is shown that three types of equations are possible : with fractional
temporal and fractional spatial derivatives and mixed derivatives. The
solutions of these equations are obtained and the physical sense of
these fractional equations is discussed. The relation between diffu-
sion and conductivity is studied and the well-known Einstein relation
is generalized for the anomalous diffusion case. It is shown that for
Levy flight diffusion the Ohm’s law is not applied. The new nonlinear
response instead Ohm’s law current is established. The exponent of
nonlinearity is founded, it is connected with the index of anomalous
power diffusion.
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1 Introduction.

Classical diffusion, in which diffusing particle hops only to nearest sites, has
been thoroughly studied, and many methods, related to the research of this
phenomenon, have been developed. In distinction of this the random walks
with an anomalous power character are ,however, studied less. One of the well
known examples are random walks on percolation clusters (random fractals),
which have a sub-diffusion character [1],[2]:

< X2(t) >∼ t
2

2+θ (1)

Here t is diffusion time, < X2(t) > is a random mean square (rms) displace-
ment during the time, θ is a critical index of the anomalous sub- diffusion.
Let’s note too that the critical exponent of anomalous diffusion θ depends on
the space dimension: θ2 ∼ 0.8, θ3 ∼ 1.3. The change of diffusion character is
caused by two reasons : strong tortuous (twistness) of percolation ways and
presence of impasses - ” dead ends on current ways at least. This problem
was formulated many years ago in the [3],[4]- as a problem of ”ant in labirint”
and it is still not solved.

To take into account an influence of impasses for diffusion character the
model of comb stucture was put forward [5] and [6]. This model consists
of one-dimensional backbone with fingers of infinite lengths - see fig.1. Us-
ing the technique of the generating functions it was shown, that the root-
mean-square displacement along an axis of structure depends on time in the
anomalous way (1) with the exponent θ = 2.

This model is one of the few exactly solvable models with unusual dif-
fusion properties. So in this paper we consider this model in more detail.
The generalized diffusion equation, describing random walks along an axis of
structure, was deduced. It essentially differs from the usual diffusion equa-
tion, having the form of the continuity equation: instead of the first derivative
on time the derivative of the fractional order 1/2 arises. The expression for
a diffusion current remains the former - see also [7]. The generalization for
a multidimensional case is performed. The relation of the diffusion on the
comb model with a problem of continuous time random walks (CTRW) is
established [8],[9]. A further development of the model is a study of ran-
dom walks on the comb structure with random distribution of fingers over
lengths [10] , [11]. In particular it was shown for a power law distribution
f(l) ∼ l−γ, 1 ≤ γ ≤ 2 rms depends on time in the following power way :

< X2(t) >∼ t
γ
2 (2)
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It is connected with that at these values 1 ≤ γ ≤ 2 all moments of the power
distribution over lengths are diverged. Recently an analogous behavior was
obtained in the continuum description of the anomalous diffusion on the
comb structure [12],[13]. It is necessary to note that the diffusion problem
on random comb structure is not yet solved. The second part of this paper is
devoted to another anomalous random walks - super-diffusion via Levy flights
[14],[15]. At Levy flights particles may hop for an arbitrary large distance
with a power probability, so that rms displacement per unit time appears
to be infinite. The study of Levy diffusion is of interest as a microscopical
model with an unusual diffusion and in a connection with possible applica-
tions to hopping conductivity in disordered media and to other fields. The
generalization of Levy diffusion for a finite length of hop is discussed. In this
case Levy flights are alternated by the usual diffusion. The most interesting
one is a research on the relation between diffusion and conductivity in the
super-diffusion case. It is shown that due to a super-diffusion character of
random walks the current and electric field are connected in a nonlinear way.
The index of the nonlinearity is described by the exponent of the anomalous
Levy diffusion.

The paper organized as follows. In section 2 the exact solution of the
random walks on comb structure is obtained. Namely the generalized fractal
diffusion equations for the anomalous case are deduced in two different ways.
In section 3 the generalization for a multidimensional case is made. The
connection between problems of diffusion on comb structure and continuous
time random walks is considered in section 4. The drift on the comb structure
is considered in section 5. In the last sections 6-8 the diffusion via Levy flights
and in an electric field are studied. It is shown that a relation between
diffusion and conductivity is nonlinear. Section 9 concludes the paper and
the discussion of results is given.

2 The diffusion on comb structure.

A feature of the diffusion in the considered model consists of that the dis-
placement in the X-direction is possible only along an axis of structure (at
y = 0). This means that diffusion coefficient Dxx is different from zero only
at y = 0:

Dxx = D1δ(y) (3)
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i.e. X- component of the diffusion current is equal to:

Jx = −D1δ(y)
∂ρ

∂x
(4)

The diffusion along fingers is considered as usual: Dyy = D2. Thus, the
random walks on the comb structure is described by the tensor of diffusion:

D̂ =

(
D1δ(y) 0

0 D2

)
Accordingly, we obtain the following diffusion equation:

[
∂

∂t
−D1δ(y)

∂2

∂x2
−D2

∂2

∂y2
]G(x, y, t) = δ(x)δ(y)δ(t) (5)

Here G(x, y, t) is the Green function of the diffusing problem. To solve the
equation we use the following reception. Let’s rewrite equation (5) as the
usual diffusion equation with a non-uniform right part:

[
∂

∂t
−D2

∂2

∂y2
]ρ = D1δ(y)

∂2ρ

∂x2
(6)

The solution of the homogeneous equation (6) is well known and has the
Gaussian form:

G(y, t) =
exp(− y2

4D2t
)

√
πD2t

(7)

Thus we obtain the integral equation for the concentration of the diffusing
particles:

ρ(x, y, t) =
∫

G(y − y′, t− t′)D1δ(y
′)

∂2ρ(x, y′, t′)

∂x2
dy′dt′ (8)

After integration over y′ one obtains the closed equation for the concentration
of particles on an axis of the structure (y=0):

ρ(x, o, t) = D1
∂2

∂x2

∫ t

−∞

ρ(x, o, t′)√
πD2(t− t′)

dt′ (9)

It is easy to see, that the right-hand side of formula (9) is the integral of
the fractional order 1/2 [16],[17]. Therefore using the operator of fractional
differentiation of a degree 1/2 we obtain the required diffusion equation:

∂
1
2 ρ(x, t)

∂t
1
2

= D1
∂2ρ(x, t)

∂x2
(10)
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The integro-differential form of the diffusion equation (10) is a consequence of
random disappearance and subsequent birth of particles at the axis of struc-
ture at diffusion (leaving and returning to an axis of structure). Let’s mark
that this equation describes the diffusion problem with a non-conserving
number of particles.

To find the solution at arbitrary values of the coordinate y we use another
direct approach. Let’s use a mixed (s, k,y)-representation :

[s + D1k
2δ(y)−D2

∂2

∂y2
]ρ(s, k, y) = δ(y) (11)

Let’s find the solution (11) in the form :

G(s, k, y) = g(s, k)exp(−λ|y|) (12)

After necessary calculations one has :

G(k, y, s) =
exp(−(

√
s

D2
|y|)

2
√

sD2 + D1k2
(13)

Using Fourier transformations , we obtain :

G(x, y, t) =
∫ ∞

0

exp(− x2

4D1τ
− −D2(τ+|y|)2

4t
)

√
2πt3

(14)

To obtain this expression the following identity was used:∫ ∞

0
exp(−ατ)dτ =

1

α
(15)

The distribution of particles on an axis of structure is described by the same
expression at y=0.

Let’s note that the complete number of particles on an axis of structure
decreases or in other words this diffusion problem is the one with a non-
conserving number of particles:

< G >=
∫

G(x, o, t)dx =
1√

2D2t
(16)

Taking into account last remark to calculate the displacement along an axis
of structure:

< X2(t) >=
< X2G >

< G >
= D1

√
t

D2

(17)

5



Let’s return to the equation for G(x, 0, t). As follows from (13) in (s, k)
- representation it has the form:

[2
√

sD2 + D1k
2]ρ(s, k) = 0 (18)

It is easy to see that this equation consists of the Fourier representation of
the fractional derivative on time [16],[17],[18]. So we recover the diffusion
equation for a density of particles on an axis of the structure in the form
(10).

So the consideration of random walks on comb structure shows that the
problem with anomalous diffusion and with non-conserving number of parti-
cles should be described by the diffusion equation with temporal derivative
of the fractional order.

3 Multidimensional case.

Let’s generalize these results for a multidimensional case. First let’s begin
with a three-dimensional comb structure. Such a structure is formed by
attaching the additional fingers to the existing two-dimensional comb struc-
ture that points in the direction parallel to the Z axis. Hence in the three-
dimensional case displacements in the X-direction are possible only along
the intersections of the planes y = 0 and z = 0. In other words the diffusion
coefficient is not zero , i.e. Dxx = D1δ(y)δ(z). Accordingly , a displacement
in the y-direction is possible only if z = 0, and a displacement along z axis
is ordinary. Thus, we have the following diffusion tensor:

D̂ =

 D1δ(y)δ(z) 0 0
0 D2δ(y) 0
0 0 D3


So the corresponding diffusion equation in the mixed (s, k, y, z) -
representation is :

[s + D1k
2δ(y)δ(z)−D2δ(z)

∂2

∂x2
−D3

∂2

∂y2
]ρ(s, k, y, z) = 0 (19)

Let’s find a solution for (19) in the form:

ρ(s, k, y, z) = g(s, k)exp(−λ2|y| − λ3|z|) (20)
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Substituting (20) into Eq. (19) yields the following formulas for the param-
eters λ2 and λ3 and the function g(s, k) :

λ2
3 = s/D3, λ2

2 =
2λ3D3

D2

, g(s, k) =
1

2λ2D2 + D1k2
(21)

Consequently for the mean-square displacement along the x and y axes we
then have :

< X2(t) >∼ t1/4, < Y 2(t) >∼ t1/2 (22)

Hence in the N-dimensional case the diffusion tensor is described by the
matrix :

D̂ =



D1δ(x2) . . . δ(xN) 0 . . .
0 D2δ(x3) . . . δ(xN) . . .
...

...
...

. . . DN−1δ(xN) 0
0 . . . DN


Accordingly we find a solution for the N-dimensional diffusion problem

in the form

ρ(s, k, x2, x3 . . . , xN) = g(s, k)exp(−λ2|x2| − λ3|x3| − . . .− λn|xN |) (23)

Here the parameters λN are linked through the formulas:

2λN = s/DN , λ2
N−1 =

2λNDN

DN−1

, . . . , λ2
2 =

2λ3D3

D2

(24)

and the function g(s, k) is defined in the expression (21). The formulae (23)
and (24) give the complete solution of the multidimensional problem. For
instance it is easy to calculate the mean-square displacement along the main
axis of the structure:

< X2
N(t) >∼ t1/2(N−1) (25)

For the next lateral finger the mean-square displacement is

< X2
N−1(t) >∼ t1/2(N−2) (26)

...And for the axis, from which only fingers of infinite length emerge, we have

< X2
2 (t) >∼ t1/2 (27)

Thus random walks on a multidimensional comb structure is of a hierar-
chical nature and there are many variants of behavior of the mean-square
displacements along the axes of the structure.
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4 Continuous-time random walks.

The above problem of a random walk on an N -dimensional comb structure is
connected to the problem of diffusion in a medium with traps ( continuous -
time random walk). The difference between the two problems consists in that
in diffusion in a medium with traps the particles do not disappear, but only
delay at each site with a certain probability. The total number of diffusing
particles is conserved [19], [20]. For a comb structure the transition to the
problem with a continuous distribution over delay time occurs if we study
the following quantity:

G̃(x, t) =
∫

G(x, y, t)dy (28)

According to (13) the function G̃(x, t) is described by the equation :

[s +
D1k

2s1/2

D2

]G̃ = 1 (29)

Hence in the case of a medium with traps the diffusion equation has the form
of the continuity equation for a medium with temporal dispersion:

∂ρ(x, t)

∂t
− ∂J

∂x
= 0 (30)

where

J = − D1

2D2

∂

∂x

∫ ∂ρ(x, τ)

∂τ

∂τ

|t− τ |1/2
(31)

Diffusion is still anomalous with the exponent θ = 2. Let’s consider the
three-dimensional case and examine the Green function averaged over the y
and z axes , i.e. the function G̃(s, k) =

∫ ∫
G(s, k, y, z)dydz . According to

(23), for this function, we have the equation:

[s + D1k
2(

4sD3

D2

)3/4]G̃ = 1 (32)

Hence the diffusion equation has the form of the continuity equation with a
diffusion current:

J ∼ − ∂

∂x

∫ ∂ρ(x, τ)

∂τ

∂τ

|t− τ |3/4
(33)
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Further we study the Green function averaged over one coordinate z :

G̃(s, k, y, t) =
exp(−λ2|y|)

λ3(2λ2D2 + D1k2)
(34)

Accordingly, the motion along the axis y = 0 is described by the equation:

[s3/4 + ADk2(s)1/2]G̃ = 0 (35)

where A = const.
The number of particles on the y = 0 axis is not conserved because parti-

cles are also in the dead ends . As result of this the diffusion current contains
a fractional temporal derivative of order 1/2. So in the N-dimensional case
the equation for the function G̃m, averaged over the m coordinates has the
form:

[sβ + sνk2]G̃m(s, k) = 0 (36)

where β = (N −m + 1)/4 and ν = (N −m− 1)/4

5 Drift on the comb structure model.

The appearance of the electrical field leads to an anisotropy of random walks.
In weak fields the anisotropy parameter α(E) << 1 is small and is propor-
tional to a field. Accordingly the field current equals: J = nµE. In the comb
structure the mobility tensor is analogous to the diffusion coefficient. The
equation for the diffusion on comb structure and in an electrical field has the
following form:

[
∂

∂t
− δ(y)(D1

∂2ρ

∂x2
+ µ1

∂2

∂y2
)− (D2

∂2

∂y2
µ2

∂2

∂y2
)]ρ(x, y, t; E) = 0 (37)

Let’s assume that the field is directed only along an axis of structure ~E =
E(1, 0, 0). Accordingly,the Green function in mixed (s, k, y) -representation
is equal to:

G(s, k, y; E) =
exp(−

√
s/D2|y|)

2
√

sD2 + D1k2 + ikµ1E
(38)

After Fourier transformations , we obtain :

G(x, y, t) =
∫ ∞

0

exp(− (x−µ1Eτ)2

4D1τ
− −D2(τ+|y|)2

4t
)

√
2πt3

(39)
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Let’s find the first moment of the Green function in a field:

< X(t) >= µ1E
√

πt/2 (40)

Let’s emphasize that the response to a constant electrical field appears as a
time-dependent one. Namely, the velocity decreases with time according to
the power way:

< V >= µ1E
√

π/2t (41)

This result means that in the anomalous diffusion problem with drift it is
impossible to find such an inertial system of the coordinates, which is moved
with constant speed and in which the diffusion remained only as in the usual
diffusion case.

Let’s consider also the influence of an electrical field on a returning prob-
ability. In the usual diffusion case the drift leads to the exponential reduction
of it:

G(o, t; E) =
exp(−(µE)2t)√

πt
(42)

In our case it is easy to see that for large time values there is only power
reduction of the probability:

G(o, t; E) ∼ ((µE)2t)3/4 (43)

This result can be easily understood. The electrical field acts on particles
only when they are on a structure axis. But most of the time a particle
remains on the fingers, outside the axis, so a more slightly power dependence
is obtained.

6 Levy flight diffusion.

As it was discussed above another microscopical model with anomalous dif-
fusion is a model with Levy flight diffusion. A feature of the Levy flight
diffusion is that in each step a particle may move for an arbitrarily large dis-
tance, so that the root-mean-square displacement per unit time appears to be
infinite [14]. Numerical simulation of diffusion via Levy hops shows that the
points visited by a diffusing particle form spatially well-separated clusters.
From more in-depth consideration one can see that each cluster consists of
a set of clusters, so that a structure of self-similar clusters appears [15]. So
one can say that Levy diffusion is a random walk among self-similar clusters.
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The probability distribution function in the Fourier representation has
the form:

P (k, t) ∝ e−A|k|µt (44)

where A and µ are positive magnitudes, 1 < µ < 2. Such stable distributions
are called Levy distributions. A more detailed discussion of Levy hops is
given in [21].

The study of Levy diffusion is of interest as a microscopical model with
unusual diffusion, but also in connection with some possible applications, for
example , to the hopping conductivity problem in inhomogeneous medium
[22].

6.1 Discrete distribution of Levy random walks.

Let us consider a one-dimensional discrete analog of a Levy flight [14]. Let
the probability, that a particle occupies the l-th site after n steps, be Pn(l)
and let f(l) be the probability distributions of hops over lengths. So the
master equation for complex diffusion has the form:

Pn+1(l) =
∞∑

m=−∞
f(l −m)Pn(m) (45)

To simulate a Levy flight the following function is used for f(l):

f(l) =
∞∑

n=0

a−n(δl,−bn + δl,bn) (46)

where δn,m is the Kronecker delta and a and b are the parameters of the Levy
flight. Then after Fourier transformation the structure function for such a
random walk is equal to:

λ =
∫

f(l)exp(ikl)dl =
∞∑

n=0

a−n cos(kbn) (47)

Note that the structure function λ(k) satisfies the functional equation:

λ(k) = aλ(kb) + cos(k) (48)

Hence at k → 0 the structure function is a power law function with exponent
µ = ln(a)/ln(b). One can establish the non-analytic power-law behavior at
k → 0 by means of a Mellin transformation, or with the help of Poisson
formulae for set summation . For details see [14].
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6.2 Transition from ordinary diffusion to Levy diffu-
sion.

In this section , in addition to Levy hops we allow for ordinary diffusion.
The simplest way to do this is to introduce a finite hop length ξ at each
step. So we obtain a random walk in which ordinary diffusion alternates
with Levy hops. However, due to the super-linear time dependence of the rms
displacement for Levy diffusion, on small scales (times) the main contribution
to the random walk is provided by ordinary diffusion, while at long times
Levy hops contribute most to the random walks. Accordingly, the hop-length
distribution function has the form:

f(l) =
∞∑

n=0

a−n(δl,−(bn+ξ) + δl,(bn+ξ) (49)

Hence the structure function is :

λ =
∞∑

n=0

a−n cos(kbn + kξ) (50)

In the limit of small length (b → 0) this formula turns into the expression
corresponding to ordinary diffusion:

lim
b→0

λ(k, ζ) =
a− 1

a
cos(kξ) (51)

7 Nonlinear relation between diffusion and

conductivity.

7.1 Einstein relation and its generalization.

Below the particle drift or the relation between diffusion and conductivity is
studied when there is Levy diffusion in the system. For the case of usual clas-
sical diffusion and linear response (Ohm’s law) this problem was considered
by A. Einstein and the well-known Einstein relation was obtained. However
in the case of Levy hops a question about the existence of an Einstein rela-
tion arises. The problem is that the diffusion coefficient, defined in the usual

way as D = lim
t→∞

x2(t)
t

, diverges in a Levy flight diffusion case.

Consequently, there are two possibilities: Either the particle mobility
tends to infinity, which is nonsense from a physical point of view, or the
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Einstein relation is broken. Below it will be shown that instead of the Einstein
relation a new nonlinear relation between mobility and diffusion coefficient
appears.

Let us recall the well-known Einstein arguments. Let there be in the
system the diffusion Jd = −D∇n and the field Jf = µEn currents. In the
equilibrium the diffusion current Jd is compensated by the field current Jf ,
and the distribution function must have Boltzmann’s form:

Jd + Jf = 0, Neq ∝ e−U/kT (52)

where U is the potential energy, T is temperature, and k is Boltzmann’s
constant.

Before applying analogous arguments to Levy flights consider the assump-
tions used in deriving the Einstein relation. There are the three following
assumptions:

i) the Boltzmann’s statistics
ii) the expression for the diffusion current in the usual classical form
iii) the linear Ohm’s law
Let us try to understand which of these assumptions need to be modified.

Firstly, the assumption about Boltzmann’s statistics is not essential, since
its type is determined by the statistical properties of the system, and we will
retain it. Secondly, the diffusion current has a different form and we write it
in a general operator form:

Jd = −K̂n = −iA~k|k|µ−2n (53)

And finally we write the field current as Jf = nV , where V is the drift
velocity.

By taking a definition for the derivative of the fractional order in the form
of the set [23], one can get a general formula for the drift velocity:

~V = eU/kT lim
ε→0

(42 + ε)(µ−2)/4∇ exp(− U

kT
) (54)

where 4 is the Laplace operator.
In a homogeneous electrical field U = −qEr we recover that the drift

velocity depends on the electric field in a nonlinear way:

V = Aq ~E
|q ~E|µ−2

(kT )µ−1
(55)
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It should be emphasized that this nonlinearity occurs in arbitrarily weak
fields and is a consequence of the unusual character of diffusion. The power
of nonlinearity is described by the critical index of the Levy hop diffusion.

This is a preliminary result, which we obtain below in an exact way.

8 Random walks of Levy and particle drift in

the electric field.

Let us now introduce an anisotropy into the random walk on self-similar
clusters. By virtue of the specific nature of Levy hops a particle can move
in one hop over an arbitrary distance bn. For this reason a small anisotropy
(1 + α), with α = qEs/kT , when particles move on a small distance s,
becomes exponentially large on large distances bn. Since at each step a
diffusing particle leaves a site, the sum of probabilities W+ and W− of motions
parallel and anti-parallel, respectively, to the field must be equal to 1:

W+ + W− = 1

Hence we get the expressions for probabilities of motion parallel and anti-
parallel to the field:

W± =
(1± α)bn

(1 + α)bn + (1− α)bn (56)

Therefore, the structure function λ(k; E) in the case of diffusion via Levy
hops in the electrical field equals:

2λ(k; E) =
∞∑

n=0

a−n[cos(kbn) + i sin(kbn)(W+ −W−)] (57)

As for usual diffusion the second term contains the drift velocity for small
k → 0:

V = i
∂λ(k; E)

∂k
|k→0 =

∞∑
n=0

(
b

a
)n ∗ (W+ + W−) ≈

∞∑
n=0

(
b

a
)n tanh(αbn) (58)

where tanh(x) is the hyperbolic tangent.
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Using the Poisson formula we obtain after some calculations the formula
for the velocity:

V (E) = α/2 + αµ−1

[ ∞∑
m=−∞

∫ ∞

1
tanh(z)z−γmdz +

∫ α

o
tanh(z)z−γmdz

]
(59)

where the exponent is equal to:

γm = µ + 2πim/ ln b.

It is easy to see that for weak fields the second term in brackets is less than the
first term. Thus, in arbitrarily weak electric fields one can get the nonlinear
field dependence of velocity (55).

8.1 Transitions from ordinary diffusion to Levy diffu-
sion and from Ohm’s law to nonlinear response.

Anisotropy is introduced into these random walks using the method described
above: we replace the hop length with the quantity bn+ξ. Thus the structure
function in an electric field and for finite hop length is:

λ(k, ξ, α) =
∞∑

n=0

a−n[cos(kbn + kξ) + i sin(kbn + ξ)(W+ −W−)] (60)

And after calculations by Poisson’s method we obtain the following results:
in arbitrarily weak fields the velocity is nonlinear in the field, eq. (55), and
crosses over to linear behavior in strong fields:

V ' Eξ2−µ, qEξ/kT � 1 (61)

Thus the particle velocity in an electric field has two asymptotic limits in
accordance with two diffusing regimes: Levy hops and ordinary diffusion.

9 Discussion.

We have studied random walks on the comb model and found that the exis-
tence of fingers on comb model - analog of ”dead ends” in the current-carrying
paths of percolation systems leads to the anomalous nature of the random
walk. We have established that for diffusion problems , in which the number

15



of particles is not conserved, the generalized diffusion equations must be the
fractal temporal derivative equations : instead of a first temporal derivative
, the equation must contain the fractional-order derivative. Fractional tem-
poral derivatives emerge due to the random disappearance and reappearance
of diffusing particles ( the departure of particles from axis and their return).
Let’s stress that in our consideration the fractal temporal diffusion equations
are deduced in an obvious way. The physical sense of fractional temporal
derivative is clear. Usually the fractal diffusion equations are postulated
[25], [26] and [18], and questions about the possibility of its application are
arised.

When we examine random walks in a medium with traps, the same prob-
lems appear. As noted earlier, the problem of diffusion in a medium with
traps differs from the problem of diffusion along the axis of a comb structure.
The difference lies in the fact that the particles do not disappear, but delay
at each site with a certain probability. The total number of diffusing particles
is conserved. In other words we have the law of mass conservation, expressed
by a continuity equation. However, the anomalous nature of diffusion, due
to the capture of particles by the traps, leads to an unusual expression for
the diffusion current with fractional temporal derivative. Note that mathe-
matically the generalized diffusion equations in both problems are different
and describe different physical situations. First, in a diffusion along the axis
of a comb structure the number of particles is not conserved. Second, the
diffusion currents are different.

The generalized relation between diffusion and conductivity is obtained
for a sub-diffusion case. It has the form of the well- known Einstein relation
for the diffusion coefficient and the particle mobility, depending on the time.

In the second part of the paper the Levy flight diffusion is considered.
The main result consists of the nonlinear dependence of the particle mobility
in weak electric fields. Usually theoreticians expand the current in powers of
the electric field of the electric field:

J = σE + χ|E|2E + . . . (62)

Our result essentially differs from those , obtained by such a method. In the
microscopical model of Levy hops we show that current depends on an electric
field in a nonlinear way due to unusual regime of diffusion in space, i.e. there
is no linear term, corresponding to Ohm’s law, in the field expansion of the
current (62). In other words if there is an usual diffusion in the system, so
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the Ohm’s law exists , in the case of anomalous diffusion as Levy hops the
response of system has a nonlinear character.

We consider the transition from ordinary diffusion to Levy flight by in-
troducing a finite displacement length ξ at each step. The new parameter
qEξ/kT , which determines whether the particle mobility behaves linearly or
nonlinearly, appears in the problem. In other words a new physical length
LE governed by the electric field emerges in such diffusion problems:

LE =
kT

qE
(63)

To appreciate the significance of this quantity we consider an ordinary
random walk in an external electric field. Let’s imagine that the medium is
partitioned into the blocks of size LE. Then we study the particle behavior
within a single block. With a probability of order unity the particles leave
the block when it moves along the field and does not leave the block when it
moves against the field. Briefly speaking within a block, whose linear size is
of order LE, ordered motion prevails over diffusion. This makes it possible
to estimate the particle velocity to be:

V =
LE

tE
(64)

where tE is the diffusion time for the distance LE. For ordinary diffusion
tE = L2

E/D and we have the well-known Einstein relation:

V = q2DE/kT (65)

For a Levy flight diffusion the same estimates give the nonlinear dependence
of velocity. And for the case of two diffusion limits we have two different:
linear and nonlinear expressions for mobility. Recently the deduced nonlinear
behavior of the velocity due to the unusual nature of diffusion was confirmed
by the independent numerical simulations of particle drift in the presence of
Levy diffusion [24].
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