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Abstract 

Fault tolerance is a key aspect of the dependability of complex computer-based systems. Fault 

tolerance may be difficult to measure directly in complex real world systems, and we propose 

here to measure it in terms of integrity preservation of the system under the assumption of a 

particular fault occurrence distribution. We measure the integrity preservation ability of the 

system by measuring the change of structural integrity of the graph representing the system 

while it is exposed to random node removal according to the assumed fault distribution. We 

show how to use such measures to measure the integrity reservation of computer-based 

systems and in this way indirectly their fault tolerance. We discuss the application of the 

proposed method in the context of a real world example, the Linux operating system. The 

results indicate that integrity preservation metrics can serve as an appropriate measure of fault 

tolerance of complex computer-based systems. 
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1. Introduction 

 

The concept of fault tolerance of complex computer-based systems, and in particular of 

computers and software, emerged very early in the 1950s [1]. It was recognized that 

unexpected faults may emerge in computer-based systems, and that effective dealing with 

such faults it is critical for highly dependable systems. Fault tolerance is a key measure of the 

dependability of computer-based systems [1,2], dependability being defined as reliability, 

availability, safety, security, survivability, and maintainability of a system [3].  

Generally systems can be perceived as a set of units that are interconnected by their actions 

and behaviours [4]. Computer-based systems can be seen as systems with units which can be 

computer hardware, software, humans, and possibly a variety of other machines and human 

artefacts containing sensors and actuators. The interconnecting actions and behaviours of 

these units can take the form of data entry to the computers, data communications between 

hardware components, data interchange and processing by software components, and display 

or communication of data to actuators. 

An interesting issue is how to measure the fault tolerance of a computer-based system. 

Systematic mathematical analysis of fault tolerance of models of computer-based systems 

started in 1960s [1]. Typically fault tolerance is evaluated by full probabilistic analysis of the 

system, by calculating measures such as mean time to failure and mean time to repair under 

the assumption of a fault occurrence scenario (e.g., identical and independent fault occurrence 

distribution for each system component) [5-8].  

One stream of fault tolerance research is focused on the analysis of graphs that represent 

computer-based systems [9-11]. These works assume a fault occurrence scenario in the graph 

(e.g., node failure or edge failure) and measure the probability of connectedness [12, 13] or of 

having flow capacity above a given limit [14, 15] of the graph as a proxy measure for the fault 

tolerance of the system represented by the graph. The main drawback of these methods is that 

they are very computationally intensive and in many cases they are restricted to a narrow 

range of particular graph topologies [16-18]. 



An alternative way to analyse the robustness of systems is to use structural graph analysis 

methods that reveal vulnerable components and the sensitivity to structural damage of the 

system [19]. These methods assess the integrity of the system and the change of integrity 

measures after structural damage to the system in terms of structural measures, such as 

diameter, average minimum path length or average clustering coefficient. The underlying 

theoretical assumption is that system structural integrity implies functional integrity of the 

system [20, 21]. This is supported by practical examples, which show that structural integrity 

and functional integrity of systems are strongly correlated [19, 22]. Consequently, the analysis 

of the structural integrity of the graph representing a system by appropriate structural 

measures can provide indicator measures of the functional integrity of the system. 

We propose in this paper the use of structural graph analysis methods to measure the integrity 

of computer-based systems. We measure the likely structural damage as an approximation of 

likely functional damage due to the presence of faults. In this way we can assess the fault 

tolerance of the system by measuring the likely change of structural integrity of the system. 

The rest of the paper is structured as follows. Section 2 discusses system  integrity measures. 

In Section 3 we analyse the link between fault tolerance and integrity measures. Section 4 

presents an example of the application of the proposed methodology to the assessment of fault 

tolerance of computer-based systems. Finally, in section 5 we draw some conclusions of the 

paper. 

 

2. System Integrity 

 

Systems are sets of component units interconnected by their interactions [4]. Component units 

interact by their behaviour modifying the state of the units participating in such interactions. 

In a stronger sense we may consider systems as only those sets of interacting component 

units, in which the interactions between components depend primarily on earlier interactions 

between system components [23]. We should also point out that system components may also 



interact with other units, which are not part of the system. Such interactions constitute the 

system’s interaction with its environment. 

The integrity of a system can be defined in functional terms as the system's ability to perform 

the full range of system behaviours [21]. The system behaviours are possible patterns of 

behaviours of its component units [1]. Some of these behaviours may have an effect on the 

system’s environment, while others may cause only a change of the internal behaviour of the 

system.  

Measuring functional integrity directly may be difficult, as the full range of possible system 

behaviour may not be known [21].  A way to approximate the functional integrity of a system 

is to measure its structural integrity [20]. In practical cases of living cells [22], nervous 

systems of animals [24], and technological systems [19] it has been shown that their 

functional integrity correlates strongly with their structural integrity. Measuring structural 

integrity is much simpler than measuring functional integrity, in the sense that it requires only 

the measurement of the existence of components and interactions between components, 

disregarding the actual functional semantics of interactions and interaction patterns. 

Structural integrity measures of systems are based on the measurement of the structural 

integrity of the underlying graph structure of the system, which is made of nodes representing 

system units, and edges or arcs representing undirected or directed interactions between 

system units. (We consider undirected graphs only in what follows). A graph representation 

of a complex system of nodes and interactions is shown in Figure 1. 

Simple measures of structural integrity of graphs include the diameter, the average minimum 

path length and the average clustering coefficient of the graph. The diameter is defined as the 

largest of the minimal path lengths between nodes of the graph: 

},{},,|),(max{)( EVGVjijilGD =∈=  (1) 

where V is the set of nodes and E is the set of edges of the graph, and l(i,j) is the minimal 

length of a path between the nodes i and j. The average minimum path length is defined as the 

average length of minimal paths between all pairs of nodes of the graph: 
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where we use the same notations as above. The clustering coefficient of a node is the 

proportion between the number of existing edges between the neighbours of the node and the 

number of all possible edges: 
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The average clustering coefficient of the graph is the algebraic average of the clustering 

coefficients of all nodes: 
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We note that the above measures evaluate somewhat different aspects of the graph integrity; 

none of them provides a comprehensive evaluation of the graph integrity. In order to be on the 

safe side in practical applications the best practice is to use such a set of simple integrity 

measures and evaluate the graph integrity using the resulting set of integrity measure values 

(i.e., by considering a vector of integrity measure values). In particular, if we need a single 

value measure of the graph integrity on the basis of a vector of integrity measures, the safest 

is to take the value indicating the greatest amount of integrity loss. 

Other more sophisticated measures of graph integrity include the calculation of coefficients of 

the graph’s characteristic polynomial, and eigenvalues of the graph’s adjacency matrix. These 

methods can provide a full picture of the graph's integrity and in principle capture all its 

aspects. The disadvantage of these methods is that they are computationally very expensive, 

and the calculation of the required numbers may be impractical for very large graphs 

representing complex systems. The above introduced simple integrity measures are well 

correlated with the more general measures. The largest eigenvalue of the adjacency matrix is 

related to the density of the edges, the second eigenvalue is related to the conductivity within 

the network [25]. The second coefficient of the characteristic polynomial is related to the 



number of edges, while the third coefficient is twice the number of triangles in the network 

[26].  

An important issue regarding the use of graph integrity measures to assess the integrity of 

systems is that of how to actually measure the system components and their interactions. One 

approach can be to consider the design of the system, if this is available. (For technological 

systems this might often be the case.) However, this approach can lead one to fall into the trap 

of showing the robustness of the designed system and not of the actual system. We believe 

that the right approach is to measure the existing components of the real system and their 

existing interactions in order to assess the integrity and robustness of the actual system. 

However, we recognize that in some practical cases such measurements might prove to be 

difficult (e.g., monitoring of human – computer interactions), limiting the applicability of the 

structural graph analysis based assessment of system integrity evaluation.  

In the case of computer-based systems we typically have a set of non-computer related units 

(e.g., humans, sensors), a set of hardware units making the computer hardware part of the 

system, and usually a very large set of software modules, constituting the units of the system. 

In some cases we ignore the non-computer related units and even the hardware part of the 

system and we focus our attention exclusively on the system made of software units. The 

interactions between software units take the form of data transactions between them, which 

can be measured by appropriate monitoring of the system [27]. 

 

3. Fault tolerance and integrity preservation 

 

Faults are unexpected behaviours of system components. Faults in computer-based systems 

may have a number of origins; they can be classified as design faults, physical faults and 

interaction faults [3]. Faults cause errors in the system, which are deviations from the 

expected behaviour of the system. Errors in computer-based systems may stay latent, until 

they are detected, when they cause abnormal behaviour at the interface of the system with its 



environment [1]. Errors cause failures of the system, when the system is unable to perform its 

function correctly [3]. 

Faults in the system may occur at various places. An important feature of faults is their 

occurrence within the system and their distribution at these places within the system. In many 

cases we may suppose that the faults may appear at any system unit according to the same 

occurrence distribution, no unit being more susceptible for producing faulty interactions than 

others [5]. In some cases we may also use the hypothesis that the likelihood of faulty 

interactions is proportional with the likelihood of the unit being involved in interactions. In 

other cases the fault distribution may follow some peculiar well defined distribution, such as 

in the case of faults induced by malicious logic (e.g., attacks by hackers). The types of fault 

distributions determine the fault occurrence environment of the system.  

Fault tolerance is the ability of the system to maintain its functionality in the presence of 

active faults [1]. Fault tolerance is typically achieved by error detection, recovery and fault 

handling [3]. Fault tolerance of computer-based systems depends on the fault occurrence 

environment of the system (e.g., in presence of naturally occurring faults the system may 

prove sufficiently fault tolerant, while in the presence of targeted attack by hackers, it may 

prove fault sensitive).  

In general the measure of fault tolerance of the system is a relative measure, which shows to 

what extent the system preserves its functionality in a certain fault occurrence environment 

[1]. To assess the fault tolerant nature of a computer-based system we need to assess the level 

of functionality of the system within the considered fault occurrence environment. In other 

words we need to evaluate the functionality preservation ability of the system. Usually some 

probabilistic approach is used to evaluate fault tolerance measures such as mean time to 

failure or mean time to repair [1]. These methods take into consideration the whole system 

resulting computationally very intensive analyses in case of large systems [6, 9]. To perform 

such exhaustive evaluations may prove difficult in practice, as monitoring and assessing all 

aspects of the functionality of the system and performing all the required calculations may be 

extremely time and resource consuming [21]. Alternative methods were proposed recently, 



involving game theoretic approaches [10], formal languages inspired analysis [28] and 

structural network analysis approaches [19]. 

We adopt the structural network analysis approach, which has the key advantage that it 

implies a relatively low computational load for the evaluation of large systems. We measure 

the fault tolerance of the system by evaluating the ability of the system to preserve its 

integrity. The measure of integrity preservation is calculated by using system integrity 

measures based on a structural graph analysis of the graph representing the system. As 

structural integrity is strongly correlated with functional integrity, the structural integrity 

preservation measure provides a proxy measure of the functional integrity preservation 

measure of the system. Consequently, we can use the structural integrity measures introduced 

in the previous section to measure the change of the integrity of the system in a given fault 

occurrence environment.  

To measure the effects of faults on the integrity of the system, we simulate the faults by 

sampling the fault occurrence distributions and then evaluating the integrity measures of the 

system in the presence of simulated faults. The presence of faults causes the elimination from 

the graph of the system of edges between nodes or of nodes of the graph. These changes 

happen according to the fault occurrence distributions and have the effect that the integrity 

measures of the system graph are modified. The expected changes in terms of integrity 

measures may be calculated analytically in the case of small systems or can be evaluated by 

numerical simulations in the case of large and complex systems. The expected changes 

associated with a fault occurrence environment characterise the system’s integrity 

preservation ability and are used as an approximate measure of the fault tolerance of the 

system. 

To show how to use the calculated integrity measures to assess the fault tolerant nature of a 

system we consider below a toy example. Let us consider a software system of 1000 units of 

which corresponding graph representation is shown in Figure 2. The system’s structural 

integrity measures are the following: 

• diameter: D(S)=19 



• average minimum path length: µ(S)=3.58151 

• average clustering coefficient: η(S)=0.022702 

We consider a fault occurrence environment in which the faults occur with equal uniform 

probability (p=0.15) at each unit of the system and each fault temporarily knocks out the 

system unit where it occurs. To evaluate the fault tolerance of the system we perform a 

numerical simulation of the fault occurrences, and evaluate the integrity measures of the 

system for each simulation. After the simulations we calculate the average values and 

variances of the system integrity measures. We chose to run 20 simulations in order to get 

reliable estimates of mean values (the variance of the mean value calculated from n 

measurements is σ/square-root(n), where σ is the variance of the calculated values). The 

calculations after the simulations led to the values: 

• diameter: 1355.4))((,05.23)( == SDSD σ  

• average minimum path length: 03978.0))((,69947.3)( == SS µσµ  

• average clustering coefficient: 001438.0))((,023049.0)( == SS ηση  

To evaluate the integrity preservation ability of the system we calculate first, whether the 

average values of system integrity measures after the simulation of faults differ significantly 

or not from the corresponding values calculated for the fully functional system. Next we 

calculate the normalized distance of the pre-damage and post-damage integrity measure 

values, which together with their attached statistical significance levels characterize the fault 

tolerance of the system. In order to be on the safe side, we choose the worst measure (i.e., the 

largest and most significant distance) to be the numerical evaluation of the fault tolerance of 

the system. In the case of the above system the normalized distances (z-score, i.e., the 

distance measured between the mean value and original value in units equal to the standard 

deviation – (voriginal – m)/σm) and statistical significance levels (statistical significance levels 

show how likely is that the original value is the same as the estimated mean value after 

damage, low p-value indicates that the likelihood of them being the same is very low, or in 

other words the two values differ significantly) are listed in Table 1. 



In the case of the above toy example we have shown how to apply in principle the proposed 

structural graph analysis based integrity evaluation methods to assess the fault tolerance of a 

computer-based system. The data shown in the last column of Table 1 shows the values of the 

likelihoods that original value of the integrity measure is the same as its value after the 

damage. The results indicate that under the above described fault occurrence environment 

assumption the system suffers significant damage (p<0.01) in terms of diameter and average 

shortest path length, the amount of the latter damage being more significant than the former. 

Considering the most significant damage (i.e., the damage in terms of average path length, 

p=7.29 x 10-14), we conclude that under the considered fault occurrence assumption the 

system represented by the graph suffers very significant structural  and functional damage, 

and consequently has low fault tolerance. 

 

4. Applications 

 

Linux is one of the most popular operating systems, which is due to a good extent to its open 

source based development. It is commonly claimed that Linux is more reliable and secure 

than many other operating systems. An immediate question is how fault tolerant is Linux 

actually. 

We analysed the network structure of the Linux under typical running conditions with a set of 

usual programs running. To perform the analysis we considered the calls between the classes 

present in the Linux kernel (version 2.4.19). We found 6815 classes and 19909 calls between 

them, by parsing the source code of the classes. The interaction network of the classes (see 

Figure 3) was then analysed in terms of structural network analysis. 

Analysing the connectivity distribution of the processes we found that the distribution follows 

a power law distribution similar to the case of the Internet [19] (see Figure 4). This indicates 

that among the Linux classes there are relatively few very highly connected classes (which 

call and are called by many other classes) and many others with relatively few connections. 

This implies that similarly to the Internet [19] the Linux is very robust and fault tolerant if 



faults happen randomly following a uniform fault distribution over the processes (run-time 

representation of classes), while it should be very vulnerable and fault sensitive if faults are 

distributed such that they affect mostly the most highly-connected processes. 

We performed an analysis of the Linux class network to evaluate the effects of faults on 

integrity measures. We simulated a scenario with uniform random distribution with 05.0=p  

probability of faults at each node. We also performed a simulated a scenario when the 

likelihood of a node being faulty was proportional with the connectivity of the node.  The 

analysis results are shown in Table 2 and Table 3. 

The results show that as we expected Linux is remarkably fault tolerant in a fault occurrence 

environment characterised by uniform fault distribution, while it is significantly more fault 

sensitive in the case of a fault distribution centred on the mostly linked processes. This 

suggests that indeed the common belief about the reliability and fault tolerance of Linux is 

well founded in case of random uniformly distributed errors, but also highlights that Linux is 

also a vulnerable system in case of well designed malicious attacks.   

  

5. Conclusions 

Fault tolerance is measurable aspect of the dependability of computer-based systems. Direct 

measurement of fault tolerance of large real world systems poses considerable problems, 

considering that most existing work is focused on exhaustive analytical evaluation of 

relatively simple model systems [9-11]. An approach to find a proxy measure for the fault 

tolerance of large systems is to measure their structural integrity preservation under the 

assumption of a fault occurrence environment. This measure is based on the assumption that 

functional integrity is strongly correlated with structural integrity [20, 21], which is supported 

by experimental analysis of various real world complex systems [19, 22]. 

Integrity and integrity preservation of large systems can be measured by structural graph 

analysis of their graph representation, where nodes represent system units and edges represent 

interactions between system units. Simpler (e.g., average minimum path length) or more 



complex (e.g., eigenvalues of the adjacency matrix) measures can be used to estimate the 

structural integrity preservation of the system while exposed to faults occurring in accordance 

with an assumed fault distribution. Using these measures we can evaluate the likely amount of 

loss of integrity (or integrity damage) and the statistical significance of this loss. 

A toy example and a real world example were presented to show the application of this fault 

tolerance measurement approach. These examples show that indeed the proposed methods 

can be applied effectively and lead to meaningful conclusions about the analysed systems. In 

the case of the real world example (Linux) the analysis indicates that the system is very fault 

tolerant under the assumption of uniform fault distribution, but that, not surprisingly, it is very 

vulnerable under the assumption of a fault distribution driven by properly targeted malicious 

interventions. However, the methods discussed here enable the extent of this effect to be 

analyzed in useful detail.   

We believe that using relatively simple network integrity measures can simplify considerably 

the effective analysis of fault tolerance of large real world computer-based systems. Although 

these methods do not provide an exact measure of fault tolerance they provide good 

approximations of the actual measure. Such approximate measures can be used to rapidly 

determine the effects of a variety of fault occurrence environments, allowing the designers 

and developers of large systems to prepare appropriate defence and repair strategies to 

support the dependability of their system effectively and efficiently. 
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Figure 1. A graph representation of a complex systems, in which system units are represented 

as nodes and their interactions as edges of the graph. 

 

 



 

Figure 2. The graph representation of the model system with 1000 nodes. The size of the 

nodes indicates the number of connections of the node. Only the subset of more connected 

nodes and the subset of connections between these nodes are displayed to keep the figure 

comprehensible. 

 

 



Table 1. Summary of integrity measures of the system before and after damage, including the 

z-score for the original values considering the mean and variance of the after damage values 

(z-score = (original – damage mean)/(damage variance / square-root(20))), and the statistical 

significance level of the difference between the original values and the mean values 

calculated after the damage. The p values above 0.1 are omitted.  

Integrity measure Original Damage 

mean 

Damage 

variance 

z-score p-value 

Diameter 19 23.05 4.1355 4.37964 0.000012 

AvShortPath 3.58151 3.29378 0.03978 13.25906 7.29 x 10-14 

AvClusCoef 0.02270 0.02304 0.00143 1.07918 - 

 

 



 

Figure 3. The graph representation of the Linux. The size of the nodes indicates the number 

of connections of the node. Only the subset of more connected nodes and the subset of 

connections between these nodes are displayed to keep the figure comprehensible. 

 

 



 

Figure 4. The relationship between the number of connections and the number of nodes with 

connectivity in a given range. The horizontal axis shows the logarithm of the number of 

connections, and the vertical axis the logarithm of the number (frequency) of connections 

with connectivity value in the corresponding range (the considered connectivity value ranges 

were, 0-3, 4-9, 10-27, 28-81, and 82-243) The figure shows the log-log graph, indicating 

clearly the power law distribution of connectivity values (i.e., the graph is linear, indicating a 

connectivity frequency relationship of the form acf ⋅= λ , where a is the slope of the line 

fitted to the data points and λ  is a parameter given by the horizontal intersection point of the 

line) 

 



Table 2. Summary of integrity measures of Linux before and after random damage, including 

the z-score for the original values considering the mean and variance of the after damage 

values (z-score = (original – damage mean)/(damage variance / square-root(20))), and the 

statistical significance level of the difference between the original values and the mean values 

calculated after the damage. The p values above 0.1 are omitted. 

Integrity measure Original Damage 

mean 

Damage 

variance 

z-score p-value 

Diameter 44 38.85 4.869 4.729 2.25 x 10-6 

AvShortPath 12.01 11.50 0.740 3.077 0.00209 

AvClusCoef 0.133 0.133 0.007 0.350 - 

 

 



Table 3. Summary of integrity measures of Linux before and after targeted damage, including 

the z-score for the original values considering the mean and variance of the after damage 

values (z-score = (original – damage mean)/(damage variance / square-root(20))), and the 

statistical significance level of the difference between the original values and the mean values 

calculated after the damage. The p values above 0.1 are omitted. 

Integrity measure Original Damage 

mean 

Damage 

variance 

z-score p-value 

Diameter 44 35.45 5.062 7.552 1.41 x  10-13 

AvShortPath 12.01 10.47 1.444 4.766 1.87 x  10-6 

AvClusCoef 0.133 0.132 0.005 1.018 - 

 

 

 

 

 


