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ABSTRACT. Thebow-tie picture, presented by Broder et al. [3] in 2000, has been up tonow
the only strong characterization of the well defined structure of the World Wide Web, namely
the hyperlinked graph induced by the links among the static html pages. This evocative
picture is a clear abstraction of the macroscopic arrangement of the different subsets that
comprise the Web graph but, nevertheless, it is quite uninformative with respect to its finer
details. In this paper we mine the inner structure of the Web graph. We have discovered that
the scale-free properties permeate all the components of the bow-tie which exhibit the same
macroscopic properties as the Web graph itself. However, close inspection reveals that their
inner structure is quite distinct. We show that the Web graphdoes not exhibit self similarity
within its components, and we propose a possible alternative picture for the Web graph, as it
emerges from our experiments.
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1. INTRODUCTION

Since the end of the ’90s, the World Wide Web has been the subject of an intensive research
work in various disciplines. Its unexpected and rapid growth has attracted the attention of the
scientific community, interested from one side in the study of the structural properties of the
Web and, from the other, in models able to predict the behavior of this evolving “organism”.

The first large-scale study of the Web graph was performed by Broder et al.[3] and it
revealed that the Web graph contains a giant component that consists of three distinct com-
ponents of almost equal size: the CORE, made up of a single strongly connected component;
the IN set, comprised by nodes that can reach the CORE but cannot be reached by it; the OUT
set, consisting of nodes that can be reached by the CORE but cannot reach it. These three
components form the well knownbow-tie structure of the Web graph, shown in Figure 1.

The bow-tie picture describes the macroscopic structure ofthe Web. However, very little
is known about the inner structure of the components that comprise it. Broder et al.[3] pose
it as an open problem to study further the structure of those components. Understanding the
finer details of the Web graph is an interesting problem on itsown, but it is also important in
practice in order to improve the performance of algorithms that rely on the link structure of
the Web. Furthermore, it could be useful for refining the existing stochastic models for the
Web[1, 12, 8].
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FIGURE 1. The bow-tie structure of the Web graph

Italy Indochina UK WebBase

nodes 41.3M 7.4M 18.5M 135.7M
edges 1.15G 194.1M 298.1M 1.18G
CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.3%) 44.7M (32.9%)
IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.7%) 14.4M (10.6%)
OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39.3%)
TENDRILS 6.4K (0.01%) 50.4K (0.66%) 139.4K (0.8%) 17.1M (12.6%)
DISC 1.25K (0%) 101.1K (1.4%) 80.2K(0.4%) 6.2M (4.6%)

TABLE 1. Sizes and bow-tie components for the different crawls andthe
Alta Vista graph

2. EXPERIMENTS AND RESULTS

We experiment with four different crawls. The first three crawls are samples from the
Italian Web (the.it domain), the Indochina Web (the.vn, .kh, .la, .mm, and
.th domains), and the UK Web (the.uk domain) collected by the ”Language Observa-
tory Project” and the ”Istituto di Informatica e Telematica” using UbiCrawler[2]. The fourth
crawl is a sample of the whole Web, collected by the WebBase project at Stanford in 2001.
The sizes of the crawls are shown in Table 1.

2.1. Macroscopic measurements. We have repeated the experiments of Broder et al. [3] and we
have observed the same macroscopic properties previously reported: the in-degree, the out-degree,
the SCC size distributions follow a power-law, and the graphs have a bow-tie structure. The relative
sizes of the components of the bow-tie are shown in Table 1, where we can observe that they vary
from crawl to crawl. These discrepancies between the crawlscan most likely be attributed to different
crawling strategies and capabilities, rather than to the evolution of the Web. The first three crawls are
relatively recent, and all crawls are generated using a small number of starting points. Unfortunately,
large-scale crawls are not publicly available.
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(a) In-degree distributions (c) SCC size distributions

FIGURE 2. Macroscopic measures for all components
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FIGURE 3. Characteristics of the IN and OUT components

2.2. The inner structure of the bow-tie graph. As a first step in the understanding of the individual
components we compute the same macroscopic measures as for the whole Web graph. We compute
the in-degree, out-degree and SCC size distributions for each of the IN, OUT, TENDRILS and DISC
graphs. Figure 2 shows the plots of the distributions for each component and for the whole graph, for
the case of the WebBase crawl. It is obvious that the same macroscopic laws that are observed on the
whole graph are also present in the individual components.

2.2.1. The structure of the IN and OUT components. Given the fact that the in-degree, out-degree,
and SCC size distributions in the IN and OUT components are the same as for the whole Web graph,
we wonder if the Web has aself-similar structure [6, 12], that is if the bow-tie structure repeats itself
inside the IN and OUT components.

The first indication that the self-similarity conjecture isnot true comes from the fact that there exists
no sizable SCC in the IN and OUT components that could play therole of the CORE in a potential
bow-tie. Moreover we surprisingly discovered that there isno giant weakly connected component
(WCC) in either of the two components. In fact, there is a large number of WCCs per component and
their sizes follow a power law distribution. Statistics forall graphs are reported in Table 2.

In order to better understand how the nodes in IN and OUT are arranged with respect to the CORE,
we performed the following experiment. We condensed the CORE in a single node and we performed
a forward and a backward BFS. This allows us to split the nodesin the IN and OUT components
in levels depending on their distance from the CORE. The depths of the components are shown in
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Italy Indochina UK WebBase

The IN component
nodes in IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.69%) 14.4M(11%)
max SCC 1,590 7,867 4,171 5,876
number of WCCs 1,633 117 62K 3.68M
max WCC 4,085 (29.5%) 13.2K (27.2%) 8,246 (2.7%) 197.5K (1.3%)
singleton WCCs 1,543 (11.15%) 63 (0.13%) 56K ( 17.89%) 3.2M (22.46 %)

The OUT component
nodes in OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39%)
max SCC 19,170 39,283 26,525 9,349
number of WCCs 3.73M 729,6K 1.97M 25.4M
max WCC 1.43M (12.52%) 335.9K (9.85%) 457.4K (7.75%) 14.94M(28.01%)
singleton WCCs 3.49M (30.6%) 672K (19.71%) 1.84M (31.11%) 24.48M (45.91%)

The CORE component
nodes in CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.28%) 44.7M(33%)
entry points 10.2K (0.03%) 2.3K (0.06%) 106.3K (0.88%) 2.6M(5,87%)
exit points 15.6M (52.2%) 2.3M (59.6%) 4.8M (39.8%) 29.6M (72.03%)
bridges 6.25K(0.02%) 1.5K (0.04%) 61.8K (0.51%) 2M (4.58%)
connectors 1.7M (5.71%) 164.2K (4.32%) 537.9K (4.45%) 2.96M (6.63%)
petals 325.3K (1.09%) 52.5K (1.38%) 138K (1.14%) 1.4M (3.14%)

TABLE 2. Statistics for the IN, OUT and CORE components for each crawl

Italy Indochina UK WebBase
depth IN 2 11 15 8
depth OUT 26 21 25 580

TABLE 3. IN and OUT depth

Table 3. In all graphs, the depths of the components are relatively small. Furthermore, most nodes
are concentrated close to the CORE. Typically, about 80-90%of the nodes in the OUT component
are found within the first 5 layers. For the WebBase graph, although the OUT is much deeper, with
580 levels, more than 58% of its nodes are at distance 1 from the CORE, and 93% are within distance
5. Furthermore, after level 305 there exists only a single chain of nodes that extends until level 580,
making the effective depth of the OUT 305. The node distributions, level by level, for the WebBase
graph are shown in Figure 3(b) and 3(c), for the IN and OUT setsrespectively. The plots are in
logarithmic scale.

Therefore, we conclude that the IN and OUT components are shallow and highly fragmented. They
are comprised of several sparse weakly connected components of low depth. Most of their volume
consists of nodes that are directly linked to the CORE.

2.2.2. The structure of the CORE. We concentrate the study of the CORE on two main aspects:

(1) its relation with the IN and OUT components
(2) its connectivity properties

We address the first question measuring theentry points to the CORE (nodes that are pointed to by at
least one node in the IN component), theexit points (nodes that point to at least one node in the OUT
component and thebridges (nodes that are both entry and exit points). In Table 2 we can note that
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in-deg del out-deg del total del max SCC max SCC % SCC num
4,000 1.1K 233 1,154 2,263 42.2M 94.4% 595K
2,600 9.9K 185 10K 20.6K 39.8M 89.0% 1.75M
1,750 26K 158 25K 51K 37M 82.9% 3M
1,000 52K 130 54K 105K 33.7M 75.5% 4.75M
500 112K 105 108K 219K 29.4M 66.1% 7M
225 259K 82 227K 487K 23.5M 53.3% 10M
120 518K 62 499K 949K 17.8M 40.8% 13M

TABLE 4. Deleting nodes with high in-degree and out-degree

FIGURE 4. The daisy structure of the Web

the majority of the nodes in the CORE is connected to the “outside” world. In the WebBase crawl,
this number is around 80% of the whole CORE, while the “deep CORE” consists of a little more than
20%.

Regarding the connectivity, we observe that there are few nodes with just one in and out link that
could make the CORE weakly connected. We define this kind of nodesconnectors (or petals if the
source of the incoming link, and the target of the out-going link are the same node). Moreover the
CORE seems resilient to targeted attacks performed by deleting not only nodes with total degree
bigger than a prefixed threshold but also thek nodes with the highest in-degree andk nodes with the
highest out-degree. In the first case, we observe that the threshold on the total degree must become
as low as 100 in order to obtain an SCC of size less than 50% of the CORE. For the second kind of
attack, the results are reported in Table 4.

There are two ways to interpret these results. The first is that there are no obviousfailure points in
the CORE, that is, strong hubs or authorities that pull the rest of the nodes together, and whose removal
from the graph causes the immediate collapse of the network.In order to disconnect the CORE you
need to remove nodes with sufficiently low degree. On the other hand, note that we managed to reduce
the largest SCC to 35-40% of the original by removing about 1Mnodes. However this is less than 1%
of the total nodes. In that sense the CORE is vulnerable to targeted attacks.
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3. DISCUSSION ANDFUTURE WORK

In this paper we undertook a study of the Web graph at a finer level. We observed that the ubiquitous
presence of power laws describing several properties at a macroscopic level does not necessarily imply
self-similarity in the individual components of the Web graph. Indeed, the different components have
quite distinct structure, with the IN and OUT being highly fragmented, while the CORE being well
interconnected.

Our work suggests a refinement of the bow-tie pictorial view of the Web graph [3]. The bow-tie
picture seems too coarse to describe the details of the Web. The picture that emerges from our work
can better be described by the shape of adaisy (Figure 4): the IN and OUT regions are fragmented
into large number of small and shallowpetals (the WCCs) hanging from the central dense CORE.

A deeper understanding of the structure of the Web graph may also have several consequences on
designing more efficient crawling strategies. The fact thatIN and OUT are highly fragmented may
help in splitting the load between different robots withoutmuch overlapping. Moreover, the fact that
most of the vertices are at few hops from the CORE may explain why breadth first search crawling is
more effective than other crawling strategies [11].

As a concluding remark, we observe that we are still very far from devising a theoretical model
that is able to capture the finer connectivity properties of the Web graph.
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