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Abstract

This paper presents a conceptual framework for speaking about self-organizing
systems. The aim is to provide a methodology useful for designing and controlling
systems developed to solve complex problems. A brief introduction to complexity
and self-organization is given before introducing the conceptual framework and the
methodology. A case study on self-organizing tra¢ c lights illustrates the ideas
presented in the paper.
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1 Introduction

Over the last half a century, much research in di¤erent areas has employed self-organizing
systems to solve complex problems, e.g. [1, 2, 3, 4, 5]. Recently, particular methodologies
using the concepts of self-organization have been proposed in di¤erent areas, such as soft-
ware engineering [6, 7], electrical engineering [8], and collaborative support [9]. However,
there is as yet no general framework for constructing self-organizing systems. Di¤erent
vocabularies are used in di¤erent areas, and with di¤erent goals. In this paper, I present
an attempt to develop a general methodology that will be useful for designing and control-
ling complex systems [10]. The proposed methodology, as with any methodology, does not
provide ready-made solutions to problems. Rather, it provides a conceptual framework,
a language, to assist the solution of problems. Also, many current problem solutions can
be described as proposed. I am not suggesting new solutions, but an alternative way of
thinking about them.
The paper is organized as follows: in the next section, notions of complexity and

self-organization are discussed. In Section 3, original concepts are presented. These will
be used in the Methodology, exposed in Section 4. In Section 5, a case study concerning
self-organizing tra¢ c lights is used to illustrate the steps of the Methodology. Discussion
and conclusions follow in Sections 6 and 7.

2 Complexity and Self-organization

There is no general de�nition of complexity, since the concept achieves di¤erent meanings
in di¤erent contexts. Still, we can say that a system is complex if it consists of several
interacting elements, so that the behaviour of the system will be di¢ cult to deduce from
the behaviour of the parts. This occurs when there are many parts, and/or when there
are many interactions between the parts. Typical examples of complex systems are a
living cell, a society, an economy, an ecosystem, the Internet, the weather, a brain, and a
city. These all consist of numerous elements whose interactions produce a global behavior
that cannot be reduced to the behavior of their separate components [11].
Even when there is no general de�nition or measure of complexity, a relative notion

of complexity can be useful: the complexity of a system scales with the number of its
elements, the number of interactions between them, the complexities of the elements, and
the complexities of the interactions [12]1.
The term self-organization has been used in di¤erent areas with di¤erent meanings, as

is cybernetics [16, 17], thermodynamics [18], biology [19], mathematics [20], computing
[21], information theory [22], synergetics [23], and others [24] (for a general overview, see
[25]). However, the use of the term is subtle, since any dynamical system can be said to
be self-organizing or not, depending partly on the observer [26, 17].
It is not necessary to enter into a philosophical debate on the theoretical aspects of

self-organization to work with it, so a practical notion will su¢ ce: a system described as
self-organizing is one in which elements interact in order to achieve a global function or
behaviour. This function or behaviour is not imposed by one single or a few elements,
nor determined hierarchically. It is achieved dynamically as the elements interact with

1This can be con�rmed mathematically in particular systems. As a general example, random Boolean
networks [13, 14, 15] show clearly that the complexity of the network increases with the number of
elements and the number of interactions.
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one another. These interactions produce feedbacks that regulate the system. All the pre-
viously mentioned examples of complex systems ful�l the de�nition of self-organization.
More precisely, the question can be formulated as follows: when is it useful to describe a
system as self-organizing? This will be when the system or environment is very dynamic
and/or unpredictable. If we want the system to solve a problem, it is useful to describe a
complex system as self-organizing when the "solution" is not known beforehand and/or
is changing constantly. Then, the solution is dynamically strived for by the elements of
the system. In this way, systems can adapt quickly to unforeseen changes as elements
interact locally. In theory, a centralized approach could also solve the problem, but in
practice such an approach would require too much time to compute the solution and
would not be able to keep the pace with the changes in the system and its environment.
In engineering, a self-organizing system would be one in which elements are designed

in order to solve a problem or perform a function at the system level. Thus, the elements
need to divide, but also integrate, the problem.
In order to understand self-organizing systems, two or more levels of abstraction [12]

should be considered: elements (lower level) organize in a system (higher level), which
can in turn organize with other systems to form a larger system (even higher level). The
understanding of the system�s behaviour will come from the relations observed between
the descriptions at di¤erent levels. Note that the levels, and therefore also the termi-
nology, can change according to the interests of the observer. For example, in some
circumstances, it might be useful to refer to cells as elements (e.g. bacterial colonies); in
others, as systems (e.g. genetic regulation); and in others still, as systems coordinating
with other systems (e.g. morphogenesis).
In the following section, further concepts will be introduced that will be necessary to

apply the methodology .

3 The Conceptual Framework

Elements of a complex system interact with each other. The actions of one element
therefore a¤ect other elements, directly or indirectly. For example, an animal can kill
another animal directly, or indirectly cause its starvation by consuming its resources.
These interactions can have negative, neutral, or positive e¤ects on the system [27].
Now, intuitively thinking, it may be that the "smoothening" of local interactions,

i.e. the minimization of "interferences" or "friction" will lead to global improvement.
But is this always the case? To answer this question, the terminology of multi-agent
systems [28, 29, 30, 31] can be used. Every element, and every system, can be seen
as an agent with goals and behaviours thriving to reach those goals. The behaviour of
agents can a¤ect (positively, negatively, or neutrally) the ful�lment of the goals of other
agents, thereby establishing a relation. The satisfaction or ful�lment of the goals of an
agent can be represented using a variable � 2 [0; 1]2. Relating this to the higher level,
the satisfaction of a system �sys can be recursively represented as a weighted function
f : R! [0::1] of the satisfaction of the n elements conforming it:

�sys = f (�1; �2; :::; �n; w0; w1; w2; :::; wn) (1)

2In some cases, � could be seen as a "�tness" [27]. However, in most genetic algorithms [32] a �tness
function is imposed from the outside, whereas � is a property of the agents, that can change with time.

3



where w0 is a bias and the other weights determine the importance given to each �i.
If the system is homogeneous, then f will be the weighted sum of �i, wi = 1

n
8i 6= 0,

w0 = 0. For heterogenous systems, the weights wi�s are determined tautologically by the
importance of the � of each element to the satisfaction of the system. Thus, it is a useful
tautology to say that maximizing individual ��s, adjusting individual behaviours (and
thus relations), will maximize �sys. If several elements decrease �sys as they increase
their �, we would not consider them as part of the system. An example can be seen
with the immune system. It categorizes molecules and micro-organisms as akin or alien
[33]. If they are considered as alien, they are attacked. Auto-immune diseases arise when
this categorization is erroneous, and the immune system attacks vital elements of the
organism. On the other hand, if pathogens are considered as part of the body, they are
not attacked. Another example is provided by cancer. Cancerigenic cells can be seen
as "rebel", and no longer part of the body, since their goals di¤er from the goal of the
organism. Healthy cells are described easily as part of an organism. But when they
turn cancerigenic, they can better be described as parasitic. The tautology is also useful
because it gives a general mathematical representation for system satisfaction, which is
independent of a particular system.
A reductionist approach would assume that maximizing the satisfaction of the ele-

ments of a system would also maximize the satisfaction of the system. However, this is
not always the case, since some elements can "take advantage" of other elements. Thus,
we need to concentrate also on the interactions of the elements.
If the model of a system considers more than two levels, then the � of higher levels

will be recursively determined by the ��s of lower levels. However, the f�s most probably
will be very di¤erent on each level.
Certainly, an important question remains: how do we determine the function f and

the weights wi�s? To this question there is no complete answer. One method consists of
lesioning the system3: removing or altering elements of the system, and observing the
e¤ect on �sys. Through analysing the e¤ects of di¤erent lesions, the function f can be
reconstructed and the weights wi�s obtained. If a small change ��i in any �i produces a
change ��sys � ��i, the system can be said to be fragile.
What could then be done to maximize �sys? How can we relate the �i�s and avoid

con�icts between elements? This is not an obvious task, for it implies bounding the
agents�behaviours that reduce other �i�s, while preserving their functionality. Not only
should the interference or friction between elements be minimized, but the synergy [23]
or "positive interference" should also be promoted. Dealing with complex systems, it is
not feasible to tell each element what to do or how to do it, but their behaviours need to
be constrained or modi�ed so that their goals will be reached, blocking the goals of other
elements as little as possible. These constraints can be calledmediators [34]. They can be
imposed from the top down, developed from the bottom up, be part of the environment,
or be embedded as an aspect [35, Ch. 3] of the system. An example can be found in
city tra¢ c: tra¢ c lights, signals and rules mediate among drivers, trying to minimize
their con�icts, which result from the competition for limited resources, i.e. space to
drive through. The role of a mediator is to arbitrate among the elements of a system,
to minimize interferences and frictions and maximize synergy. Therefore, the e¢ ciency
of the mediator can be measured directly using �sys. Individually, we can measure the
"friction" �i 2 [�1; 1] that agent i causes in the rest of the system, relating the change

3This method has been used widely to detect functions in complex systems such as genetic regulatory
networks and nervous systems.
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in satisfaction ��i of element i and the change in satisfaction of the system ��sys:

�i =
���i ���sys (n� 1)

n
: (2)

Friction occurs when the increase of satisfaction of one element causes a decrease
in the satisfaction of some other elements that is greater than the increase. Note that
�i = 0 does imply that there is no con�ict, since one agent can "get" the satisfaction
proportionally to the "loss" of satisfaction of (an)other agent(s). Negative friction would
imply synergy, e.g. when ��i � 0 while other elements also increase their �. The role of
a mediator would be to maximize �sys by minimizing �i�s. With this approach, friction
can be seen as a type of interaction between elements.
Thus, the problem can be put in a di¤erent way: how can we �nd/develop/evolve

e¢ cient mediators for a given system? One answer to this question is the methodology
proposed in this paper. The answer will not be complete, since we cannot have precise
knowledge of f for large evolving complex systems. This is because the evolution of the
system will change its own f [36], and the relationships among di¤erent �i�s. Therefore,
predictions cannot be complete. However, the methodology proposes to follow steps to
increase the understanding (and consequently the control) of the system and the relations
between its elements. The goal is to identify con�icts and diminish them without creating
new ones. This will increase the �i�s and thus �sys. The precision of f is not so relevant
if this is achieved.
It should be noted that the timescale chosen for measuring��i is very important, since

at short timescales the satisfaction can decrease, while on the long run it will increase.
In other words, there can be a short term "sacri�ce" to harvest a long term "reward".
If the timescale is too small, a system might get stuck in a "local optimum", since all
possible actions would decrease its satisfaction on the short term. But in some cases the
long term bene�t should be considered for maximization. A way of measuring the slow
change of �i would be with its integral over time for a certain interval �t:Z t+�t

t

�idt: (3)

Another way of dealing with the local optima is to use neutral changes to explore
alternative solutions [37].
Before going into further detail, it is worth noting that this is not a reductionist

approach. Smoothing out local interactions will not provide straightforward clues as
to what will occur at the higher level. Therefore, the system should be observed at
both levels: making local and global changes, observing local and global behaviours, and
analysing how one a¤ects the other.
Concurrently, the dependence � 2 [�1; 1] of an element to the system can be measured

by calculating the di¤erence of the satisfaction �i when the element interacts within the
system and its satisfaction e�i when the element is isolated.

� = �i � e�i: (4)

In this way, full dependence is given when the satisfaction of the element within the
system �i is maximal and its satisfaction �i is minimal when the element is isolated.
A negative � would imply that the element would be more satis�ed on its own and is
actually "enslaved" by the system. Now we can use the dependences of the elements to
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Figure 1: Diagram relating di¤erent stages of methodology

a system to measure the integration � 2 [�1; 1] of a system, which can be seen also as a
gradual measure of a meta-system transition (MST) [38].

� =
1

n

nX
i=1

�i: (5)

A MST is a gradual process, but it will be complete when elements are not able to
reach their goals on their own, i.e. �i ! 0. Examples include cells in multi-cellular
organisms and mitochondria in eukaryotes.
In an evolutionary process, natural selection will tend to increase � because this im-

plies higher satisfaction both for the system and its elements (systems with a negative �
are not viable). Relations and mediators that contribute to this process will be selected,
since higher ��s imply more chances of survival and reproduction. Human designers and
engineers also select relations and mediators that increase the ��s of elements and sys-
tems. Therefore, we can see that evolution will tend, in the long run, towards synergetic
relationships [39], even if resources are scarce.
In the next section, the steps suggested for developing a self-organizing system are

presented, using the concepts described in this section.

4 The Methodology

The proposed methodology meets the requirements of a system, i.e. what the system
should do, and enables the designer to produce a system that ful�ls the requirements.
The methodology includes the following steps: Representation, Modelling, Simulation,
Application, and Evaluation, which will be exposed in the following subsections. Figure
1 presents these steps. These steps should not necessarily be followed one by one, since
the stages merge with each other. There is also backtracking, when the designer needs
to return to an earlier stage for reconsideration.
This methodology should not be seen as a recipe that provides ready-made solutions,

but rather as a guideline to direct the search for them.
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4.1 Representation

The goal of this step is to develop a speci�cation (which might be tentative) of the
components of the system.
The designer should always remember the distinction between model and modelled.

A model is an abstraction/description of a "real" system. Still, there can be several
descriptions of the same system [12, 11], and we cannot say that one is better than
another independently of a context.
There are many possible representations of a system. According to the constraints

and requirements, which may be incomplete, the designer should choose an appropriate
vocabulary (metaphors to speak about the system), abstraction levels, granularity, vari-
ables, and interactions that need to be taken into account. Certainly, these will also
depend on the experience of the designer. The choice between di¤erent approaches can
depend more on the expertise of the designer than on the bene�ts of the approaches.
Even when there is a wide diversity of possible systems, a general approach for devel-

oping a Representation can be abstracted. The designer should try to divide a system
into elements by identifying semi-independent modules, with internal goals and dynam-
ics, and with few interactions with their environment. Since interactions in a model will
increase the complexity of the model, we should group "clusters" of interacting variables
into elements, and then study a minimal number of interactions between elements. The
�rst constraints that help us are space and time. It is useful to group variables that are
close to each other (i.e. interacting constantly) and consider them as elements that relate
to other elements in occasional interactions. Since the proposed methodology considers
elements as agents, another useful criterion for delimiting them is the identi�cation of
goals. These will be useful in the Modelling to measure the satisfaction � of the elements.
We can look at genes as an example: groups of nucleotides co-occur and interact with
other groups and with proteins. Genes are identi�ed by observing nucleotides that keep
close together and act together to perform a function. The ful�lment of this function can
be seen as a goal of the gene. Dividing the system into modules also divides the problem
it needs to solve, so a complex task will be able to be processed in parallel by di¤erent
modules. Certainly, the integration of the "solutions" given by each module arises as
a new problem. Nevertheless, modularity in a system also increases its robustness and
adaptability [40, 41, 42].
The representation should consider at least two levels of abstraction, but if there are

many variables and interactions in the system, more levels can be contemplated. Since
elements and systems can be seen as agents, we can refer to all of them as x-agents,
where x denotes the level of abstraction relative to the simplest elements. For example,
a three-layered abstraction would contemplate elements (0-agents) forming systems that
are elements (subsystems, 1-agents) of a greater system (meta-system, 2-agents). If we
are interested in modelling a research institute, 0-agents would be researchers, 1-agents
would be research groups, and the research institute would be a 2-agent. Each of these
have goals and satisfactions (�x) that can be described and interrelated. For engineering
purposes, the satisfaction of the highest level, i.e. the satisfaction of the system that is
being designed, will be determined by the tasks expected from it. If these are ful�lled,
then it can be said that the system is "satis�ed". Thus, the designer should concentrate
on engineering elements that will strive to reach this satisfaction.
If there are few elements or interactions in the Representation, there will be low

complexity, and therefore stable dynamics. The system might be better described using
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traditional approaches, since the current approach might prove redundant.

4.2 Modelling

In science, models should ideally be as simple as possible, and predict as much as possible
[22]. These models will provide a better understanding of a phenomenon than complicated
models. Therefore, a good model requires a good Representation. The "elegance" of the
model will depend very much on the metaphors we use to speak about the system. If the
model turns out to be cumbersome, the Representation should be revised.
The Modelling should specify a Control mechanism that will ensure that the system

does what it is required to do. Since we are interested in self-organizing systems, the
Control will be internal and distributed. If the problem is too complex, it can be divided
into di¤erent subproblems. The Modelling should also consider di¤erent trade-o¤s for
the system.

4.2.1 Control mechanism

The Control mechanism can be seen as a mediator [34] ensuring the proper interaction
of the elements of the system, and one that should produce the desired performance.
However, one cannot have a strict control over a self-organizing system. Rather, the
system should be steered [43]. In a sense, self-organizing systems are like teenagers: they
cannot be tightly controlled since they have their own goals. We can only attempt to
steer their actions, trying to keep their internal variables under certain boundaries, so
that the systems/teenagers do not "break" (in Ashby�s sense [44]).
To develop a Control, the designer should �nd aspect systems, subsystems, or con-

straints that will prevent the negative interferences between elements (friction) and pro-
mote positive interferences (synergy). In other words, the designer should search for ways
of minimizing frictions �i�s that will result in maximization of the global satisfaction �sys.
The performance of di¤erent mediators can be measured using equation (1).
The Control mechanism should be adaptive. Since the system is dynamic and there are

several interactions within the system and with its environment, the Control mechanism
should be able to cope with the changes within and outside the system. An adaptive
Control will be e¢ cient in more contexts than a static one. In other words, the Control
should be active in the search of solutions. A static Control will not be able to cope
with the complexity of the system. There are several methods for developing an adaptive
Control, e.g. [45]. But these should be applied in a distributed way, in an attempt to
reduce friction and promote synergy.
Di¤erent methods for reducing friction in a system can be identi�ed. In the following

cases, an agent A negatively a¤ected by the behaviour of an agent B will be considered4:

� Tolerance. This can be seen as the acceptance of others and their goals. A can
tolerate B by modifying itself to reduce the friction caused by B, and therefore in-
crease �A. This can be done by moving to another location, �nding more resources,
or making internal changes.

� Courtesy. This would be the opposite case to Tolerance. B should modify its
behaviour not to reduce �A.

4Even when equation 2 relates the satisfaction of an element to the satisfaction of the system, this can
also be used for the relation between satisfactions of two elements, when ��i = 0 for all other elements.
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� Compromise. A combination of Courtesy and Tolerance: both agents A and B
should modify their behaviours to reduce the friction. This is a good alternative
when both elements cause friction to each other. This will be common when A and
B are similar, as in homogeneous systems.

� Imposition. This could be seen as forced Courtesy. The behaviour of B could be
changed by force. The Control could achieve this by constraining B or imposing
internal changes.

� Eradication. As a special case of Imposition, B can be eradicated. This certainly
would decrease �B, but can be an alternative when either �B does not contribute
much to �sys, or when the friction caused by B in the rest of the system is very
high.

� Apoptosis. B can "commit suicide". This would be a special case of Courtesy,
where B would destroy itself for the sake of the system.

The di¤erence between Compromise/Apoptosis and Imposition/Eradication is that
in the former cases, change is triggered by the agent itself, whereas in the latter the
change is imposed from the "outside" by a mediator. Tolerance and Compromise could
be generated by an agent or by a mediator.
Di¤erent methods for reducing friction can be used for di¤erent problems. A good

Control will select those in which other ��s are not reduced more than the gain in ��s.
The choice of the method will also depend on the importance of di¤erent elements for
the system. Since more important elements contribute more to �sys, these elements can
be given preference by the Control in some cases.
Di¤erent methods for increasing synergy can also be identi�ed. These will consist of

taking measures to increase �sys, even if some ��s are reduced:

� Cooperation. Two or more agents adapt their behaviour for the bene�t of the
whole. This might or might not reduce some ��s.

� Individualism. An agent can choose to increase its � if it increases �sys. A
mediator should prevent increases in ��s if these reduce �sys, i.e. friction.

� Altruism. An agent can choose to sacri�ce an increase of its � or to reduce its
� in order to increase �sys. This would make sense only if the relative increase of
�sys is greater than the decrease of the � of the altruistic agent. A mediator should
prevent wasted altruism.

� Exploitation. This would be forced Altruism: an agent is driven to reduce its �
to increase �sys.

In general, the Control should explore di¤erent alternatives, trying to constantly in-
crease �sys by minimizing friction and maximizing synergy. This is a constant process,
since a self-organizing system is in a dynamic environment, producing "solutions" for the
current situation.
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4.2.2 Dividing the problem

If the system is to deal with many parameters, then it can be seen as a cognitive system
[46]. It must "choose" what to do according to the current situation and previous history.
Thus, the main problem, i.e. what the elements should do, could be divided into the
problems of communication, cooperation, and coordination [47].
For a system to self-organize, its elements need to communicate: they need to "un-

derstand" what other elements, or mediators, "want" to tell them. This is easy if the
interactions are simple: sensors can give meaning to the behaviours of other elements.
But as interactions turn more complex, the cognition [46] required by the elements should
also be increased. New meanings can be learned [48, 49] to adapt to the changing con-
ditions. These can be represented as "concepts" [50], or encoded, e.g., in the weights of
a learning neural network. The precise implementation and philosophical interpretations
are not relevant if the outcome is the desired one.
The problem of cooperation has been widely studied using game theory [51]. There are

several ways of promoting cooperation, especially if the system is designed. To mention
mention only two of them: the use of tags [52, 53] and multiple levels of selection [54] have
proven to yield cooperative behaviour. This will certainly reduce friction and therefore
increase �sys.
Elements of a system should coordinate while reducing friction, not to obstruct each

other. An important aspect of coordination is the division of labour. This can promote
synergy, since di¤erent elements can specialize in what they are good at and trust5 others
to do what they are good at [55, 56]. This process will yield a higher �sys compared to
the case when every element is meant to perform all functions independently of how well
each element performs each function. A good Control will promote division of labour
by mediating a balance between specialization and integration: elements should devote
more time doing what they are best at, but should still take into account the rest of the
system. Another aspect of coordination is the work�ow : if some tasks are prerequisites
of other tasks, a mediator should synchronize the agents to minimize waiting times.

4.2.3 Trade-o¤s

A system needs to be able to cope with the complexity of its domain to achieve its goals.
There are several trade-o¤s that can be identi�ed to reach a balance and cope better with
this complexity:

� Complexity of Elements/Interactions. The complexity of the system required
to cope with the complexity of its domain can be tackled at one end of the spectrum
by complex elements with simple interactions, and at the other by simple elements
with several/complex interactions.

� Quality/Quantity. A system can consist at one extreme of a few complex ele-
ments, and at the other of several simple elements.

� Economy/Redundancy. Solving a problem with as few elements as possible
is economical. But a minimal system is very fragile. Redundancy is one way of
favouring the robustness of the system [57, 42, 58]. Still, too much redundancy can
also reduce the speed of adaptation and increase costs for maintaining the system.

5Trust is also important for communication and cooperation.
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� Homogeneity/Heterogeneity. A homogeneous system will be easier to under-
stand and control. A heterogenous system will be able to cope with more complexity
with less elements, and will be able to adapt more quickly to sudden changes. If
there is a system of ten agents each able to solve ten tasks, a homogeneous system
will be able to solve more than ten tasks robustly. A fully heterogeneous system
would be able to solve more than a hundred tasks, but it would be fragile if one
agent failed.

� System/Context. The processing and storage of information can be carried out
internally by the system, or the system can exploit its environment "throwing"
complexity into it, i.e. allow it to store or process information [59].

� Ability/Clarity. A powerful system will solve a number of complex problems, but
it will not be very useful if the functioning of the system cannot be understood.
Designers should be able to understand the system in order to be able to control it
[31].

� Generality/Particularity. An abstract Modelling will enable the designer to
apply the Modelling in di¤erent contexts. However, particular details should be
considered to make the implementation feasible.

There are only very relative ways of measuring the above mentioned trade-o¤s. How-
ever, they should be kept in mind during the development of the system.
In a system, the trade-o¤s will become clearer once the Simulation is underway. They

can then be reconsidered and the Modelling updated.

4.3 Simulation

The aim here is to build computer simulation(s) that implement the model(s) developed
in the Modelling stage, and test di¤erent scenarios and mediator strategies.
The Simulation development should proceed in stages: from abstract to particular.

First, an abstract scenario should be used to test the main concepts developed during
the Modelling. Only when these are tested and re�ned, should details be included in the
Simulation. This is because particular details take time to develop, and there is no sense
in investing before knowing wether the Modelling is on the right track. Details can also
in�uence the result of the Simulation, so they should be put o¤ until a time when the
main mechanisms are understood.
The Simulation should compare the proposed solutions with traditional approaches.

This is to be sure that applying self-organization in the system brings any bene�t. Ide-
ally, the designer should develop more than one Control to test in the simulation. A
rock-scissors-paper situation could arise, where no Control is best in all situations (also
considering classic controls). The designer can then adjust or combine the Controls, and
then compare again in the Simulation.
Experiments conducted with the aid of the Simulation should go from simple to ex-

tensive. Simple experiments will show proof of concepts, and their results can be used
to improve the Modelling. Once this is robust, extensive studies should be made to be
certain of the performance of the system under di¤erent conditions.
Based on the Simulation results and insights, the Modelling and Representation can

be improved. A Simulation should be mature before taking the implementation into the
real world.
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4.4 Application

The role of this stage is basically to use the developed and tested model(s) in a real
system. If this is a software system, the transition will not be so di¢ cult. On the other
hand, the transition to a real system can expose artifacts of a naive Simulation. A useful
way to develop robust Simulations consists in adding some noise into the system [60].
Good theoretical solutions can be very di¢ cult/expensive/impossible to implement

(e.g. if they involve instantaneous access to information, mind reading, teleportation,
etc.). The feasibility of the Application should be taken into account during the whole
design process. In other words, the designer should have an implementation bias in
all the Methodology stages. If the proposed system turned out to be too expensive or
complicated, all the designer�s e¤orts would be fruitless. If the system is developed for a
client, there should be feedback between developers and clients during the whole process
[61] to avoid client dissatisfaction once the system is implemented. The legacy of previous
systems should also be considered for the design [62]: if the current implementation is
to be modi�ed but not completely replaced, the designer is limited by the capabilities of
the old system.
Constraints permitting, a pilot study should be made before engaging in a full Appli-

cation, to detect incongruences and unexpected issues between the Simulation or Mod-
elling stages and the Application. With the results of this pilot study, the Simulation,
Modelling, and Representation can be �ne-tuned.

4.5 Evaluation

Once the Application is underway, the performance of new system should be measured
and compared with the performances of the previous system(s).
Constraints permitting, e¤orts should be continued to try to improve the system, since

the requirements it has to meet will certainly change with time (e.g. changes of demand,
capacity, etc.). The system will be more adaptive if it does not consider its solution as
the best once and for all, and is able to change itself according to its performance and
the changing requirements.

4.6 Notes on the methodology

� All returning arrows in the Figure 1 are given because it is not possible to predict
the outcome of strategies before they have been tried out. All information and
eventualities cannot be abstracted, nor emergent properties predicted before they
have been observed. Emergent properties are a posteriori.

� The proposed Methodology will be useful for unpredictable problem domains, where
all the possible system�s situations cannot be considered beforehand.

� Most methodologies in the literature apply to software systems, e.g. [63, 64]. This
one is more general, since it is domain independent. General principles can be
applied to any domain for developing a functioning self-organizing system. The
AMAS methodology [65] has similar goals, but the approaches di¤er.

� The proposed Methodology is not quite a spiral model [66], because the last stage
does not need to be reached to return to the �rst. Rather, it is a �backtracking
model�, where the designer can always return to previouis stages.
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Figure 2: Detailed diagram of Methodology

� It is not necessary to understand a solution before testing it. In many cases un-
derstanding can come only after testing, i.e., the global behaviour of the system
is irreducible. Certainly, understanding the causes of a phenomenon will allow the
modellers to have a greater control over it.

A detailed diagram of the di¤erent substeps of the Methodology can be appreciated
in Figure 2.

5 Case Study: Self-organizing Tra¢ c Lights

Recent work on self-organizing tra¢ c lights [67] will be used to illustrate the �ow through
the di¤erent steps of the Methodology. These tra¢ c lights are called self-organizing
because the global performance is given by the local rules followed by each tra¢ c light:
they are unaware of the state of other intersections and still manage to achieve global
coordination.
Tra¢ c modelling has increased the understanding of this complex phenomenon [68,

69, 70, 71, 72, 73]. Even when vehicles can follow simple rules, their local interactions
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generate global patterns that cannot be reduced to individual behaviours. Controlling
tra¢ c lights in a city is not an easy task: it requires the coordination of a multitude
of components; the components a¤ect one another; furthermore, these components do
not operate at the same pace over time. Tra¢ c �ows and densities change constantly.
Therefore, this problem can be tackled by self-organization. A centralized system could
also perform the task, but in practice the amount of computation required to process all
the data from a city is too great to be able to respond in real time.
Requirements. The goal is to develop a feasible and e¢ cient tra¢ c light control

system.
Representation. The tra¢ c light system can be modelled on two levels: the vehicle

level and the city level. These are easy to identify because vehicles are objects that move
through the city, establishing clear spatiotemporal distinctions. The goal of the vehicles
is to �ow as fast as possible, so their "satisfaction" � can be measured in terms of their
average speed and average waiting time at a red light. Cars will have a maximum � if
they go as fast as they are allowed, and do not stop at intersections. � would be zero if
a car stops inde�nitely. The goal of the tra¢ c light system on the city level is to enable
vehicles to �ow as fast as possible, while mediating their con�icts for space and time at
intersections. This would minimize fuel consumption, noise, pollution, and stress in the
population. The satisfaction of the city can be measured in terms of the average speeds
and average waiting times of all vehicles (i.e. average of �i; 8i), and with the average
percentage of stationary cars. �sys will be maximum if all cars go as fast as possible, and
are able to �ow through the city without stopping. If a tra¢ c jam occurs and all the
vehicles stop, then �sys would be minimal. Since all vehicles are considered equal, with
no preferences, then all �i�s should contribute evenly to �sys. The precise f should not
yet be declared, since it would be advisable to identify in the Simulation how variables
di¤er using diverse Control methods and how these re�ect the performance of the system.
Modelling. Now the problem for the Control can be formulated: �nd a mechanism

that will coordinate tra¢ c lights so that these will mediate between vehicles to reduce
their friction (i.e. try to prevent them from arriving at the same time at crossings).
This will maximize the satisfactions of the vehicles and of the city (�i�s and �sys). Since
all vehicles contribute equally to �sys, ideally the Control should minimize frictions via
Compromise.
Simulation. A simple simulation was developed in NetLogo [74], a multi-agent mod-

elling environment. The "Gridlock" model [75] was extended to implement di¤erent
tra¢ c control strategies. It consists of an abstract tra¢ c grid with intersections between
cyclic single-lane arteries of two types: vertical or horizontal (similar to the scenario of
[76]). Cars only �ow in a straight line, either eastbound or southbound. Each crossroad
has tra¢ c lights that allow tra¢ c �ow in only one of the intersecting arteries with a green
light. Yellow or red lights stop the tra¢ c. The light sequence for a given artery is green-
yellow-red-green. Cars simply try to go at a maximum speed of 1 "patch" per timestep,
but stop when a car or a red or yellow light is in front of them. Time is discrete, but not
space. A "patch" is a square of the environment the size of a car. The simulation can be
tested at the URL http://homepages.vub.ac.be/~cgershen/sos/SOTL/SOTL.html . At
�rst, a tentative model was implemented. The idea was unsuccessful. However, due to a
programming error, an e¢ cient method was discovered, named sotl-request.
Modelling. In the sotl-request method, each tra¢ c light keeps a count �i of the

number of cars times time steps (c � ts) approaching only the red light, independently of
the status or speed of the cars (i.e. moving or stopped). �i can be seen as the integral of
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waiting/approaching cars over time. When �i reaches a threshold �, the opposing green
light turns yellow, and the following time step it turns red with �i = 0 , while the red light
which counted turns green. In this way, if there are more cars approaching or waiting
before a red light, the light will turn green faster than if there are only few cars. This
simple mechanism achieves self-organization as follows: if there is a single or just a few
cars, these will be made to stop for a longer period before a red light. This gives time for
other cars to join them. As more cars join the group, cars will be made to wait shorter
periods before a red light. Once there are enough cars, the red light will turn green even
before the oncoming cars reach the intersection, thereby generating "green corridors".
Having "platoons" or "convoys" of cars moving together improves tra¢ c �ow, compared
to a homogeneous distribution of cars, since there are large empty areas between platoons,
which can be used by crossing platoons with few interferences. The sotl-request method
has no phase or internal clock. Tra¢ c lights change only when the above conditions are
met. If no cars are approaching a red light, the complementary light can remain green.
Representation. It becomes clear now that it would be useful to consider tra¢ c

lights as agents as well. Their goal is to "get rid" of cars as quickly as possible. To do so,
they should avoid having green lights on empty streets and red lights on streets with high
tra¢ c density. Since the satisfactions of the tra¢ c lights and vehicles are complementary,
they should interact via Cooperation to achieve synergy. Also, �sys could be formulated
in terms of the satisfactions of tra¢ c lights, vehicles, or both.
Modelling. Two classic methods were implemented to compare their performance

with sotl-request : marching and optim.
Marching is a very simple method. All tra¢ c lights "march in step": all green lights

are either southbound or eastbound, synchronized in time. Intersections have a phase
'i, which counts time steps. 'i is reset to zero when the phase reaches a period value
p. When 'i == 0, red lights turn green, and yellow lights turn red. Green lights turn
yellow one time step earlier, i.e. when ' == p�1. A full cycle of an intersection consists
of 2p time steps. "Marching" intersections are such that 'i == 'j;8i; j.
The optim method is implemented trying to set phases 'i of tra¢ c lights so that, as

soon as a red light turns green, a car that was made to stop would �nd the following
tra¢ c lights green. In other words, a �xed solution is obtained so that green waves �ow
to the southeast. The simulation environment has a radius of r square patches, so that
these can be identi�ed with coordinates (xi; yi); xi; yi 2 [�r; r]. Therefore, each artery
consists of 2r+ 1 patches. In order to synchronize all the intersections, red lights should
turn green and yellow lights should turn red when

'i == round(
2r + xi � yi

4
) (6)

and green lights should turn to yellow the previous time step. The period should be
p = r+ 3. The three is added as an extra margin for the reaction and acceleration times
of cars (found to be best, for low densities, by trial and error).
These two methods are non-adaptive, in the sense that their behaviour is dictated

beforehand, and they do not consider the actual state of the tra¢ c. Therefore, there
cannot be Cooperation between vehicles and tra¢ c lights, since the latter ones have �xed
behaviours. On the other hand, tra¢ c lights under the sotl-request method are sensitive
to the current tra¢ c condition, and can therefore respond to the needs of the incoming
vehicles.
Simulation. Preliminary experiments have shown that sotl-request, compared with
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the two traditional methods, achieves very good results for low tra¢ c densities, but very
poor results for high tra¢ c densities. This is because depending on the value of �, high
tra¢ c densities can cause the tra¢ c lights to change too fast. This obstructs tra¢ c �ow.
A new model was developed, taking this factor into account.
Modelling. The sotl-phase method takes sotl-request and only adds the following

constraint: a tra¢ c light will not be changed if the time passed since the last light
change is less than a minimum phase, i.e. 'i < 'min. Once 'i � 'min, the lights will
change if/when �i � �. This prevents the fast changing of lights6.
Simulation. Sotl-phase performed a bit less e¤ectively than sotl-request for very

low tra¢ c densities, but still much better than the classic methods. However, sotl-phase
outperformed them also for high densities. An unexpected phenomenon was observed:
for certain tra¢ c densities, sotl-phase achieved full synchronization, in the sense that no
car stopped. Therefore, speeds were maximal and there were no waiting times nor sopped
cars. Thus, satisfaction was maximal for vehicles, tra¢ c lights, and the city. Still, this
is not a realistic situation, because full synchronization is achieved due to the toroidal
topology of the simulation environment. The full synchronization is achieved because
platoons are promoted by the tra¢ c lights, and platoons can move faster through the
city modulating tra¢ c lights. If two platoons are approaching an intersection, sotl-phase
will stop one of them, and allow the other to pass without stopping. The latter platoon
keeps its phase as it goes around the torus, and the former adjusts its speed until it �nds
a phase that does not cause a con�ict with another platoon.
Modelling. Understanding the behaviour of the platoons, it can be seen that there is

a favourable system/context trade-o¤. There is no need of direct communication between
tra¢ c lights, since information can actually be sent via platoons of vehicles. The tra¢ c
lights communicate stigmergically [78], i.e. via their environment, where the vehicles are
conceptualized as the environment of tra¢ c lights.
Simulation. With encouraging results, changes were made to the Simulation to make

it more realistic. Thus, a scenario similar to the one of [79] was developed. Tra¢ c �ow
in four directions was introduced, alternating streets. This is, arteries still consist of
one lane, but the directions alternate: southbound-northbound in vertical roads, and
eastbound-westbound in horizontal roads. Also, the possibility of having more cars �ow-
ing in particular directions was introduced. Peak hour tra¢ c can be simulated like this,
regulating the percentages of cars that will �ow in di¤erent roads. An option to switch
o¤ the torus in the simulation was added. Finally, a probability of turning at an inter-
section Pturn was included. Therefore, when a car reaches an intersection, it will have a
probability Pturn of reducing its speed and turning in the direction of the crossing street.
This can cause cars to leave platoons, which are more stable when Pturn = 0.
The results of experiments in the more realistic Simulation con�rmed the previous

ones: self-organizing methods outperform classic ones. There can still be full synchro-
nization with alternating streets, but not without a torus or with Pturn > 0.
Modelling. Another method was developed, sotl-platoon7, adding two restrictions

to sotl-phase for regulating the size of platoons. Before changing a red light to green,
sotl-platoon checks if a platoon is not crossing through, not to break it. More precisely,
a red light is not changed to green if on the crossing street there is at least one car
approaching at ! patches from the intersection. This keeps platoons together. For high

6A similar method has been used successfully in the United Kingdom for some time, but for isolated
intersections [77].

7Curiously, this method was the result of misinterpreting a suggestion by Bart De Vylder.
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densities, this restriction alone would cause havoc, since large platoons would block the
tra¢ c �ow of intersecting streets. To avoid this, a second restriction is introduced. The
�rst restriction is not taken into account if there are more than � cars approaching the
intersection. Like this, long platoons can be broken, and the restriction only comes into
place if a platoon will soon be through an intersection.
Simulation. Sotl-platoon manages to keep platoons together, achieving full synchro-

nization commonly for a wide density range, more e¤ectively than sotl-phase (when the
torus is active). This is because the restrictions of sotl-platoon prevent the breaking of
platoons when these would leave few cars behind, with a small time cost for waiting
vehicles. Still, this cost is much lower than breaking a platoon and waiting for separated
vehicles to join back again so that they can switch red lights to green before reaching
an intersection. However, for high tra¢ c densities platoons aggregate too much, mak-
ing tra¢ c jams more probable. The sotl-platoon method fails when a platoon waiting
to cross a street is long enough to reach the previous intersection, but not long enough
to cut its tail. This will prevent waiting cars from advancing, until more cars join the
long platoon. This failure could probably be avoided introducing further restrictions. In
more realistic experiments (four directions, no torus, Pturn = 0:1), sotl-platoon gives on
average 30% (up to 40%) more average speed, half the stopped cars, and seven times less
average waiting times than non-responsive methods. Complete results and graphics of
the experiments discussed here can be found in [67].
Representation. If priority is to be given to certain vehicles (e.g. public transport,

emergency), weights can be added to give more importance to some �i�s.
A meso-level might be considered, where properties of platoons can be observed: their

behaviours, performance, and satisfaction and the relationships of these with the vehicle
and city levels could enhance the understanding of the self-organizing tra¢ c lights and
even improve them.
Simulation. Streets of varying distances between crossings were tested, and all the

self-organizing methods maintained their good performance. Still more realistic simula-
tions should be made before moving to the Implementation, because of the cost of such
a system. At least, multiple-street intersections, multiple-lane streets, lane changing,
di¤erent driving behaviours, and non homogeneous streets should be considered.
Application. The proposed system has not been implemented yet. Still, it is feasible

to do so, since there is the sensor technology to implement the discussed methods in an
a¤ordable way. A pilot study should be made before applying it widely, to �ne tune
di¤erent parameters and methods. External factors, e.g. pedestrians, could also a¤ect
the performance of the system.
Pedestrians could be taken into account considering them as cars approaching a red

light. For example, a button could be used to inform the intersection of their presence,
and this would contribute to the count �i.
A mixed strategy between di¤erent methods could be considered, e.g. sotl-platoon for

low and medium densities, and sotl-phase or marching for high densities.
Evaluation. If a city deploys a self-organizing tra¢ c light system, it should be

monitored and compared with previous systems. This will help to improve the system.
If the system is a success, its implementation in other cities would be promoted.
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6 Discussion

As could be seen in the case study, the backtracking between di¤erent steps in the Method-
ology is necessary because the behaviour of the system cannot be predicted from the
Modelling, i.e. it is not reducible. It might be possible to reason about all possible
outcomes of simple systems, and then to implement the solution. But when complexity
needs to be dealt with, a mutual feedback between experience and reasoning needs to be
established, since reasoning alone cannot process all the information required to predict
the behaviour of a complex system.
For this same reason, it would be preferable for the Control to be distributed. Even

when a central supercomputer could possibly solve a problem in real time, the information
delay caused by data transmission and integration can reduce the e¢ ciency of the system.
Also, a distributed Control will be more robust, in as much as if a module malfunctions,
the rest of the system can still provide reliable solutions. If a central Control fails, the
whole system will stop working.
Now the reader might wonder whether the proposed Methodology is a top-down or a

bottom-up approach. And the answer is: it is both and neither, since (at least) higher
and lower levels of abstraction need to be considered simultaneously. The approach tests
di¤erent local behaviours, and observes local and global (and meso) performances, for
local and global (and meso) requirements.
Since "con�icts" between agents need to be solved at more than one level, the Control

strategies should be carefully chosen and tested. A situation as in the prisoner�s dilemma
[51] might easily arise, when the "best" solution on one level/timescale is not the best
solution on another level/timescale.
Many frictions between agents are due to faulty communication, especially in social

and political relations. If agents do not �know�the goals of others, it will be much more
di¢ cult to coordinate and increase �sys. For example, in a social system, knowing what
people or corporations need to ful�l their goals is not so obvious. Still, with emerging
technologies, social systems perform better in this respect. Already in the early 1970s, the
project Cybersin in Chile followed this path [80]: it kept a daily log of productions and
requirements from all over the country (e.g. mines, factories, etc.), in order to distribute
products where they were needed most; and as quickly as possible. Another step towards
providing faster response to the needs of both individuals and social systems can be
found in e-government [81]. A company should also follow these principles to be able to
adapt as quickly as possible. It needs to develop "sensors" to perceive the satisfactions
and con�icts of agents at di¤erent levels of abstraction, and needs to develop fast ways of
adapting to emerging con�icts, as well as to changing economic environment. A tempting
solution might be to develop a homogeneous system since, e.g., homogeneous societies
have fewer con�icts [82]. This is because all the elements of a homogeneous system pursue
the same goals. Thus, less diversity is easier to control. However, less diversity will be less
able to adapt to sudden changes. Nevertheless, societies cannot be made homogeneous
without generating con�icts since people are already diverse, and therefore already have a
diversity of goals. The legacy [62] of social systems gives less freedom to a designer, since
some goals are already within the system. A social Control/mediator needs to satisfy
these while trying to satisfy those of the social system.
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7 Conclusions

This paper suggests a conceptual framework and a general methodology for designing
and controlling self-organizing systems. The Methodology proposes the exploration for
proper Control mechanisms/mediators/constraints that will reduce frictions and promote
synergy so that elements will dynamically reach a robust and e¢ cient solution.
Even if this paper is aimed mainly at engineers, it is rather philosophical. It presents

no concrete results, but ideas that can be exploited to produce them. It should be noted
that in order to achieve this goal, the abilities of the engineer will be more important
than any methodology. Yet, the proposed Methodology can increase these abilities.
The backtracking ideology is also applicable to this Methodology: it will be improved

once applied, through learning from experience. The more this Methodology is used, the
more potentially useful its abstractions will be. For example, would it be a good strategy
to minimize the standard deviation of ��s? This might possibly increase stability and
reduce the probability of con�ict, but the strategy needs to be tested before it can be
properly understood.
Any system is liable to make mistakes (and will make them in an unpredictable

environment). But a good system will learn from its mistakes. This is the basis for
adaptation. It is pointless to attempt to build a "perfect" system, since it is not possible
to predict future interactions with its environment. What should be done is to build
systems that can adapt to their unexpected future.
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