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Abstract

The ‘No Free Lunch Theorem’ claims that for the set of all problems
no algorithm performs better than random search and thus, selection can
be advantageous only on a limited set of problems. In this paper we
investigate how the topological structure of the environment influences
algorithmic efficiency. We study the performances of algorithms, using
selective learning, reinforcement learning, and their combinations, in ran-
dom, scale-free, and scale-free small world (SFSW) environments. The
learning problem is to search for novel, not-yet-found information. We
ran our experiments on a large news site and on its downloaded portion.
Controlled experiments were performed on this downloaded portion: we
modified the topology, but preserved the publication time of the news.
Our empirical results show that the selective learning is the most efficient
in SFSW topology. In non-small world topologies, however, the combina-
tion of the selective and reinforcement learning algorithms performs the
best.
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1 Introduction

According to the ‘No Free Lunch Theorem’ (NFL Theorem) [1] there is no per-
formance difference between optimization or search algorithms if we test the
algorithms on every possible problem. Therefore, it seems that improved per-
formances of specific algorithms, such as selection, are consequences of specific
problem properties. Finding these properties will aid the development of opti-
mized solutions. Recent research shows that evolving structures, both natural
and artificial (like the Web), exhibit scale-free or scale-free small world prop-
erties [2, 3]. In [4] the authors show that a particular evolutionary algorithm
has better performance in artificial scale-free environment than in lattice, small
world, or random environments. That is, the structure of the environment has
an impact on the efficiency of the algorithms.

We have designed a controllable experiment and compared the performances
of different algorithms on different structures. We aimed to keep the complexity
of experiments and the number of designer specifiable parameters minimal. We
considered the structure of the environment, the algorithms, and the fitness
values. Our choice for the structure was the World Wide Web (WWW). WWW
is considered the largest source of rapidly changing data. The WWW has a
scale-free small world (SFSW) structure [2, 5].

The everyday usage of the Web is the search for novel information. There-
fore, we have a natural reward function; the number of novel documents that
the algorithms can find. We consider this property as one of the most important
components of our work: We did not specify the temporal and structural details
of the reward system.

We ran controlled experiments on a time stamped and downloaded portion of
a large WWW news site. This allowed us to preserve the temporal structure of
the rewards, but also supported the modification of the underlying connectivity
structure, i.e., how the novel information can be found.

Our agents were Web crawlers, or foragers. Crawlers travel from link to link
foraging new, not-yet-seen information. Our agents used the simplest possible
algorithms. Selective learning concerned the selection and memorization of good
links. We have also used a simple version of reinforcement learning (RL). For
a review on RL see, e.g., [6]. RL was used alone, and was also combined with
selective learning. Our choice of RL is motivated by its structural and algorith-
mic simplicity and that RL is concerned with the optimization of the expected
value of long-term cumulated profit.

For a recent review on evolutionary computing, see [7]. For reviews on
related evolutionary theories and the dynamics of self-modifying systems see
[8, 9] and [10, 11], respectively. Similar concepts have been studied in other
evolutionary systems where organisms compete for space and resources and
cooperate through direct interaction (see, e.g., [12] and references therein.)

Hybrid algorithms have a long history. A well-known example is the TD-
Gammon program of Tesauro [13]. The author applied MLP function approxi-
mators for value estimation in RL. Reinforcement learning has also been used in
concurrent learning problems like ours: robots had to learn to forage together
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via direct interaction [14]. Another combinations of the algorithms concerns
evolutionary learning embedded into the framework of RL to improve decision
making [15, 16, 17, 18].

It is important to note, that communication and competition among our
foragers are indirect. Only the first submitter of a document may receive positive
reinforcement and this is the only interaction among the crawlers. Our work is
different from other studies using combinations of genetic, evolutionary, function
approximation, and reinforcement learning algorithms, in that i) it does not
require explicit fitness function, ii) we do not have control over the original
environment, iii) we can change the environment in a reproducible fashion,
iv) collaborating individuals use value estimation under ‘evolutionary pressure’,
and v) individuals work without direct interaction with each other. The crawler
system is a self-assembling system, which is made of adaptive components, and
the communication between components is kept as little as possible.

The paper is organized as follows. We review the related web crawler tools,
including those [19, 20, 21] that our work is based upon, in Section 2. We
describe our algorithms and the forager architecture in Section 3. This section
contains the necessary algorithmic details imposed by the task, the search of the
Web. We present our experiments on the Web and the controlled simulations
in Section 4. Discussions can be found in Section 5. Conclusions are drawn in
Section 6.

2 Related work

There are important problems that have been studied in the context of crawlers.
Angkawattanawit, Rungsawang [28], and Menczer [29] study topic specific
crawlers. Risvik et al. [30] address research issues related to the exponen-
tial growth of the Web. Cho and Gracia-Molina [31], Menczer [29] and Edwards
et. al [32] study the problem of different refresh rates of URLs (possibly as high
as hourly or as low as yearly).

An introduction to and a broad overview of topic specific crawlers are pro-
vided in [28]. They propose to learn starting URLs, topic keywords and URL
ordering through consecutive crawling attempts. They show that the learning
of starting URLs and the use of consecutive crawling attempts can increase the
efficiency of the crawlers. The used heuristic is similar to the weblog algorithm
[21], which also finds good starting URLs and periodically restarts the crawling
from the newly learned ones. The main limitation of this work is that it is
incapable of addressing the freshness (i.e., modification) of already visited Web
pages.

Menczer [29] describes some disadvantages of current Web search engines on
the dynamic Web, e.g., the low ratio of fresh or relevant documents. He proposes
to complement the search engines with intelligent crawlers, or web mining agents
to overcome those disadvantages. He introduces the InfoSpider architecture that
uses genetic algorithm and reinforcement learning, also describes the MySpider
implementation of it, which starts from the 100 top pages of AltaVista. Our
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weblog algorithm uses local selection for finding good starting URLs for searches,
thus not depending on any search engines. Dependence on a search engine can
be a suffer limitation of most existing search agents, like MySpiders. Note
however, that it is an easy matter to combine the present algorithm with URLs
offered by search engines.

Risvik and Michelsen [30] overview different dimensions of web dynamics and
show the arising problems in a search engine model. The main part of the paper
focuses on the problems that crawlers need to overcome on the dynamic Web.
As a possible solution the authors propose a heterogenous crawling architecture.
The main limitation of their crawling architecture is that they must divide the
web to be crawled into distinct portions manually before the crawling starts.
A weblog like distributed algorithm – as suggested here – my be used in that
architecture to overcome this limitation.

Cho and Garcia-Molina [31] define mathematically the freshness and age of
documents of search engines. They propose the Poisson process as a model for
page refreshment. The authors also propose various refresh policies and study
their effectiveness both theoretically and on real data. They present the optimal
refresh policies for their freshness and age metrics under the Poisson page refresh
model. The authors show that these policies are superior to others on real data,
too. Although they show that in their database more than 20 percent of the
documents are changed each day, they disclosed these documents from their
studies. Their crawler visited the documents once each day for 5 months, thus
can not measure the exact change rate of those documents. While in our work
we definitely concentrate on these frequently changing documents.

3 Forager architecture

There are two different kinds of agents: the foragers and the reinforcing agent
(RA). The fleet of foragers crawls the web and sends the URLs of the selected
documents to the reinforcing agent. The RA determines which forager should
work for the RA and how long a forager should work. The RA sends reinforce-
ments to the foragers based on the received URLs.

We employ a fleet of foragers to study the competition among individual
foragers. A forager has simple and limited capabilities, like a stack for a limited
number of starting URLs and a simple, content based URL ordering. The
foragers compete with each other for finding the most relevant documents. In
this way they efficiently and quickly collect new relevant documents without
direct interaction.

At first we present the basic algorithms, followed by the algorithms for the
reinforcing agent and the foragers.

3.1 Algorithms

Our constraints on finding the minimal set of algorithms were as follows: The
algorithms should (i) allow the identification of unimportant parameters, (ii)
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support the specialization of the individuals (the foragers), (iii) allow the joining
of evolutionary learning and individual learning, (iv) minimize communication
as much as possible. We shall return to these points in Section 5.

Weblog algorithm and starting URL selection

A forager periodically restarts from a URL randomly selected from the list of
starting URLs. The sequence of visited URLs between two restarts forms a path.
The starting URL list is formed from the 10 first URLs of the weblog. In the
weblog there are 100 URLs with their associated weblog values in descending
order. The weblog value of a URL estimates the expected sum of rewards
during a path after visiting that URL. The weblog update algorithm modifies
the weblog before a new path is started. The weblog value of a URL already
in the weblog is modified toward the sum of rewards (sumR) in the remaining
part of the path after that URL:

newV alue = (1− β) oldV alue + β sumR,

where β was set to 0.3. A new URL has the value of actual sum of rewards in
the remaining part of the path. If a URL has a high weblog value it means that
around that URL there are many relevant documents. Therefore it may worth
it to start a search from that URL.

Without the weblog update algorithm the weblog and thus the starting URL
list remains the same throughout the searches. The weblog algorithm is a very
simple version of evolutionary algorithms. Here, evolution may occur at two
different levels: the list of URLs of the forager is evolving by the reordering of
the weblog. Also, a forager may multiply, and its weblog, or part of it may
spread through inheritance. This way, the weblog algorithm incorporates the
basic features of evolutionary algorithms. This simple form shall be satisfactory
for our purposes.

Reinforcement Learning based URL ordering

A forager can modify its URL ordering based on the received reinforcements
of the sent URLs. The (immediate) profit is the difference of received rewards
and penalties at any given step. Immediate profit is a myopic characterization
of a step to a URL. Foragers have an adaptive continuous value estimator and
follow the policy that maximizes the expected long term cumulated profit (LTP)
instead of the immediate profit. Such estimators can be easily realized in neural
systems [6, 22, 23]. Policy and profit estimation are interlinked concepts: profit
estimation determines the policy, whereas policy influences choices and, in turn,
the expected LTP. (For a review, see [6].) Here, choices are based on the greedy
LTP policy: The forager visits the URL, which belongs to the frontier (the list
of linked but not yet visited URLs, see later) and has the highest estimated
LTP.

In the particular simulation each forager has a k(= 50) dimensional prob-
abilistic term-frequency inverse document-frequency (PrTFIDF) text classifier
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[24], generated on a previously downloaded portion of the Geocities database.
Fifty clusters were created by Boley’s clustering algorithm [25] from the down-
loaded documents. The PrTFIDF classifiers were trained on these clusters plus
an additional one, the (k + 1)th, representing general texts from the internet.
The PrTFIDF outputs were non-linearly mapped to the interval [-1,+1] by a
hyperbolic-tangent function. The classifier was applied to reduce the texts to
a small dimensional representation. The output vector of the classifier for the
page of URL A is state(A) = (state(A)1, . . . , state(A)k). (The (k+1)th output
was dismissed.) This output vector is stored for each URL.

A linear function approximator is used for LTP estimation. It encompasses
k parameters, the weight vector weight = (weight1, . . . , weightk). The LTP
of document of URL A is estimated as the scalar product of state(A) and
weight: value(A) =

∑k
i=1 weighti state(A)i. During URL ordering the URL

with highest LTP estimation is selected. (For more details, see, [21].)
The weight vector of each forager is tuned by temporal difference learn-

ing (TD-learning) [26, 22, 23]. Let us denote the current URL by URLn, the
next URL to be visited by URLn+1, the output of the classifier for URLj

by state(URLj) and the estimated LTP of a URL URLj by value(URLj) =∑k
i=1 wegihti state(URLj)i. Assume that leaving URLn to URLn+1 the

immediate profit is rn+1. Our estimation is perfect if value(URLn) =
value(URLn+1) + rn+1. Future profits are typically discounted in such esti-
mations as value(URLn) = γvalue(URLn+1) + rn+1, where 0 < γ < 1. The
error of value estimation is

δ(n, n + 1) = rn+1 + γvalue(URLn+1)− value(URLn).

We used throughout the simulations γ = 0.9. For each step URLn → URLn+1

the weights of the value function were tuned to decrease the error of value esti-
mation based on the received immediate profit rn+1. The δ(n, n+1) estimation
error was used to correct the parameters. The ith component of the weight
vector, weighti, was corrected by

∆weighti = α δ(n, n + 1) state(URLn)i

with α = 0.1 and i = 1, . . . , k. These modified weights would improve value
estimation in stationary and observable environments (see, e.g, [6] and references
therein), but were also found efficient in large Web environments [21].

Without the reinforcement learning based URL ordering update algorithm
the weight vector remains the same throughout the search.

Document relevancy

A document or page is possibly relevant for a forager if it is not older than 24
hours and the forager has not marked it previously. The selected documents are
sent to the RA for further evaluation.

6



Multiplication of a forager

During multiplication the weblog is randomly divided into two equal sized parts
(one for the original and one for the new forager). The parameters of the URL
ordering algorithm (the weight vector of the value estimation) are either copied
or new random parameters are generated. If the forager has a URL ordering
update algorithm then the parameters are copied. If the forager does not have
any URL ordering update algorithm then new random parameters are generated.

3.2 Reinforcing agent

A reinforcing agent controls the ‘life’ of foragers. It can start, stop, multiply or
delete foragers. RA receives the URLs of documents selected by the foragers,
and responds with reinforcements for the received URLs. The response is 100
(a.u.) for a relevant document and -1 (a.u.) for a not relevant document. A
document is relevant if it is not yet seen by the reinforcing agent and it is not
older than 24 hours. The reinforcing agent maintains the score of each forager
working for it. Initially each forager has 100 (a.u.) score. When a forager sends
a URL to the RA, the forager’s score is decreased by 0.05. After each relevant
page sent by the forager, the forager’s score is increased by 1.

When the forager’s score reaches 200 and the number of foragers is smaller
than 16 then the forager is multiplied. That is a new forager is created with the
same algorithms as the original one has, but with slightly different parameters.
When the forager’s score goes below 0 and the number of foragers is larger than
2 then the forager is deleted. Note that a forager can be multiplied or deleted
immediately after it has been stopped by the RA and before the next forager is
activated.

Foragers on the same computer are working in time slices one after each
other. Each forager works for some amount of time determined by the RA.
Then the RA stops that forager and starts the next one selected by the RA.

3.3 Foragers

A forager is initialized with parameters defining the URL ordering, and either
with a weblog or with a seed of URLs. After its initialization a forager crawls
in search paths, that is after a given number of steps the search restarts and the
steps between two restarts form a path. During each path the forager takes 100
steps, i.e., selects the next URL to be visited with a URL ordering algorithm.
At the beginning of a path a URL is selected randomly from the starting URL
list. This list is formed from the 10 first URLs of the weblog. The weblog
contains the possibly good starting URLs with their associated weblog values
in descending order. The weblog algorithm modifies the weblog and so thus the
starting URL list before a new path is started. When a forager is restarted by
the RA, after the RA has stopped it, the forager continues from the internal
state in which it was stopped.
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The URL ordering algorithm selects a URL to be the next step from the
frontier URL set. The selected URL is removed from the frontier and added to
the visited URL set to avoid loops. After downloading the pages, only those
URLs (linked from the visited URL) are added to the frontier which are not in
the visited set.

In each step the forager downloads the page of the selected URL and all of the
pages linked from the page of selected URL. It sends the URLs of the possibly
relevant pages to the reinforcing agent. The forager receives reinforcements on
any previously sent but not yet reinforced URLs and calls the URL ordering
update algorithm with the received reinforcements.

4 Experiments

We conducted an 18 day long experiment on the Web to gather realistic data.
We used the gathered data in simulations to compare the weblog update (Section
3.1) and reinforcement learning algorithms (Section 3.1). In the Web experiment
we used a fleet of foragers using combination of reinforcement learning and
weblog update algorithms to eliminate possible biases on the gathered data.
First we describe the experiment on the Web then the simulations. We analyze
our results in the next section.

4.1 Data collection on the Web

We ran the experiment on the Web on a single personal computer with Celeron
1000 MHz processor and 512 MB RAM. We implemented the forager architec-
ture (described in Section 3) in Java programming language.

In this experiment a fixed number of foragers were competing with each
other to collect news at the CNN web site. The foragers were running in equal
time intervals in a predefined order. Each forager had a 3 minute time interval
and after that interval the forager was allowed to finish the step started before
the end of the time interval. We deployed 8 foragers using the weblog update
and the reinforcement learning based URL ordering update algorithms (8 WR
foragers). We also deployed 8 other foragers using the weblog update algorithm
but without reinforcement learning (8 WL foragers). The predefined order of
foragers was the following: 8 WR foragers were followed by the 8 WL foragers.

We investigated the link structure of the gathered Web pages. As it is shown
in Fig. 1 the links have a power-law distribution (P (k) = kγ) with γ = −1.3 for
outgoing links and γ = −2.57 for incoming links. That is the link structure has
the scale-free property. The clustering coefficient [27] of the link structure is
0.02 and the diameter of the graph is 7.2893. We applied two different random
permutations to the origin and to the endpoint of the links, keeping the edge dis-
tribution unchanged but randomly rewiring the links. The new graph had 0.003
clustering coefficient and 8.2163 diameter. That is the clustering coefficient was
smaller than the original value by an order of magnitude, but the diameter is
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almost the same. Therefore we can conclude that the links of gathered pages
form scale-free small world structure.
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Figure 1: Scale-free property of the Internet domain. Log-log scale distri-
bution of the number of (incoming and outgoing) links of all URLs found during
the time course of investigation. Horizontal axis: number of edges (log k). Ver-
tical axis: relative frequency of number of edges at different URLs (log P (k)).
Dots and dark line correspond to outgoing links, crosses and gray line correspond
to incoming links.

The data storage for simulation is a central issue in our experiments. Pages
are stored with 2 indices (and time stamps). One index is the URL index, the
other is the page index. Multiple pages can have the same URL index if they
were downloaded from the same URL. The page index uniquely identifies a page
content and the URL from where the page was downloaded. For any foragers,
at each page download we stored the followings (with a time stamp containing
the time of page download):

1. if the page is relevant according to the RA then store ‘relevant’

2. if the page is from a new URL then store the new URL with a new URL
index and the page’s state vector with a new page index

3. if the content of the page is changed since the last download then store
the page’s state vector with a new page index but keep the URL index

4. in both previous cases store the links of the page as links to page indices
of the linked pages

(a) if a linked page is from a new URL then store the new URL with a
new URL index and the linked page’s state vector with a new page
index

(b) if the content of the linked page is changed since the last check then
store the page’s state vector with a new page index but same URL
index
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4.2 Simulations

For the simulations we implemented the forager architecture in Matlab. The
foragers were simulated as if they were running on one computer as described
in the previous section.

Simulation specification

During simulations we used the Web pages that we gathered previously to gen-
erate different environments (note that the links of pages point to local pages
(not to pages on the Web) since a link was stored as a link to a local page index):

• Simulated documents had the same state vector representation for URL
ordering as the real pages had

• Simulated relevant documents were the same as the relevant documents
on the Web

• Pages and links appeared at the same (relative) time when they were found
in the Web experiment - using the new URL indices and their time stamps

• Pages and links are refreshed or changed at the same relative time as the
changes were detected in the Web experiment – using the new page indices
for existing URL indices and their time stamps

• Simulated time of a page download was the average download time of a
real page during the Web experiment.

We generated 4 different environments for the simulations:

1. SFSW: each simulated page had exactly the same links as the original
page had on the Web (a simulated page linked those simulated pages, page
indices of those pages, which were linked by the original Web page).

2. SF1: in each second the new simulated pages had the same number of
links as the original pages on the Web. A new simulated page linked to
simulated pages selected by the preferential attachment algorithm from
the existing simulated pages.

3. SF2: the previous algorithm applied for the SF1 environment.

4. SFRandom: similar to the SF1, but the linked simulated pages are
selected from a uniform distribution of the pages.

The SFSW environment has exactly the same scale-free and small world
properties as the web environment downloaded by the web foragers. The SF1
and SF2 environments have 10 times smaller clustering coefficient than the
SFSW environment has. These environments have scale-free degree distri-
butions, although those are slightly different from the web environment (see
Fig. 2(a)).
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The SFRandom environment, also, has 10 times smaller clustering coefficient
then SFSW. The SFRandom environment has scale-free outgoing link degree
distribution. But because of the uniform selection of linked documents the
incoming link degree distribution is exponential (see Fig. 2(b)). With the above
given constraints this environment is the most random in the sense that all of
the free parameters (linked documents) were selected from the uniform random
distribution.
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Figure 2: Degree distribution of the environments.
Dots and dark line correspond to outgoing link distribution. X-s and gray
line correspond to incoming link distribution. (a) Upper: degree distributions
of SF1 environment. Lower: degree distributions of SF2 environment. (b) :
degree distributions of SFRandom environment.

We conducted simulations with four different kinds of foragers in each envi-
ronment:

1. WR foragers used both the weblog update and the reinforcement learn-
ing based URL ordering update algorithms.

2. WL foragers used only the weblog update algorithm without URL or-
dering update. Each WL forager had a different weight vector for URL
value estimation – during multiplication the new forager got a new random
weight vector.

3. RL foragers used only the reinforcement learning based URL ordering
update algorithm without the weblog update algorithm. RL foragers had
the same weblog with the first 10 URLs of the gathered pages – that is the
starting URL of the Web experiment and the first 9 visited URLs during
that experiment.

4. Fix foragers did not use the weblog update and the reinforcement learn-
ing based URL ordering update algorithms. These foragers had fixed
starting URLs and fixed weight vectors, but the latter was different for
each Fixed forager.
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In each case, initially there were 2 foragers and they were allowed to multiply
until reaching the population of 16 foragers. The simulation for each type of
foragers were repeated 3 times with different initial weight vectors for each
forager. The variance of the results show that there is only a small difference
between simulations using the same kind of foragers, even if the foragers were
started with different random weight vectors in each simulation.

Simulation measurements

The first thing that we should note concerns the efficiency as a function of the
number of crawlers. On a single computer, and under the time sharing method
we applied, and without direct competition between the different crawlers, we
found that bipartition gives rise to a transient decrease of the efficiency of the
new crawlers, but it quickly recovers. Within the limits of the number of crawlers
that we studied (between 2 and 24), performance of the fleet is a slowly increas-
ing function of the number of crawlers. We fixed the number of the crawlers
and this slow dependence did not enter our considerations. Table 1 shows the
investigated parameters during simulations.

Table 1: Investigated parameters
downloaded number of downloaded documents
sent number of documents sent to the RA
relevant number of found relevant documents
found URLs number of found URLs
download efficiency ratio of relevant to downloaded documents in 3 hour

time window throughout the simulation.
sent efficiency ratio of relevant to sent documents in 3 hour time

window throughout the simulation.
exploration ratio of found URLs to downloaded at the end of the

simulation
freshness ratio of the number of current found relevant doc-

uments and the number of all found relevant doc-
uments [31]. A stored document is current, up-to-
date, if its content is exactly the same as the content
of the corresponding URL in the environment.

age A stored current document has 0 age, the age of an
obsolete page is the time since the last refresh of the
page on the Web [31].

Parameter ‘download efficiency’ is relevant for the site where the foragers
should be deployed to gather the new information. Parameter ‘sent efficiency’
is relevant for the RA. Note that during simulations we are able to immediately
and precisely calculate freshness and age values. In a real Web experiment this
is impossible, because of the time needed to download and compare the contents
of all of the real Web pages to the stored ones.
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5 Discussion

We observed, that the efficiency of the algorithms depends strongly on the
weight vectors. As we have mentioned above, the number of foragers had slight
effects on the efficiency. This observation is supported by the fact that upon
bipartition the weight vectors of the descendant foragers are similar, causing
the descendant foragers to follow similar paths and to spoil the performance of
the other. This is the reason that efficiency shows a transient decrease, but as
a result of adaptation it quickly disappears.

The dependence of the efficiency on the number of starting points is not too
much different. Two foragers could use 20 different starting points, whereas
16 foragers could use 160 different starting points, but the efficiency was only
slightly influenced by this order of magnitude difference. That is, the number of
starting points and the number of foragers are less important than the weight
vectors in our simulations indicating that 20 starting points or so, which can
adapt, can efficiently shatter the structure. Note that other parameters, e.g.,
larger number of crawlers, more than one computer can change this picture.
The weak dependence, however, is most advantageous for our purpose namely
to be confident that we can study structural dependencies.

The measured parameter values are presented in Fig. 3. The figure contains
the values for each measured parameter for each type of forager in each type of
environment. From the subfigures we can conclude the followings:

It can be seen in the top left and top middle subfigures that freshness and
age values of different foragers are changing in the SFSW environment (marker
x) while in the other 3 environments the values are almost the same for the
different type of foragers. RL and Fix foragers can get trapped in clustered
environments, can not easily escape (find outgoing links leaving the cluster) from
clusters containing less relevant documents. The weblog algorithm provides a
way to go to the found best clusters and in this way to escape from the worse
clusters. This can be the reason why the RL and Fix foragers in the SFSW
environment performs worse than WL and WR foragers.

In the top right subfigure it can be seen that finding new documents is the
hardest in the SFRandom environment for all foragers. In this environment the
pages has exponential incoming link degree distribution which means that there
are relatively more small degree pages than in the other 3 scale-free environ-
ments. It is harder to get to pages which links to many pages. Therefore it is
harder for the foragers to find not yet seen documents.

It can be seen in the middle left and middle subfigures that finding relevant
or possibly relevant documents is the easiest in the SFSW environment for all
foragers. This environment is more clustered than the other three environments.
When a forager finds a relevant document in a cluster then it finds other relevant
documents in that cluster while it can not escape from the cluster. The other
3 environments are less clustered. Foragers can get out from clusters easier by
following the links and therefore have to forage the entire environment for new
relevant documents.

In the bottom left subfigure it can be seen that the download efficiency is
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the best in the SFSW environment for all foragers. This is because of the high
number of found relevant documents compared to the other three environments.

In the bottom middle subfigure it can be seen that the WR forager’s sent
efficiency is the same in all environments. Although these foragers found less rel-
evant documents in not SFSW environments but also sent back less documents
to the Reinforcing Agent. The other three foragers sent more less documents
to Reinforcing Agent in the not SFSW environments, therefore their sent effi-
ciencies are the worst in the SFSW environment. Although these foragers also
found the most relevant documents in the SFSW environment, compared to the
other 3 environments.

0

1

2
mean age

0

0.2

0.4

0.6

mean freshness

0

2

4

6

8
x 10

5 downloaded docs

0

5000

10000

15000
sent documents

0

2000

4000
relevant documents

0

2

4

6
x 10

4 found URLs

wr wl rl fix
0

2

4

6
x 10

−3   download effic.

wr wl rl fix
0

0.5

1
sending efficiency

wr wl rl fix
0

0.05

0.1
exploration

SFSW
SFRandom
SF1
SF2

Figure 3: Measured parameter values.
The subfigures show the investigated parameters. Each subfigure contains the
parameter values for the four type of foragers in four columns as shown below
the bottom subfigures. The 4 different markers correspond to the measured
parameter values in the 4 environments as shown in the top middle figure legend.
On each marker an error bar shows the standard deviation of the corresponding
parameter values for the 3 simulations. Mean age is in hours in the upper left
subfigure.

It can be seen in the middle right subfigure that finding new URLs is the
hardest in the SFSW environment because of its clustered nature. The foragers
checks the same URLs for changed documents in the clusters therefore they
can collect many new relevant documents. In the other three environments
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foragers do not get trapped as much in the clusters and they search the whole
environment continuously.

Now, consider Table 2, which contains some of the data of Fig. 3. The num-
ber of sent relevant documents is somewhat larger for the WL foragers than
for WR foragers in SFSW environments (3149 and 3075, respectively, i.e., the
difference is about 2.3%). This slight difference changes sign and becomes much
more pronounced in all other environments. For example, in the SFRandom
environment the numbers are 1029 and 1441, i.e., the difference is about 28%,
but in the opposite direction. It is important to note that, if these foragers com-
pete with each other, then the slight 2.3% difference or the larger 28% difference
both enter the argument of an exponential because of bipartitions. Thus, even
slight differences can become large, and may give rise to overwhelming popula-
tion differences. Such competitive runs are under way. The issue becomes more
pronounced for real situations, where time is not shared on a single computer
and all foragers may search for food at all times.

Our results and the results of Annunziato et al. [4] can not be compared
directly. The most obvious reason is that their investigations were restricted to
SF, SW and random structures, but they did not study the SFSW structure,
which plays a central role in our work. Artificial studies are, however, desirable,
because in such examples one can finely gauge the different components and
may find the necessary and sufficient conditions of our findings.

Table 2: Quantitative results for algorithm–structure pairs

Weblog Weblog and RL RL
SFSW SFR SFSW SFR SFSW SFR

No of sent docs 6313 1443 6985 2585 10455 2396
No of relevant docs 3149 1023 3075 1441 2575 1029

Sending efficiency 0.5035 0.7106 0.4425 0.5574 0.2463 0.4299
No of found URLs 33882 44217 40888 52636 34759 47668

We consider the following findings important: Bipartition gives rise to cer-
tain transient disadvantages if the descendants are similar. They will have to
share the food until they start to learn. Still, selective learning can be more
effective than selective learning combined with other methods, or than other
methods alone if the environment is SFSW. It seems that selection fits the
SFSW structure and vice versa. This could be a good reason for the abundance
of emergent SFSW structures in nature. This can be understood through the
NFL Theorem if it is read backwards: If we find that a particular algorithm
is more efficient than random search or than any other algorithm, then this
winning algorithm ‘knows’ (fits) the most the underlying problem among the
investigated algorithms. Based on our computer simulations it seems that highly
clustered SFSW structures and simple selective learning algorithms match each
other.
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6 Conclusions

We investigated algorithms using evolutionary, reinforcement learning, and com-
bined evolutionary and reinforcement learning strategies. We experimented
with environments having different degree distributions and clustering coeffi-
cients. We generated different topological environments, using data collected
during real Web search. Our study focused on the task of searching for new
relevant documents. We found that in the scale-free small world environment
the evolutionary weblog update algorithm performs the best. It outperformed a
reinforcement learning based algorithm and the combinations of these two algo-
rithms. We conjecture that the highly clustered nature and the small diameter
of the environment match simple selection over other more sophisticated learn-
ing schemes. However, when the scale-free nature of the environment was kept
but the small diameter of the environment was increased simply by restructur-
ing the environment, then other algorithms performed better than the simple
selection. We found in the 3 not small world environments that the combination
of the weblog and reinforcement learning algorithms are the best. That is, when
the diameter of the world becomes larger, then estimation of the long-term cu-
mulated reward becomes important. Moreover, the combined algorithm showed
the smallest performance variation both on the scale-free small world and on
scale-free environments.
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