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Abstract

We review the main tools which allow for the statistical characterization of
weighted networks. We then present two case studies, the airline connection network
and the scientific collaboration network, which are representative of critical infras-
tructures and social system, respectively. The main empirical results are (i) the
broad distributions of various quantities and (ii) the existence of weight-topology
correlations. These measurements show that weights are relevant and that in general
the modeling of complex networks must go beyond topology. We propose a model
which provides an explanation for the features observed in several real-world net-
works. This model of weighted network formation relies on the dynamical coupling
between topology and weights, considering the rearrangement of weights when new
links are introduced in the system. Finally, we discuss the effects of spatial con-
straints on the evolution of weighted networks.
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1 Introduction

Networked structures arise in a wide array of different contexts such as tech-
nological and transportation infrastructures, social phenomena, and biological
systems. These highly interconnected systems have recently been the focus of
a great deal of attention that has uncovered and characterized their topo-
logical complexity [1–4]. Along with a complex topological structure, real
networks display a large heterogeneity in the capacity and intensity of the
connections—the weight of the links. For example, in ecology the diversity of
the predator-prey interaction is believed to be a critical ingredient of ecosys-
tems stability [5,6], and in social systems, the weight of interactions is very
important in the characterization of the corresponding networks [7]. Similarly,
the Internet traffic [3] or the number of passengers in the airline network [4,8,9]
are crucial quantities in the study of these systems.

In this paper we review a set of metrics combining weighted and topological
observables that allows to characterize the complex statistical properties of
the strength of edges and vertices and to investigate the correlations among
weighted quantities and the underlying topological structure. Specifically, we
present results on the scientific collaboration network and the world-wide air-
transportation network, which are representative examples of social and large
infrastructure systems, respectively. The measures on weighted networks [9–
12] have shown that they can exhibit additional complex properties such as
broad distributions and non-trivial correlations of weights that do not find an
explanation just in terms of the underlying topological structure. The hetero-
geneity in the intensity of connections may thus be very important in real-
world systems and cannot be overlooked in their description. Motivated by
these observations, we review also a model for weighted networks we have
recently proposed [13], which naturally produces topology-weight correlations
and broad distributions for various quantities. Finally, we present an analysis
of the effect of spatial constraints on the evolution of weighted networks.

2 Tools for the characterization of weighted networks

We briefly review the different tools which allow for a first statistical charac-
terization of weighted complex networks.

• Weights

The properties of a graph can be expressed via its adjacency matrix aij,
whose elements take the value 1 if an edge connects the vertex i to the
vertex j, and 0 otherwise (with i, j = 1, ..., N , where N is the size of the
network). Weighted networks are usually described by a matrix wij speci-
fying the weight on the edge connecting the vertices i and j (wij = 0 if the
nodes i and j are not connected). In the following we will consider only the
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case of symmetric positive weights wij = wji ≥ 0.

• Degree and weight distributions

The standard topological characterization of networks is obtained by
the analysis of the probability distribution P (k) that a vertex has de-
gree k. Complex networks often exhibits a power-law degree distribution
P (k) ∼ k−γ with 2 ≤ γ ≤ 3. Similarly, a first characterization of weights is
obtained by the distribution P (w) that any given edge has weight w.

• Weighted degree: Strength

Along with the degree of a node, a very significative measure of the net-
work properties in terms of the actual weights is obtained by looking at the
vertex strength si defined as [9]

si =
∑

j∈V(i)

wij, (1)

where the sum runs over the set V(i) of neighbors of i. The strength of a
node integrates the information both about its degree and the importance
of the weights of its links, and can be considered as the natural generaliza-
tion of the degree. When the weights are independent from the topology, we
obtain that the strength of the vertices of degree k is s(k) ' 〈w〉k where 〈w〉
is the average weight. In the presence of correlations we obtain in general
s(k) ' Akβ with β = 1 and A 6= 〈w〉 or β > 1.

• Weighted clustering

The clustering coefficient ci measures the local cohesiveness and is de-
fined for any vertex i as the fraction of connected neighbors of i [14]. The
average clustering coefficient C = N−1 ∑

i ci thus expresses the statistical
level of cohesiveness measuring the global density of interconnected vertex
triplets in the network. Further information can be gathered by inspecting
the average clustering coefficient C(k) restricted to the class of vertices with
degree k. The topological clustering, however, does not take into account the
fact that some neighbors are more important than others. In order to solve
this incongruity we introduce a measure of the clustering that combines the
topological information with the weight distribution of the network. The
weighted clustering coefficient is defined as [9]

cw(i) =
1

si(ki − 1)

∑

j,h

(wij + wih)

2
aijaihajh. (2)

This quantity cw(i) counts for each triple formed in the neighborhood of
the vertex i the weight of the two participating edges of the vertex i. In
this way we are not just considering the number of closed triangles in the
neighborhood of a vertex but also their total relative weight with respect
to the vertex’ strength. The factor si(ki − 1) is a normalization factor and
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ensures that 0 ≤ cw
i ≤ 1. Consistently, the cw

i definition recovers the topo-
logical clustering coefficient in the case that wij = const. It is customary to
define Cw and Cw(k) as the weighted clustering coefficient averaged over all
vertices of the network and over all vertices with degree k, respectively. In
the case of a large randomized network (lack of correlations) it is easy to see
that Cw = C and Cw(k) = C(k). In real weighted networks, however, we
can face two opposite cases. If Cw > C, we are in presence of a network in
which the interconnected triples are more likely formed by the edges with
larger weights. On the contrary, Cw < C signals a network in which the
topological clustering is generated by edges with low weight. In this case it
is obvious that the clustering has a minor effect in the organization of the
network since the largest part of the interactions (traffic, frequency of the
relations, etc.) is occurring on edges not belonging to interconnected triples.
The same may happen for Cw(k), for which it is also possible to analyze
the variations with respect to the degree class k.

• Weighted assortativity: Affinity

Another quantity used to probe the networks’ architecture is the average
degree of nearest neighbors of a vertex i

knn,i =
1

ki

∑

j∈V(i)

kj , (3)

where the sum runs on the nearest neighbors vertices of each vertex i. From
this quantity a convenient measure to investigate the behavior of the degree
correlation function is obtained by the average degree of the nearest neigh-
bors, knn(k), for vertices of degree k [15]. In the presence of correlations,
the behavior of knn(k) identifies two general classes of networks. If knn(k)
is an increasing function of k, vertices with high degree have a larger prob-
ability to be connected with large degree vertices. This property is referred
in physics and social sciences as assortative mixing [16]. On the contrary, a
decreasing behavior of knn(k) defines disassortative mixing, in the sense that
high degree vertices have a majority of neighbors with low degree, while the
opposite holds for low degree vertices.

In the case of weighted networks an appropriate characterization of the
assortative behavior is obtained by the weighted average nearest neighbors

degree, defined as

kw
nn,i =

1

si

N
∑

j=1

aijwijkj. (4)

In this case, we perform a local weighted average of the nearest neighbor
degree according to the normalized weight of the connecting edges, wij/si.
This definition implies that kw

nn,i > knn,i if the edges with the larger weights
are pointing to the neighbors with larger degree and kw

nn,i < knn,i in the
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opposite case. The kw
nn,i function thus measures the effective affinity to con-

nect with high or low degree neighbors according to the magnitude of the
actual interactions. As well, the behavior of the function kw

nn(k) (defined
as the average of kw

nn,i over all vertices with degree k), marks the weighted
assortative or disassortative properties considering the actual interactions
among the system’s elements.

• Disparity

For a given node i with degree ki and strength si different situations can
arise. All weights wij can be of the same order si/ki. In contrast, the most
heterogeneous situation is obtained when one weight dominates over all the
others. A simple way to measure this “disparity” is given by the quantity
Y2 introduced in other context [17,18]

Y2(i) =
∑

j∈V(i)

[

wij

si

]2

(5)

If all weights are of the same order then Y2 ∼ 1/ki (for ki � 1) and if a
small number of weights dominate then Y2 is of the order 1/n with n of
order unity. This quantity was recently used for metabolic networks [19]
which showed that for these networks one can identify dominant reactions.

3 Empirical results

3.1 Weighted networks data

Prototypical examples of weighted networks can be found in the world-wide
airport network (WAN) [8,9] and the scientific collaboration network (SCN) [20,21].
In the airport network each given weight wij is the number of available seats on
direct flight connections between the airports i and j. For the WAN, we ana-
lyze the International Air Transportation Association (IATA) (www.iata.org.)
database containing the world list of airports pairs connected by direct flights
and the number of available seats on any given connection for the year 2002.
The resulting air-transportation graph comprises N = 3880 vertices denoting
airports and E = 18810 edges accounting for the presence of a direct flight
connection. The average degree of the network is 〈k〉 = 2E/N = 9.70, while
the maximal degree is 318.

In the SCN the nodes are identified with authors and the weight depends on
the number of co-authored papers [20,9]. We consider the network of scientists
who have authored manuscripts submitted to the e-print archive relative to
condensed matter physics (xxx.lanl.gov/archive/cond-mat) between 1995 and
1998. Scientists are identified with nodes and an edge exists between two
scientists if they have co-authored at least one paper. The resulting connected
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network has N = 12722 nodes, with an average degree (i.e. average number of
collaborators) 〈k〉 = 6.28 and maximal degree 97. For the SCN we follow the
definition of weight introduced in Ref. [20]: The intensity wij of the interaction
between two collaborators i and j is defined as wij =

∑

p δp
i δ

p
j /(np − 1) where

the index p runs over all papers, np is the number of authors of the paper p, and
δp
i is 1 if author i has contributed to paper p, and 0 otherwise. This definition

seems to be rather objective and representative of the scientific interaction: It
is large for collaborators having many papers in common but the contribution
to the weight introduced by any given paper is inversely proportional to the
number of authors.

3.2 Results

3.2.1 Topological properties

The topological properties of the SCN network and other similar networks
of scientific collaborations have been studied in Ref. [20] and we report on
Fig. (1A) the degree distribution showing a relatively broad law.

As shown in Fig. (1B), the topology of the WAN exhibits both small-world and
scale-free properties as already observed in different dataset analyses [10,8]. In
particular, the average shortest path length, measured as the average number
of edges separating any two nodes in the network, shows the value 〈`〉 = 4.37,
very small compared to the network size N . The degree distribution, on the
other hand, takes the form P (k) = k−γf(k/kx), where γ ' 2.0 and f(k/kx) is
an exponential cut-off function that finds its origin in physical constraints on
the maximum number of connections that a single airport can handle [4,8].
The airport connection graph is therefore a clear example of heterogeneous
network showing scale-free properties on a definite range of degree values.

3.2.2 Strength distribution

The probability distribution P (s) that a vertex has strength s is heavy tailed
in both networks and the functional behavior exhibits similarities with the
degree distribution P (k) (see Fig. 1). A precise functional description of the
heavy-tailed distributions may be very important in understanding the net-
work evolution and will be deferred to future analysis. This behavior is not
unexpected since it is plausible that the strength si increases with the vertex
degree ki, and thus the slow decaying tail of P (s) stems directly from the very
slow decay of the degree distribution.

3.2.3 Topology-weight correlations

In Fig. 2 we report the behavior obtained for both the real weighted net-
works and their randomized versions, generated by a random re-distribution
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Fig. 1. A Degree and strength distribution in the scientific collaboration net-
work. The degree k corresponds to the number of co-authors of each scientist
and the strength represent its total number of publications. The distributions are
heavy-tailed even if it is not possible to distinguish a definite functional form. B

The same distributions for the world-wide airport network. The degree is the num-
ber of non-stop connections to other airports and the strength is the total number
of passengers handled by any given airport. In this case, the degree distribution
can be approximated by the power-law behavior P (k) ∼ k−γ with γ = 1.8 ± 0.2.
The strength distribution has a heavy-tail extending over more than four orders of
magnitude.

of the actual weights on the existing topology of the network. For the SCN
the curves are very similar and well fitted by the uncorrelated approximation
s(k) = 〈w〉k. Strikingly, this is not the case of the WAN. Fig. 2B clearly shows
a very different behavior for the real data set and its randomized version. In
particular, the power-law fit for the real data gives an “anomalous” exponent
βWAN = 1.5± 0.1. This implies that the strength of vertices grows faster than
their degree, i.e. the weight of edges belonging to highly connected vertices
tends to have a value higher than the one corresponding to a random assign-
ment of weights. This denotes a strong correlation between the weight and the
topological properties in the WAN, where the larger is an airport, the more
traffic it can handle.

The fingerprint of these correlations is also observed in the dependence of the
weight wij on the degrees of the end point nodes ki and kj. For the WAN
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Fig. 2. Average strength s(k) as function of the degree k of nodes. A In the sci-
entific collaboration network the real data are very similar to those obtained in a
randomized weighted network. Only at very large k values it is possible to observe a
slight departure from the expected linear behavior. B In the world airport network
real data follow a power-law behavior with exponent β = 1.5 ± 0.1. This denotes
anomalous correlations between the traffic handled by an airport and the number
of its connections.

the behavior of the average weight as a function of the end points degrees
can be well approximated by a power-law dependence 〈wij〉 ∼ (kikj)

θ with
an exponent θ = 0.5 ± 0.1. This exponent can be related to the β exponent
by noticing that s(k) ∼ k(kkj)

θ, resulting in β = 1 + θ, if the topological
correlations between the degree of connected vertices can be neglected. This is
indeed the case of the WAN where the above scaling relation is well satisfied
by the numerical values provided by the independent measurements of the
exponents. In the SCN, instead, 〈wij〉 is almost constant for over two decades
confirming a general lack of correlations between the weights and the vertices
degree. In this case θ = 0 and the relation β = 1 + θ also holds.

3.2.4 Weighted clustering and assortativity

We present the results [9] obtained for both the SCN (see Fig.3) and the WAN
(see Fig.4) by comparing the regular topological quantities with the weighted
ones introduced above. In the figures we report the relative difference of the
values obtained for teh topological and weighted quantities. It is striking to
observe that for large degree values we observe up to 100% relative difference
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signalling a strong difference in the clustering and correlation properties if we
take into accoutn the weighted nature of the networks.

• SCN

· (i) The measurements tell us that the SCN has a monotonously decay-
ing spectrum C(k). This implies that hubs present a much lower clus-
tered neighborhood than low degree vertices which can be interpreted as
the evidence that authors with few collaborators usually work within a
well defined research group in which all the scientists collaborate together
(high clustering). Authors with a large degree, however, collaborate with
different groups and communities which on their turn do not have often
collaborations, thus creating a lower clustering coefficient.

· (ii) The inspection of Cw(k) shows generally that for k ≥ 10 the weighted
clustering coefficient is larger than the topological one. This implies that
authors with many collaborators tend to publish more papers with inter-
connected groups of co-authors and is a signature of the fact that influen-
tial scientists form stable research groups where the largest part of their
production is obtained.

· (iii) Furthermore, the SCN exhibits an assortative behavior in agreement
with the general evidence that social networks are usually denoted by a
strong assortative character [16]. Finally, the assortative properties find
a clearcut confirmation in the weighted analysis with a kw

nn(k) strikingly
growing as a power-law as a function of k.

• WAN

A different picture is found in the WAN, where the weighted analysis
provides a richer and somehow different scenario.
· (i) This network also shows a decaying C(k), consequence of the role of

large airports that provide non-stop connections to very far destinations on
an international and intercontinental scale. These destinations are usually
not interconnected among them, giving rise to a low clustering coefficient
for the hubs.

· (ii) We find, however, that Cw/C ' 1.1, indicating an accumulation of
traffic on interconnected groups of vertices.

· (iii) The weighted clustering coefficient Cw(k) has much more limited
variation in the whole spectrum of k. This implies that high degree air-
ports have a progressive tendency to form interconnected groups with high
traffic links, thus balancing the reduced topological clustering. Since high
traffic is associated to hubs, we have a network in which high degree nodes
tend to form cliques with nodes with equal or higher degree, the so-called
rich-club phenomenon [22].

· (iv) The topological knn(k) does show an assortative behavior only at
small degrees. For k > 10, knn(k) approaches a constant value, a fact
revealing an uncorrelated structure in which vertices with very different
degrees have a very similar neighborhood. The analysis of the weighted
kw

nn(k), however, exhibits a pronounced assortative behavior in the whole
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Fig. 3. Comparison of topological and weighted quantities for the SCN. A The
weighted clustering separates form the topological one around k ≥ 10. This marks
a difference for authors with larger number of collaborators. B The assortative
behavior is enhanced in the weighted definition of the average nearest neighbors
degree. It is worth remarking the large relative difference (up to 50-100%) of the
weighted and topological quantities (lower part of the figures).

k spectrum, providing a different picture in which high degree airports
have a larger affinity for other large airports where the major part of the
traffic is directed.

4 Modeling weighted networks

4.1 The need for weight-topology coupling

Previous approaches to the modeling of weighted networks focused on grow-
ing topologies where weights were assigned statically, i.e. once and for ever,
with different rules related to the underlying topology [23,24]. These mech-
anisms, however, overlook the dynamical evolution of weights according to
the topological variations. We can illustrate this point in the case of the air-
line network. If a new airline connection is created between two airports it
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Fig. 4. Topological and weighted quantities for the WAN. A The weighted cluster-
ing coefficient is larger than the topological one in the whole degree spectrum. B

knn(k) is reaching a plateau for k > 10 denoting the absence of marked topological
correlations. On the contrary kw

nn(k) exhibits a more definite assortative behavior.
Also in this case the relative difference of the weighted and topological quantities
are of the order of 100% (lower part of the figures).

will generally provoke a modification of the existing traffic of both airports.
In general, it will increase the traffic activity depending on the specific na-
ture of the network and on the local dynamics. In the following, we review a
model that takes into account the coupled evolution in time of topology and
weights. Instead of drawing randomly the weights, an alternative consists in
coupling the evolution of the weights and of the topology and allowing the
dynamical evolution of weights during the growth of the system. This mimics
the evolution and reinforcements of interactions in natural and infrastructure
networks.

The model dynamics starts from an initial seed of N0 vertices connected by
links with assigned weight w0. At each time step, a new vertex n is added with
m edges (with initial weight w0) that are randomly attached to a previously
existing vertex i according to the probability distribution

Πn→i =
si

∑

j sj
. (6)
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Fig. 5. Illustration of the construction rule. A new node n connects to a node i with
probability proportional to si/

∑

j sj. The weight of the new edge is w0 and the
total weight on the existing edges connected to i is modified by an amount equal to
δ.

This rule of “busy get busier” relaxes the usual degree preferential attach-
ment, focusing on a strength driven attachment in which new vertices connect
more likely to vertices handling larger weights and which are more central in
terms of the strength of interactions. This weight driven attachment (Eq. (6))
appears to be a plausible mechanism in many networks. In the Internet new
routers connect to more central routers in terms of bandwidth and traffic han-
dling capabilities and in the airport networks new connections are generally
established to airports with a large passenger traffic. Even in the SCN this
mechanism might play a role since an author with more co-authored papers
is more visible and open to further collaborations.

The presence of the new edge (n, i) will introduce variations of the existing
weights across the network. In particular, we consider the local rearrangements
of weights between i and its neighbors j ∈ V(i) according to the simple rule

wij → wij + ∆wij, (7)

where

∆wij = δ
wij

si
. (8)

This rule considers that the establishment of a new edge of weight w0 with the
vertex i induces a total increase of traffic δ that is proportionally distributed
among the edges departing from the vertex according to their weights (see
Fig. 5), yielding si → si + δ + w0. At this stage, it is worth remarking that
while we will focus on the simplest model with δ = const, different choices
of ∆wij with heterogeneous δi or depending on the specific properties of each
vertex (wij, ki, si) can be considered [25,26,29]. Finally, after the weights have
been updated the growth process is iterated by introducing a new vertex with
the corresponding re-arrangement of weights.

The model depends only on the dimensionless parameter δ (rescaled by w0),
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that is the fraction of weight which is ‘induced’ by the new edge onto the oth-
ers. According to the value of δ, different scenarios are possible. If the induced
weight is δ ≈ 1 we mimic situations in which an appreciable fraction of traffic
generated by the new connection will be dispatched in the already existing
connections. This is plausible in the airport networks where the transit traffic
is rather relevant in hubs. In the case of δ < 1 we face situations such as the
SCN where it is reasonable to consider that the birth of a new collaboration
(co-authorship) is not triggering a more intense activity on previous collabo-
rations. Finally, δ > 1 is an extreme case in which a new edge generates a sort
of multiplicative effect that is bursting the weight or traffic on neighbors.

The network’s evolution can be inspected analytically by studying the time
evolution of the average value of si(t) and ki(t) of the i-th vertex at time t,
and by relying on the continuous approximation that treats k, s and the time
t as continuous variables [1,2,13]. The behavior of the strength and the degree
are easily obtained and one has in the long time limit

si(t) ' (2δ + 1)ki(t) (9)

This proportionality relation s ∼ k implies β = 1 but the prefactor is differ-
ent from 〈w〉 which indicates the existence of correlations between topology
and weights. This relation (9) is particularly relevant since it states that the
weight-driven dynamics generates in Eq. (6) an effective degree preferential at-
tachment that is parameter independent. This highlights an alternative micro-
scopic mechanism accounting for the presence of the preferential attachment
dynamics in growing networks.

The behavior of the various statistical distribution can be easily computed
and one obtains in the large time limit P (k) ∼ k−γ and P (s) ∼ s−γ with

γ =
4δ + 3

2δ + 1
. (10)

This result shows that the obtained graph is a scale-free network described by
an exponent γ ∈ [2, 3] that depends on the value of the parameter δ. In particu-
lar, when the addition of a new edge doesn’t affect the existing weights (δ = 0),
the model is topologically equivalent to the Barabasi-Albert model [30] and
the value γ = 3 is recovered. For larger values of δ the distribution is progres-
sively broader with γ → 2 when δ → ∞. This indicates that the weight-driven
growth generates scale-free networks with exponents varying in the range of
values usually observed in the empirical analysis of networked structures [1–3].
Noticeably the exponents are non-universal and depend only on the param-
eter δ governing the microscopic dynamics of weights. The model therefore
proposes a general mechanism for the occurrence of varying power-law behav-
iors without resorting on more complicate topological rules and variations of
the basic preferential attachment mechanism.
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Similarly to the previous quantities, it is possible to obtain analytical expres-
sions for the evolution of weights and the relative statistical distribution [13].
The probability distribution P (w) is in this case also a power-law P (w) ∼ w−α

where α = 2 + 1
δ
. The exponent α has large variations as a function of the

parameter δ and P (w) moves from a delta function for δ = 0 to a very slow
decaying power-law with α = 2 if δ → ∞. This feature clearly shows that
the weight distribution is extremely sensible to changes in the microscopic
dynamics ruling the network’s growth.

In summary, the networks generated by the model display power-law behavior
for the weight, degree and strength distributions with non-trivial exponents
depending on the unique parameter defining the model’s dynamics. These
results suggest that the inclusion of weights in networks modeling naturally
explains the diversity of scale-free behavior empirically observed in real net-
worked structures. Strikingly, the weight-driven growth recovers an effective
preferential attachment for the topological properties, providing a microscopic
explanation for the ubiquitous presence of this mechanism.

4.2 Effect of spatial constraints

Another important aspect lies in the embedding of some networks in real space.
For instance, most people have their friends and relatives in their neighbor-
hood, transportation networks depend on distance, and many communication
networks devices have short radio range [33–37]. A particularly important ex-
ample of such a “spatial” network is the Internet which is a set or routers linked
by physical cables with different lengths and latency times [38,3,39]. More gen-
erally, many networks can be seen as embedded in a given parameter space:
each node carries a certain value of the parameter, and links are established
with a certain cost depending on these values. One can for example think of
social dimensions and social distances measured by salary, socio-professional
category differences. If the cost of a long-range link is high, most of the con-
nections starting from a given node will go to the closest neighbors in the
embedding space. Long-range links, on the other hand, correspond usually to
connections towards already well-connected nodes (hubs). This seems natural
in the case of the air transportation network for instance: short connections go
to small airports while long distance flights are directed preferentially towards
large airports (i.e. well connected nodes). These spatial constraints can have
important consequences on the topology of the resulting network [40].

So far, most models and simple mechanisms have focused on the strong het-
erogeneity of weights and topology, as well as the existence of some level of
correlations between these aspects of complex networks. Not all features ob-
served in real networks are however reproduced: in particular, the “traffic”
as measured by the strength of a vertex grows only linearly with its degree,
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Fig. 6. Scatter-plot of the betweenness centrality versus degree for nodes of the
North-American air-transportation network. The red symbols correspond to the
average BC versus degree.

(except if non-linearities are introduced by hand [25]) while a non-linear be-
havior is observed in real-world [9]. The centrality fluctuations can also become
anomalously large as it was observed in the airport network [8] (figure 6). One
may therefore wonder if these interesting and non-trivial features can result
from the combination of weight, topology and space. To this end, we define
a simple model of growing network combining these ingredients which can be
seen as an investigating tool. This simple model is obtained as the embed-
ding of the weighted growing network introduced above in a two-dimensional
space. Spatial constraints are translated into a preference for short links, and
combined with the coupling between the evolution of the network and the
dynamical rearrangement of the weights. We thus start with an initial seed
of N0 vertices randomly (with uniform distribution) located on a 2d disk (of
radius L) and connected by links with assigned weight w0. At each time step,
a new vertex n is randomly placed on the disk. This new site is connected to
m previously existing vertices, choosing preferentially nearest sites with the
largest strength. More precisely, a node i is chosen according to the probability

Πn→i =
sie

−dni/rc

∑

j sje−dnj/rc
, (11)

where rc is a typical scale and dni is the euclidean distance between n and
i. This rule of strength driven preferential attachment with spatial selection,
generalizes the preferential attachment mechanism driven by the strength to
spatial networks. Here, new vertices connect more likely to vertices which
correspond to the best interplay between Euclidean distance and strength. We
then update the weight according to the same rule as for the model without
spatial effect wij → wij + δ

wij

si
.
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The model thus contains two relevant parameters: the ratio between the typical
scale and the size of the system η = rc/L, and the ability to redistribute
weights, δ. When η � 1 space is irrelevant and in the opposite case a small
value η � 1 indicates that long links are costly. When spatial constraints
exist, the network properties are modified and the effects are summarized in
the following.

• Effect of spatial embedding on topology-traffic correlations

Spatial constraints induce strong nonlinear correlations (β > 1) between
topology and traffic as measured by the degree and the strength, respec-
tively. The reason for this behavior is that spatial constraints favor the
formation of regional hubs and reinforces locally the preferential attach-
ment, leading for a given degree to a larger strength than the one observed
without spatial constraints. The existence of constraints such as spatial dis-
tance selection induces some strong correlations between topology (degree)
and non-topological quantities such as weights or distances.

• Effect of space embedding on centrality

Spatial constraints also induce large betweenness centrality fluctuations.
While hubs are usually very central, when space is important central nodes
tend to get closer to the gravity center of all points. Correlations between
spatial position and centrality compete with the usual correlations between
degree and centrality [28], leading to the observed large fluctuations of cen-
trality at fixed degree. Generally speaking when spatial constraints exist cen-
tral nodes are correlated with barycentric considerations. This phenomenon
can be understood with the following argument. For a spatial network—the
extreme case being a lattice—the shortest path between two nodes is simply
the Euclidean geodesic. If the two endpoints are far away, the probability
that the shortest path passes near the barycenter of all nodes is very high.
In other words, this implies that the barycenter (and its neighbors) will
have a large centrality. This point is illustrated in Fig. 7 in the simple case
of a one-dimensional lattice. This general consideration applies also in the
case of more complex networks such as the spatial network considered here
and indeed as shown in Figure 8 the average distance 〈d(G, C)〉 between the
barycenter G and the most central nodes decreases when spatial constraints
become important. As expected, as spatial constraints become more impor-
tant, the most central nodes get closer to the barycenter of the network.

• Effect of space embedding on clustering and assortativity

Spatial constraints implies that the tendency to connect to hubs is limited
by the need to use small-range links. This leads to an almost flat behavior
for the assortativity. Connection costs also favor the formation of cliques
between spatially close nodes and thus increase the clustering coefficient.
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Fig. 7. A Betweenness centrality for the (one-dimensional) lattice case. The central
nodes are close to the barycenter. B For a general graph, the central nodes are
usually the ones with large degree.
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Fig. 8. Average distance between the barycenter G of all nodes and the 10 most
central nodes (C) versus the parameter η (Here δ = 0, N = 5, 000 and the results are
averaged over 50 configurations). When space is important (ie. small η), the central
nodes are closer to the gravity center. For large η, space is irrelevant and the average
distance tends to its value computed for a uniform distribution 〈r〉unif = 2/3 (dotted
line).

5 Conclusions and perspectives

A more complete view of complex networks is thus provided by the study of
the interactions defining the links of these systems. The weights characterizing
the various connections exhibit complex statistical features with highly vary-
ing distributions and power-law behavior. In particular we have considered
the specific examples of the scientific collaboration and world-wide airport
networks where it is possible to appreciate the importance of the correlations
between weights and topology in the characterization of real networks prop-
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erties. Indeed, the analysis of the weighted quantities and the study of the
correlations between weights and topology provide a complementary perspec-
tive on the structural organization of the network that might be undetected
by quantities based only on topological information. The weighted quantities
thus offer a quantitative and general approach to understanding the com-
plex architecture of real weighted networks. The empirical results shows that
purely topological models are inadequate and that there is a need for mod-
elels going beyond pure topology. The model we have presented is possibly the
simplest one in the class of weight-driven growing networks. A novel feature
in the model is the weight dynamical evolution occurring when new vertices
and edges are introduced in the system. This simple mechanism produces a
wide variety of complex and scale-free behavior depending on the physical
parameter δ that controls the local microscopic dynamics. While a constant
parameter δ is enough to produce a wealth of interesting network properties,
a natural generalization of the model consists in considering δ as a function
of the vertices degree or strength. Similarly, more complicated variations of
the microscopic rules may be implemented to mimic in a detailed fashion par-
ticular networked systems [25,26,29,31]. In particular, we have shown that
including spatial effects in this simple model of weighted networks leads to
a large variety of behavior and interesting effects such as the appearance of
large centrality fluctuations. This study sheds some light on the importance
and effect of different ingredients such as spatial embedding or diversity of
interaction weights in the structure of large complex networks and we believe
that this attempt of a network typology could be useful in the understanding
and modeling of real-world networks.
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