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Abstract. Existing methods used to analyze the relation between preferential 
attachment and node degree make use of time dependent measures, which result 
in limited ability to analyze the temporal characteristics of networks. We 
introduce time independent measures, which allow us to analyze the networks’ 
preferential attachment behavior in a more precise manner. The two different 
methodologies are compared on a new complex network data: Eksi Sözlük, 
which spans the whole lifetime (six years) of a complex network with very 
precise recordings of the node and edge addition events (i.e. one minute). The 
relation between the likeliness to receive new links and the present degree of a 
node is found to be linear. Analyses suggest that time independent measures are 
better in capturing the dynamics of the network and in some cases, provide 
results that are very hard to obtain by existing methodologies. 
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1 Introduction 

One of the most profound discoveries in complex network studies was realizing that the 
structure and dynamics of many real world networks do not follow a completely 
random but rather organized behavior ([1]). Most of the complex networks seem to 
share some basic properties such as power-law degree distribution, small average path 
lengths, and high clustering. Among them, the power-law degree distribution has 
attracted a considerable attention because it is a significant deviation from random 
behavior and it serves as a basis for the scale-free network concept ([1], [2]). In this 
study, we focus on the dynamics that lead to power-law degree distributions. 
The ubiquity of power-law degree distribution led the scientists to the research of 
finding out why networks from so diverse origins show the same characteristics and 
understanding its implications. A line of this research is building up analytical models 
and comparing them with the real-world data. The original Barabási-Albert (BA) 
model ([1]) and its generalizations (see [3] for a discussion), growing network model 
([4]), growth and deactivation model ([5]), and local models proposed by [6] are among 
these studies. It is worth noting that in these modeling efforts, an important aim is to be 
able to model the dynamics of the network, hence they are called growth models and 
they do not only try to capture the structural properties but also the dynamic evolution 
of the networks in time. 
An important concept introduced by the BA model is the preferential attachment 
hypothesis and it has deep connections with the power-law distribution. According to 
the hypothesis, a node with a relatively high degree will be more likely to acquire new 
links in the future. Almost all scale-free models either assume the existence of 
preferential attachment and explicitly incorporate it ([1], [3], [4]) or expect it to emerge 
from the interaction between the growth and dynamics of the network ([5], [6]). This 
common adoption is of no coincidence because as [4] and [7] analytically show that for 
the BA model and its generalizations, the nature of the resulting degree distribution 
depends on the nature of preferential attachment. 
Our motivation for conducting this study was observing the fact that although a number 
of studies form the theoretical relation between the nature of preferential attachment 
and power-law degree distribution (i.e. being scale-free), the empirical validations that 
confirm such a tendency is really present in real-world complex networks are relatively 
low in number. However, there are some studies which provide consistent results 
showing that there is indeed a preferential attachment phenomenon in some certain 
complex networks ([8], [9], [10], [11], and [12]). Carrying out such a study is not 
trivial because for a through analysis of the preferential attachment, the network growth 
data should contain the exact timestamps of link and node addition events. Any 
problem with the “quality” of the data in that sense will cause degradation in the 
reliability of the results. In [8], for instance, the time resolution of the data is one year, 
which means that the relative ordering of the link additions during each year is 
unknown. In [11], on the other hand, the full relative ordering of the link additions is 
known but the actual dates are missing and this fact results in the assumption that all of 



the link additions are uniformly distributed in the time line. A detailed discussion for 
these two and the other studies is made in Section 2.2. 
In this study, we tried to measure and see if there is a preferential attachment tendency 
in a complex network which comes from a slightly different domain than the networks 
analyzed in the previous studies and has some features missing in other ones (i.e. more 
precise time resolution). While doing so, we adopted new methodological approaches 
to provide measures that are more reliable. The main contribution of the new methods 
for preferential attachment measurement is that they can be classified as time 
independent measures in contrast to the presently used time dependent measures. Time 
dependency means that the measures are specific to a certain time interval along the 
network’s lifetime and it is impossible to integrate two different measures obtained 
from two different time intervals. In contrast, time independent measures provide 
values that are independent of the specific time interval on which they were calculated 
and this enables us to integrate different measures obtained in different times. The most 
obvious application for such measures is carrying out the analyses on very short 
consecutive time intervals and then integrating the results altogether. 

2 Theory and Previous Studies 

2.1 Theory 

Directed Graph ( G ): A directed graph G  is defined as ( , )G V E= , where V  and E  
are the set of vertices (nodes) and the set of edges (links) of G , respectively. For two 
vertices ,source targetv v V∈ , an edge e E∈  is defined as ( , )source targete v v= . 

In-Degree, Out-Degree, Total Degree ( ik↓ , ik↑ , ik ): For a vertex iv , out-degree is the 
number of all edges leaving iv , in-degree is the number of all edges pointing to iv , and 

total degree is the sum of out-degree and in-degree of iv . These are represented by ik↑ , 

ik↓ , and ik , respectively. In this paper, in-degree is called as degree, and represented 
by ik , for simplicity. 
Degree Distribution ( ( )P k ): Degree distribution of a graph shows the probability of 
having a certain degree k  for a randomly selected node of the graph. 
The power-law degree distribution, which is a characteristic property of scale-free 
networks, is defined as ( )P k ck λ−=  where c is a normalization coefficient to ensure 

( ) 1
k
P k =∑  and 0λ >  is called scaling factor of the distribution. In Figure 1, the 

power-law distribution is compared with a typical exponential ( ( ) mkP k ce−= ) 
distribution. 
The following temporal definitions are used to represent an evolving network in a 
formal way: 



Graph History (Γ ): A graph history Γ  is defined as ),,,( ΕΞΕΞ=Γ ττ , where Ξ  

and Ε  are the set of all vertices and the set of all edges created in Γ , respectively, Ξ
iτ  

is the creation time of vertex iξ , and Ε
iτ  is the creation time of edge iε . 

Recent Degree Increase ( ,t irdi ): For a vertex iξ  and duration t∆ , recent degree 

increase at time t  is the number of all edges pointing to iξ  that are created in the time 
interval [ , )t t t− ∆ , and it is represented by ,i trdi . 

Snapshot Graph ( tG ): A snapshot graph tG  of a graph system ),,,( ΕΞΕΞ=Γ ττ  

at time t  is defined as ),( ttt EVG = , where { : }t i iV tξ τ Ξ= ∈Ξ <  and 

{ : }t i iE tε τ Ε= ∈Ε < . For a snapshot graph tG , the in-degree, out-degree and total 

degree of a vertex i tVξ ∈  is represented by ,t ik↓ , ,t ik↑ , and ,t ik  respectively. Similarly, 
in-degree is called as degree, and represented by ,t ik , for simplicity. 

Age ( ,t ia ):  In a graph system, the age of a vertex iξ  at time t  is defined as 

,t i ia t τ Ξ= − . 

Preferential Attachment Measures ( ,t il , ( )degree
tl k ′ , and ( )age

tl a′ ): ,t il  is the number of 

new links that vertex iξ  is expected to gain in the time interval [ , )t t t+ ∆ . By using 
this measure, it is possible to construct preferential attachment tendency as functions of 
degree and age. ( )degree

tl k ′  gives the expected number of new links to be acquired for a 
random node with a specified degree. It is defined as: 

,
,( ) ( { | })t xdegree x X

t t x

l
l k X x k k

X
∈′ ′= = =∑  

(1) 

Similarly ( )age
tl a′  is defined as: 

,
,( ) ( { | })

t yy Yage
t t y

l
l a Y y a a

Y
∈′ ′= = =

∑
 

(2) 

Although we cannot directly determine these tendencies analytically for a given data, it 
is possible to come up with empirical computations, which may serve as approximate 
measures. The empirically computed values are represented by ,t̂ il , degˆ ( )ree

tl k ′ , and 
ˆ ( )age
tl a′ , correspondingly, and details of their computation is given in Section 3.2. 

2.2 Relevant Studies 

It is possible to present the relevant studies under two headings. First group is the 
modeling efforts for complex networks, and the second is the search for empirical 
evidence supporting or falsifying these models. 



Models: In this study, we focused on two network growth models. The first model is 
the original BA model ([1]). According to BA model, the network starts from a small 
set of fully connected core nodes, and new links are formed only between new arriving 
nodes and the existing nodes. Whenever a new node is introduced to the graph, it forms 
a link with vertex iv  according to the following probability: 

( ) i
i

jj

k
p k

k

γ

γ=
∑

 
(3) 

where the parameter γ  is introduced to account for the generalizations of BA model 
([3]), and in the original case 1γ = .  
The original BA model assumes a linear dependency between the likeliness to acquire a 
new connection and the present number of connections. This linearity is of paramount 
importance as it is shown in [4] and [7] analytically and in [1] empirically that in the 
presence of sub-linear dependency (i.e. 1γ < ) the degree distribution becomes a 
stretched exponential; and in the case of super-linear dependency (i.e. 1γ > ), a 
“winner takes it all” situation is observed and one node acquires all new coming links 
resulting in a star-like topology. A prediction of BA model is a positive correlation 
between the age of a node ( ,t ia ) and its degree ([5]). The reason is intuitively obvious 
that the older a node is, the more time it had to acquire links, which results in a higher 
probability of getting new links. Another important point about the BA model is that it 
generates an undirected graph (i.e. all edges are symmetric). 
The second model is the growth and deactivation model described in [5]. The growth of 
the network is described by directed links (unlike the BA model). An important 
concept introduced by this model is the active/inactive node difference. At a given 
time, there exist a constant number m  of active nodes, and an active node always 
receives an incoming link from a newly arriving node. An inactive node, on the other 
hand, cannot receive any links. Whenever a new node is introduced to the system, it 
forms new links pointing to the current active nodes, it is tagged as an active node, and 
one of the active nodes is deactivated randomly so the number of active nodes is kept 
constant. The deactivation probability for each active node iv  is inversely proportional 
to its current number of incoming links: 

1( )deactivation
i iP k a −∝ +  (4) 

where a  is a constant bias. A strong simplification of the model is that once a node is 
deactivated there is no way for it to be re-activated and receive new links. There are a 
number of predictions associated with this model. First, it is analytically shown that the 
average increase in the degree of a node is linearly proportional to the present degree 
( , ,t i t il k∝ ), which leads to the linear dependence ( )degree

tl k k′ ′∝ . This dependence is not 
explicitly incorporated into the model but is an emergent property of degree-dependent 
deactivation dynamics ([5]). Secondly, in sharp contrast to the BA model, this model 
predicts a negative correlation between the age and probability of acquiring a new link. 
No matter how high degree a node has, as time passes the probability of being 
deactivated at some point increases. The dependence between the age and probability 



of getting a new connection is shown to be compliant with power-law. We defined the 
term recent degree increase ( ,t irdi ) in correspondence with this study. While the 
original study does not contain such a concept, we believe the recent degree increase of 
a node is in close relation with its status of being active or inactive. Active nodes tend 
to have high recent degree increases; inactive nodes tend to have low (actually zero). 
Empirical Studies: In [8], preferential attachment in two different networks is 
investigated. The networks are the co-authorship networks in fields of mathematics and 
neuroscience between years 1991 and 1998. The authors use a measure very similar to 

( )degree
tl k ′  but the normalization according to the number of nodes that have degree k ′  

is not used and the measurements are carried on a fixed time interval of one year. The 
findings suggest that the relation between degree of a node and its expected rate of link 
acquisition is linear. However, as Barabási et al. indicated themselves, the data is not 
complete but only a recent portion of the all co-authorship network is available. 
Another problem is the time resolution of the network data. Only the years of 
collaborations are known so the relative ordering of the link formations during each 
year is missing. Methodologically, the time period of analysis ( t∆ ) has to be kept 
relatively short because as the nodes continue to acquire new links, their actual degrees 
increase while the records used for analyzing the relation is fixed to the analysis of time 
t . Using longer periods may introduce unwanted bias in this sense, and using shorter 
periods create fluctuations in the results that are hard to eliminate. 
The second study relevant to our work is [11], which also focuses on two networks of 
co-authorships, one in physics the other in biology and medicine. The data used in this 
study contains the entire relative ordering of node and link additions but the exact 
timestamps are missing. Therefore, it is assumed that the links are introduced 
uniformly in the timeline. This study confirms that the preferential attachment tendency 
is linearly dependent on the current number of links of the nodes. The methodology is 
very similar to the one in [8] but the normalization of the expected number of new links 
according to the number of nodes is employed so the measure calculated is virtually the 
same with ( )degree

tl k ′ . This normalization is important because for small values of k ′ , 
there may be many nodes with k ′  links, but for high values of k ′  there are only a few 
of them if not zero at all. Just summing these values without considering how many 
nodes contribute to it may introduce some bias in the calculation of tendency to acquire 
new links, favoring the lowly connected nodes because their number is supposed to be 
higher than the highly connected ones. However, this kind of normalization does not 
help to eliminate the problem associated with the length of the time period analyzed. 
[10] follows the same methodology, which is adopted in [8] but extends the analyses to 
different networks from different origins, namely, science citation network, Internet, 
actor collaboration and scientific co-authorship. The time resolution of the analysis is 
one year for all of the networks. For the first two a linear dependence for preferential 
attachment is observed while for the latter two, the dependence is sub-linear. 
Of the other two studies, [9] is of significance because it extends the empirical findings 
to a protein-protein interaction network that has a very diverse origin of the other 
networks considered so far. [12], on the other hand, employs similar techniques to [8] 
and [10] but uses a more complete dataset: The full citation network of Physical 
Review journals, spanning a period from 1893 until 2003. The time resolution of the 



analysis is again one year. Both studies confirm a linear dependency between likeliness 
to acquire a new link and the current number of links. 

3 Data and Methodology 

3.1 Data 

The network that is analyzed in this study is constructed by using the data crawled from 
“Ekşi Sözlük” (literal translation from Turkish is Sour Dictionary) web site. Ekşi 
Sözlük (which will be called Sözlük, shortly) is technically a collaborative hypertext 
dictionary in operation since 15 February 1999, and it is gained a wide popularity 
among the Internet users in Turkey ([13]).  
Sözlük is a dictionary in which one can find explanations and definitions of almost any 
concept one can think of. In the Sözlük’s jargon, a concept for which information can 
be found is called a “title” (literal translation of “başlık” from Turkish). Each 
individual definition, explanation, or information of any kind is called an “entry”. 
There may be several entries placed under a title. What makes Sözlük different from 
any other plain text based dictionary is that it contains hyper-textual references to other 
titles. For instance, in an entry below the title “Stargazer”, which is the name of a 
masterpiece song of a hard rock band ([14]), the name of the band “Rainbow” can be a 
hypertext. When clicked on, it may lead to the title “Rainbow”, where entries about 
both the band and the literal definition of a rainbow can be found. 
 Sözlük is also a collaborative work of its registered users, who are called “susers” 
(stands for Sözlük USER), and are eligible to add new titles or enter new entries under 
existing titles. 
The graph history SözlükΓ  is constructed by using the data crawled from Eksi Sözlük 
web site. The crawling process consisted of fetching each individual entry, parsing it 
for possible cross-references, and recording their timestamps. This operation took 168 
computing hours and the resulting data is given in Table 1. 
The graph history corresponding to Sözlük, ( , , , )Sözlük τ τΞ ΕΓ = Ξ Ε , is constructed as 
follows: There is a one-to-one correspondence between the vertices of SözlükΓ  (i.e. 
elements of Ξ ) and the titles of Sözlük. For an edge ( , )i source targetε ξ ξ= , iε ∈Ε  if and 

only if there is at least one cross-reference from the title source  to the title target . τ Ξ  
and τ Ε  are constructed such that iτ

Ξ  of iξ  is the timestamp of the first entry of title i , 
or the timestamp of the first cross-reference pointing to title i , whichever is earlier; iτ

Ε  
of edge ( , )i source targetε ξ ξ=  is the timestamp of the first entry that contains a cross-
reference from title source  to title target . From now on, the snapshot graphs of 

SözlükΓ  will be referred as tG , for simplicity. 
Unlike most of the other complex network examples, Sözlük data spans the whole 
lifetime of the network since the first day and first node. In addition, the time resolution 
of the data is very precise: One day for the first two years, and one minute for 



subsequent years. Another important characteristic of Sözlük network is that it is not 
only growing but it is also evolving because of the moderation activities, yet we were 
able to crawl only the visible entries but not the removed ones. 

3.2 Methodology 

Our analysis of the data is composed of three parts. In the first part, we employ the 
methodology used in [11], and for time t  we empirically calculate the preferential 
attachment measures of all nodes ( ,t̂ il ) by calculating the current degrees ( ,t ik ), and the 

number of new links they acquired during time interval [ , )t t t+ ∆  ( ,t ik∆ ). 

By the definition, ,t ik∆  is an empirical calculation of the preferential attachment 

measure ,t il , thus , ,t̂ i t il k= ∆ . Accordingly, preferential attachment tendency as a 
function of degree is calculated as 

,deg
,

ˆ ( ) ( { | })t yree x X
t t x

k
l k X x k k

X
∈
∆

′ ′= = =∑  
(5) 

and preferential attachment tendency as a function of age is calculated as 

,
,

ˆ ( ) ( { | })
t yy Yage

t t y

k
l a Y y a a

Y
∈
∆

′ ′= = =
∑

 
(6) 

To keep the bias as low as possible during these analysis, it is necessary to use a 
relatively short time period (i.e. t∆ ), which is one day for our data, and one year for [8] 
and [11]. This part of analysis provides us the time dependent measures. 
In the second part, we introduce another measurement method that makes use of the 
whole temporal data, and provide a time independent measure for the preferential 
attachment tendency. This way, it is possible to tackle with the bias problem faced in 
[8] and [11] by using very short time periods (e.g. one week) to calculate the number of 
new links acquired and then summing them altogether for a longer period (e.g. one 
year). The major problem for coming up with a time independent measure is that, while 
having a certain number of links, say 100, for year 2001 may provide a relative 
advantage to acquire new links, in year 2005, having 100 links may not mean that 
much because all of the nodes are continuously acquiring new links. Previous studies 
limited themselves with relatively short periods (i.e. one year) to count the new number 
of new links, because it is assumed that the bias introduced during one year is 
negligible. What we have to do is to come up with new measures which aim to reflect 
the same tendency as ( )degree

tl k ′  and ( )age
tl k ′  and is independent of the absolute value of 

k ′  but its relative magnitude. This way, it will be possible to integrate the different 
preferential attachment measures of different snapshot graphs of Sözlük instead of 
focusing on only one. 
The method we adopt is to normalize the measures linearly for each snapshot graph 

tG , such that they fall in interval [0,1] . The normalization process for a measure χ  is 
as follows:  



min
,

, max min
t i tnorm

t i
t t

χ χ
χ

χ χ
−

=
−

 
(7) 

where χ  is can be substituted with k , rdi , a , and k∆ . The corresponding symbols 
min
tk  ( max

tk ), min
trdi  ( max

trdi ), min
ta  ( max

ta ), and min
tk∆  ( max

tk∆ ) are the smallest 
(highest) degree, recent degree increase, age, and the number of new links values of the 
nodes of graph, respectively. Substituting the new normalized values in Equation (5) 
and (6), we obtain the new functional representations of preferential attachment 
tendency: 

,deg
,

( )ˆ ( ) ( { | })
norm

t xree normx X
t t x

k
l k X x k k

X
∈

∆
′ ′= = =∑  

(8) 

,
,

( )ˆ ( ) ( { | })
norm

t yy Yage norm
t t y

k
l a Y y a a

Y
∈

∆
′ ′= = =

∑
 

(9) 

The time-independent measure of preferential attachment tendency as a function of 
degree and age is obtained by averaging the time-independent measures calculated for 
successive snapshot graphs of SözlükΓ : 

deg
deg

0 0 0

ˆ ( )
( ) ( { , , 2 ,..., })

ree
tree t T

end

l k
k T t t t t t t

T
η ∈

′
′ = = + ∆ + ∆∑  

(10) 

0 0 0

ˆ ( )
( ) ( { , , 2 ,..., })

age
tage t T

end

l a
a T t t t t t t

T
η ∈

′
′ = = + ∆ + ∆∑  

(11) 

where 0 0t >  is a given time for starting the analysis and endt  is the timestamp of the 
last event represented in SözlükΓ . 
The third part of our analysis aims to present an example application for the new time-
independent measures. The results we obtain are used to compare and evaluate two 
network growth models (BA and growth and deactivation) to see which one provides a 
better explanation for the data. The methodological tools used are the correlation and 
partial correlation analysis. By correlation analysis, we calculate the pairwise Pearson 
correlation coefficients between ,

norm
t ik , ,

ˆnorm
t il , ,

norm
t irdi , ,

norm
t ia  obtained for each node for 

each time step t ; and carry out a significance test to see whether the observed 
correlations are indeed significant. By partial correlation analyses, we measure the 
correlation between normalized age ,

norm
t ia , and the ,

ˆnorm
t il  when the effect of current 

number of links ,
norm
t ik  is removed. In this case, BA model predicts a zero correlation 

(given the degrees of two nodes are equal, the age of a node does not have an effect on 
the link acquisition), but growth and deactivation model predicts a negative correlation 
as discussed in Section 2.2. Also the partial correlation between ,

norm
t ik  and ,

ˆnorm
t il  is 



calculated when the effect of the recent degree increase ( ,
norm
t irdi ) is removed. BA 

model predicts a positive partial correlation because according to the dynamics, even if 
recent degree increase values of two nodes are the same, the more connected one has 
greater chances to acquire new links. On the contrary, growth and deactivation model 
predicts a negative correlation because the nodes with low recent degrees are the 
inactive nodes, and they cannot receive new links anymore. Similarly, the partial 
correlation between ,

norm
t irdi  and ,

ˆnorm
t il  is calculated when the effect of the node degree 

( ,
norm
t ik ) is removed. BA model does not predict a strong positive correlation, whereas 

growth and deactivation model predicts a strong positive correlation because the active 
nodes, which are more likely to receive new links, tend to have high recent degree 
increase values independent of their overall degree. 

4 Results 

Degree Distribution: The degree distribution of the snapshot graph 
endtG  is given in 

Figure 2. We tried also to fit a power-law model, and the scaling factor of the model is 
calculated as 2.63. 

4.1 Preferential Attachment, Degree and Age Dependency 

Unnormalized measures: For the calculation of ˆ ( )degree
tl k ′  and ˆ ( )age

tl a′  values, t∆  is 
set as one year, and 0t  is chosen as equal to endt t− ∆ . Degree and age values were 
normalized in interval [0,1]  with a resolution of 0.01. The plot of the values is given in 
Figure 3. The robust best fitting lines for degree and age measures are also 
superimposed on the corresponding plots. In this configuration, the root mean square 
error of the robust best line fitting for degree data degreeRMSE  is 0.060 and for age data 

ageRMSE  is 0.227. 
Normalized measures: For calculating the normalized preferential attachment measures 

( )degree kη ′  and ( )age aη ′ , t∆  was set as one week, and the starting time of analysis, 0t , 
was set as equal to endt T− , where T  is four years. Thus, a snapshot graph for each 
week between the years 2003 and 2004 was constructed to calculate corresponding 
time independent measures ,

ˆ norm
t il  and ,

norm
t ia , which in turn provided the time 

independent measures deg ( )ree kη ′  and ( )age aη ′ . The plot of these values with respect to 
the normalized degree and age values are given in Figure 4. The robust best fitting 
lines for those values are also superimposed on the corresponding figures. Note that, 
fitting of the age data excludes values before 0.2 because of the “today effect”, which 
will be discussed later. In this second configuration, the root mean square errors, 

norm
degreeRMSE  is 0.050 and norm

ageRMSE  is 0.192. 



4.2 Interdependency Between Age, Degree and Recent-Degree 

In Section 4.1, it is explained how the normalized measured are obtained. Shortly, for 
each interval of one week [ )t t+ ∆ , ,

norm
t ik , ,

ˆnorm
t il , ,

norm
t ia , and ,

norm
t irdi values are calculated 

for each node in the corresponding graph tG . Grouping this quadruple for each 
individual node, a list was formed and a random sub-sampling was carried on this list. 
As a result, a subset of 2370 elements was selected. The pairwise Pearson correlation 
coefficients of the measures are given in Table 2. 
Partial correlation coefficients as defined in Section 3.2, are given in Table 3. 

5 Discussion 

In accordance with the previous results, we were able to confirm a linear dependency 
between the preferential attachment tendency and the degree of the nodes. A linear 
model provides a better robust fit for the normalized measures than the unnormalized 
ones. ( 0.050norm

degreeRMSE =  < 0.060degreeRMSE = ). Assuming the actual relation is 
indeed linear, this fact suggests that the normalized method is better in capturing the 
linearity. However, as it can be seen visually in Figure 4, for larger degree values, the  
preferential attachment relation follows a non-linear form. The same effect is not 
observed for the unnormalized measures. It is an open question whether this 
observation is a side effect of the normalization or the preferential attachment really 
follows a non-linear relationship for large degree values. We were not able to answer it 
with the current findings. 
Another interesting result was obtained by measuring the relation between the age and 
preferential attachment of a node. With the normalized measures, we observed that the 
relation between age and number of new links could be modeled by an exponential 
model ( ,9.751

,
t ia

t il e∝ ). That is, the likeliness to acquire new links for a node increases, 
as the node gets older. Interestingly, for smaller age values the relation adopts a power 
law (scaling factor is 0.448) and follows an inverse relation: In the interval [0,0.2], the 
younger a node the more probable that it will receive a new link in the future. Our 
account for this phenomenon is the effect of a facility called “Today’s Titles” that lists 
the titles, which have received new entries during that day. Apart from manual search 
and following hyperlinks, this facility is the only way to see a group of titles and acts as 
a buffer in the sense once a new title is created it is immediately put in this list and 
becomes visible to the other susers for a brief time. As time passes the probability that, 
it will be removed from the list (because of new comers) increases. We call this effect 
as “today effect” and it serves as a good example for the benefits of using more precise 
measurement methods. While it is possible to visually observe the same affect for 
unnormalized measures, we were unable to fit a meaningful model (i.e. neither 
exponential nor power-law) to the data in interval [0,0.2], which suggests that the 
unnormalized measures are not capable of reflecting dynamic preferences in order of 
weeks and days. 
The pairwise correlation coefficients confirm the findings of previous analyses and 
show that the correlations observed between the measures are indeed statistically 



significant. However, we should note that none of the correlations are not strong (but 
barely moderate), which indicates that the real dynamics of the Sözlük network 
depends also on other factors which were not addressed here. 
The partial correlation analyses enabled us to test the different predictions of BA model 
and growth and deactivation model on the data. 
The first finding is that when the effect of the current degree is removed no statistically 
significant correlation between the age and number of new links is observed  
( 0.016,  0.450r p= − > ). This finding is in accordance with the predictions of BA 
model. The age of a node does not seem to have an effect on acquiring new links 
(neither positive nor negative) independent of the current degree. 
Secondly, we found out that when the effect of the recent degree increase is removed, 
the correlation between degree and number of new links decrease, but remain 
statistically significant ( 0.356,  0.01r p= < ). A similar but weaker effect is observed 
also in the partial correlation of recent degree increase and number of new links, 
controlled for node degree ( 0.132,  0.01r p= < ). Based on these results, we can claim 
that both recent degree increase and node degree has a moderate effect on the link 
acquisition, and this effect is independent to some degree because the remaining partial 
correlations are still significant. 
Considering these findings, our conclusion is that both models have their own merits in 
predicting the growth of the network. In the short time scale, “Today’s Titles” facility 
and “today effect” is explained by the growth and deactivation model (i.e. power-law 
relation between age and likeliness to acquire new links) whereas in the longer time 
scales, the independency of age and new link acquisition probability can be explained 
by the BA model. 

6 Conclusion 

In this study, we introduced a new complex network data, which spans the whole 
lifetime of the network and contains very precise timestamps of the node and edge 
addition events. Using this dataset, we focused on the empirical validation of the linear 
dependency of preferential attachment on node degree. We introduced a new time 
independent measurement method which enabled us to independently analyze very 
short intervals and then integrating them altogether to provide measures for longer 
periods of time and capturing the dynamics more properly. The results suggest that the 
time independent method is more successful in extracting the linear relation between 
degree and preferential attachment for small degrees. The ability to analyze very short 
time periods also revealed an interesting relation (i.e. today effect) between the 
likeliness to acquire new links and age of a node, which was impossible to observe by 
the existing methods. As an application, the normalized measures were used to 
compare and evaluate two different network growth models on the present data. 
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Table 1. Characteristics of Sözlük Data 

Node 
Count 

Link 
Count 

Title 
Count 

Entry 
Count 

First Entry 
Date 

Last Entry 
Date 

Suser 
Count 

1,543,328 5,016,632 1,543,328 2,414,296 15.02.1999 10.10.2004 29,712 
 



Table 2. Pearson correlation coefficients of the measures, statistically significant correlations 
(i.e. 0.01p < ) are printed in bold. 

 ,
norm
t ik  ,

ˆnorm
t il  ,

norm
t ia  ,

norm
t irdi
 

,
norm
t ik  - - - - 

,
ˆnorm
t il  0.427 - - - 

,
norm
t ia  0.366 0.144 - - 

,
norm
t irdi  0.406 0.283 0.088 - 

 



Table 3. Partial correlation coefficients of the measures, statistically significant 
correlations (i.e. 0.05p < ) are printed in bold. 

Correlated 
Measures 

Control 
measures 

Partial Correlation 
Coefficients 

,
norm
t ia , ,

ˆnorm
t il  ,

norm
t ik  -0.015 

,
norm
t ik , ,

ˆnorm
t il  ,

norm
t irdi  0.356 

,
norm
t irdi , ,

ˆnorm
t il ,

norm
t ik  0.133 
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Figure 1. Power-law and exponential distributions: (a): Normal scale, (b): Log-log scale 
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Figure 2. Log-log plot of the degree distribution of the resulting graph, and its best power-law fit 
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Figure 3. Number of new links as a function of (a): Degree, (b): Logarithm of age 
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Figure 4. Number of new links as a normalized function of (a): Degree, (b): Logarithm of age 


