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Abstract

Recent studies suggest that a large number of natural and artificial networks are characterized by
very large degree fluctuations. This result means that a non-negligible number of nodes are extremely
well connected while the majority just have a few links. The effect of such large fluctuations can be
dramatic as illustrated by the fact that infectious agents can spread on these networks even for a very
small value of the transmission probability.

Another consequence is that random immunization is inefficient for this kind of networks. Con-
sequently, containment protocols and vaccination of traced contacts become our only defense but
are unfortunately difficult to use at a large scale and in thiscontext, an efficient method for de-
tecting epidemics during their early stage becomes imperative. These efforts, now broadly labeled
as “syndromic surveillance” are the centers of attention ofpublic health agencies concerned with
bioterrorism-related diseases. More precisely, an important point is to be able to determine and
characterize specific nodes in the network which display interesting features in regards of an early
detection system. In the present work, we focus on two specific features: (i) a small average infection
time tinf and (ii) low fluctuations around that timetinf .

We analyze and compare the behaviors of the infection time obtained for the usual random Erdos-
Renyi graph and the Barabasi-Albert scale-free network. Wefirst compare the patterns obtained on
both kind of networks and we then describe the variations of the infection time with the degree and
with the topological distance to the initially infected node.
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I. INTRODUCTION

Numerous studies have shown that many natural and artificialnetworks (e.g. air transportation, sexual
contact, coauthorship, . . . ) have a distribution of their degreek which follows a power law (Pk ∼ k−γ) [1–
5]. This implies the absence of a characteristic scale of their degree distribution, hence their name “scale-
free network” (SFN) [6, 7].

Classically, epidemic modelisation is based on the homogeneous mixing paradigm. All individuals have
the same probability to become infected and no heterogeneity in the contact network is taken into account.

However, superspreading events like the ones that appearedin the onset of the recent SARS outbreak [8],
cannot be explained by using the previous paradigm. Consequently, they make very difficult the realistic
estimation from initial data of the outbreak behavior [8, 9]. A solution to this issue could lie on the particular
degree distribution of SFN which renders some features of social networks by bringing on a non-negligible
number of highly connected nodes, called hubs or superspreaders. Therefore, from a public health point of
view, studying the spreading of epidemics on SFN is all the more appropriate.

This issue, whose applications extend to new emergent diseases and bioterrorist threats, justify detailed
studies of the incidence of the connectivity distribution at the initial stage of the epidemics. In particular,
given the stochastic nature of epidemic processes, we focusour study on the characterization and the un-
derstanding of their variability. The variability plays animportant role in the accuracy of models. Thus, it
has to be quantified to assess the meaningfulness of simulations with respect to real outbreaks.

Concerning the epidemiological modeling, the simplest approach is to consider that infected individuals
(I) may infect susceptible (S) ones with probabilityλ, which will then remain infected (SI model). This
approach, in spite of its simplicity, allows to easily outline the initial growth of epidemic outbreaks.

Using a numerical approach, we analyzed the evolution of epidemics generated by different sets of
initial parameters. Hence, we compared epidemic variability on a SFN (Barabási-Albert (BA) [10]) to an
homogeneous network model (Erdös-Renyi (ER) [11]) in orderto highlight the singularities due to the
connectivity distribution.

II. INFECTION TIME FLUCTUATIONS

We consider that a good picture of the predictability of epidemic path is given by the variation oftinf on
each node. This information tells us how systematically nodes will be infected at regular moments during
the outbreak. In this study, we characterize it by computingthe tinf coefficient of variation,CV (tinf ) =√

〈(tinf−〈tinf 〉)2〉

〈tinf 〉
, on a set of a thousand of outbreaks simulated on the same network.

In Fig. 1, we show nodes〈tinf 〉 (left panel) andCV (tinf ) (right panel) for an ER and a BA network.
In those plots, symbols aligned vertically represent nodeswith a given degreek. By comparing Fig. 1
panels, we clearly notice that while the averagedtinf on BA is lower than on ER network, its corresponding
CV (tinf ) is larger. From a practical point of view, it means that, on one hand, BA nodes are infected more
quickly (smallertinf values), but on the other hand, the momenttinf will vary more from an epidemic to
another (greaterCV (tinf )), and consequently will be less predictable.

Figure 1 also reveals the tendency ofCV (tinf ) to increase with the nodes degree, and the high values
reached by high degree nodes on BA network.

On BA networks, low degree nodes are large majority. Their wide range ofCV (tinf ) values tells us
that the degree may not be the most relevant discriminant andthat values computed over the same degree
(lighter symbols) are not representative when dealing withsmall degree nodes. Consequently, variations of
tinf can be less easily predicted for low degree nodes. On the contrary, higher degrees nodes have values
following a more clearly drawn slope, givingCV (tinf ) as a function of their degree more meaning.
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Figure 1: Infection time of network nodes as a function of their degree. (a) Averaged infection time: Each black
symbol representstinf for a single node averaged over103 outbreaks. Gray symbols showtinf averaged over nodes
with the same degree.(b) Infection time coefficient of variation: each black symbol stands forCV (tinf ) computed
over103 outbreaks. Gray symbols showCV (tinf ) computed over nodes with the same degree. For both panels,�

are values on BA network, and• are values on ER network; results are computed on a single network (N = 104,
〈k〉 = 6); initially infected node degreek0 = 6 ; λ = 0.01.

III. CONCLUSIONS

In this short paper, we address the concern about the reliability and the efficiency of detection sites. A
good site candidate has to be on the outbreak path as soon and as surely as possible. Here, we point out that,
despite their low delay before infection (tinf ), superspreading nodes exhibit high variations of their moment
of infection. In other words, we may not be able to predict an accurate and reliable time of infection for
them. As a consequence, high degree nodes should be used withcaution in the set-up of an early epidemic
detection system.

We also draw attention to the differences between ER and BA networks concerning variability. As
depicted on Fig. 1b, the homogeneous nature of ER networks seems to prevent singularities in the spreading,
and thus tend to lower theCV (tinf ) of their nodes. Infection velocities, which can be deduced from Fig. 1a,
also differ and are in concordance with previous studies [12]. These spreading disparities confirm that
outbreaks on the two topologies behave distinctly in many points and ignoring their differences may cause
problems.

In particular, our results stress that the epidemic variability is amplified on scale-free BA network com-
pared to homogeneous ER network. This phenomenon has a practical importance for the modeling of
epidemic control strategies, especially during the beginning of the spreading process which is a highly un-
stable period due to high degree nodes. In particular, this study suggest that this high variability should be
taken into account in planning and designing control and containment strategies.
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