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Abstract

In this paper we study deliberate attacks on the infrastructure of
large scale-free networks. These attacks are based on the importance
of individual vertices in the network in order to be successful, and the
concept of centrality (originating from social science) has been already
utilized in their study with success. Some measures of centrality how-
ever, as is betweenness, have disadvantages that do not facilitate the
research in this area. We show that with the aid of scale-free network
characteristics such as the clustering coefficient we can get results that
balance the current centrality measures, but also gain insight in the
workings of these networks.
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1 Introduction

Recently there has been an increase of interest in many natural and artificial
large scale networks. For example, it is estimated that the network of web
pages currently consists of several billions of vertices [1]. Many companies
owning a search engine would like to know the specific characteristics of this
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network for purposes of page indexing and maybe to predict, up to a point,
its future behavior. In general, a network consists of objects, of different kind
in each area of interest, which are represented by vertices, and connections
between them, represented by edges. Many theoretical results exist due to
graph theory of discrete mathematics, which handles such objects. This
kind of modelling is possible for a variety of large scale networks, both
natural occurring and artificial, such as networks of acquaintances, citation,
food chains, infections, proteins [2, 3, 4, 5, 6, 7] or networks of power grids,
internet infrastructure, web pages, and so on [8, 9, 10, 11, 12, 13, 14].

Especially in the case of social networks of any kind, they have been
studied by scientists in the social science for quite a while, with methods
such as questionnaires and personal interviews. One persistent question
was that of the centrality of an individual in such a network, or how well
“connected” this person is in his environment. For example a measure of
this connectivity is a vertice’s degree, that is the number of its immediate
neighbours. The size of these kind of networks is in the order of several
tens or in some cases several hundreds of vertices and so the research is not
directly applicable to the large networks arising, mainly technological. This
is just one of the problems scientists face with the large scale networks.

Another problem is the nature of these networks. The most prominent
model in graph theory until recently have been the random graph model
introduced by Erdős and Rényi [15]. In this model, any two vertices have
equal probability to be connected by an edge. This model is very well stud-
ied and many results exist on it, but unfortunately does not describe our
observations in real world networks. In many real world networks there ex-
ist a percent of vertices that appear to be better connected to the rest of
vertices. Furthermore, during the network growth, they gain easier connec-
tions and certainly not with equal probability to the other vertices. One of
the unique characteristics of these networks, that distinguishes them from
previous studied networks, is the power law form of the distribution of the
vertex degrees.

In this study we address the problem of network attack. We are assuming
the existence of an adversary that wants to harm a network, by directly
attacking and removing the vertices comprising it. He has the ability to
measure some variables of the network in order to make educated guesses
as to what vertex should target next. In our experiments we measure the
efficiency of strategies based on such measures as to the computational time
needed to target a vertex on the specific network and the end result after the
attack. We care about measures that produce most harm with little effort.
The strategies we are using will be based on the centrality measures taken
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from traditional social network research.
In this paper we take into account previous similar studies and we com-

pare our findings with theirs. We propose an attack strategy that is a trade-
off between worst and best strategy so far and has significant and unique
advantages. We also offer insight to the workings in power-law graphs and
indicate future research areas.

The paper is organized as follows. In Section 2 we review the fundamen-
tal concepts needed in our study, along with a separate discussion on the
most widely used measures of centrality. In Section 3 we introduce the use
of centrality measures as attack strategies. Our experiments can be found
in Section 4 along with our analysis on the results.

2 Fundamental Concepts and Definitions

In this section we define the graph-related concepts that we will use in our
experiments and analysis, along with the main notions of centrality that are
of interest to us.

2.1 Graph-related concepts

Throughout this paper we represent a network as an undirected, unweighted
graph G (V,E), where V is the set of vertices (i.e. computers) and E is the
set of edges (i.e. communication links). Their sizes are |V | = n and |E| = m

respectively. The degree kv of a vertex v is the number of edges originating
from or ending to vertex v. We are interested only in graphs generated by the
preferential attachment procedure, first proposed by Barabási and Albert
[16], which we will briefly describe here. The iterative creation process
consists of 4 steps:

Step 0: Initially the graph has n0 vertices and no edges.

Step 1: Add a new vertex v to the graph.

Step 2: Create l edges, each time connecting the new vertex v to a vertex
w, with probability proportional to this vertice’s degree:

pw =
kw

∑

u∈V

ku

Step 3: Repeat steps 1 and 2 for (n − n0) rounds.
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The end result of this procedure is a graph of n vertices and m (n − n0) edges,
with vertex degree distribution P (k) that follows a power law, with exponent
γ = 3 ( P (k) ∝ k−3 ). We will call such a graph a Barabási-Albert network,
or BA network for short. Of course there are many models with creational
procedures that generate graphs with power law degree distributions (like
the Watt’s “small worlds” [17, 18]), but we feel that the classical preferential
attachment model describes complex networks generation in a more general
way. Other than that, our specific results may differ in other models but
the essence of our insights should still apply.

Other concepts that will be used are that of the 1-neighbourhood and 2-
neighbourhood of a vertex. Having a vertex v as center, its 1-neighbourhood
Γ1 (v) consists of all vertices at distance 1, i.e. its direct neighbours. Such
neighbours from now on will be called first-neighbours and of course it holds
that |Γ1 (v)| = kv. Similarly, the 2-neighbourhood of a vertex v consists of all
vertices at distance exactly 2 (from now on second-neighbours) and it holds
that |Γ2 (v)| ≤ ∑

w∈Γ1(v)

kw. The inequality in the above expression stands

for the fact that some first-neighbours of v may have common neighbours,
thus limiting the number of (unique) vertices in Γ2 (v). This phenomenon
is called clustering [19, 13, 20] and is not only possible but characteristic of
power law graphs. This relation between a vertex and its first- and second-
neighbours lead to the emergence of several structures in the graph, most
common of which is the triangle. In a triangle, three vertices are joined
by three edges, one for each pair of vertices. The existence of triangles is
characteristic of a power law graph, and its the feature that makes them
so popular in different disciples: for example, in social science, two of one’s
friends have greater probability of knowing each other than two random-
picked strangers.

2.2 Standard Centrality Measures

2.2.1 Degree Centrality

The degree centrality measure gives the highest score of influence to the
vertex with the largest number of first-neighbours. This agrees with the
intuitive way to estimate someone’s influence from the size of its immediate
environment. The degree centrality is traditionally defined analogous to a
vertice’s degree, normalized over the maximum number of neighbours this
vertex could have. Thus, in a network of n vertices, the degree centrality of
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vertex i, CD
i , is defined as:

CD
i =

ki

n − 1
(1)

The normalization in the region [0, 1] is used here to make the centrality
of different vertices comparable, and also independent of the size of the
network.

2.2.2 Closeness Centrality

This notion of centrality focuses on the idea of communication between
different vertices. The vertex which is “closer” to all vertices gets the highest
score. In effect, this measure indicates which one of two vertices needs fewer
steps in order to communicate with some other vertex. Because this measure
is defined as “closeness”, the inverse of a vertice’s mean distance from all
others is used. Hence, if CC

i is the closeness centrality, and dij the shortest
distance between vertices i and j in terms of edge steps:

CC
i =

n − 1
∑

j∈V

dij

(2)

Again, this measure is normalized in the region [0, 1] . Additionally, it
should be stated that the distance between two disconnected vertices must
be a predefined very large value and not infinite, if it is desirable to discern
among low closeness scores.

2.2.3 Betweenness Centrality

Betweenness centrality refines the concept of communication, introduced in
closeness centrality. Informally, betweenness centrality of a vertex can be
defined as the percent of shortest paths connecting any two vertices that
pass through that vertex. The normalized version divides this value with
the maximum possible betweenness centrality, that is all possible shortest
paths in a completely connected graph. If CB

i is the betweenness centrality
of vertex i, (u, i, v) is the set of all shortest paths between vertices u and v

passing through vertex i and (u, v) is the set of all shortest paths between
vertices u and v, then:

CB
i =

∑

u∈V

∑

v 6=u∈V

|(u,i,v)|
|(u,v)|

(n − 1) (n − 2)
(3)
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This definition of centrality explores a vertice’s ability to be “irreplaceable”
in the communications of two random vertices. It is of particular interest in
the study of network attacks, because at any given time the removal of the
maximum betwenness vertex seems to cause maximum damage in terms of
connectivity and mean distance in the network. Its main disadvantage is that
the summation operator practically means that it needs global information
about the network, in order to compute a single vertice’s betweenness, and
that is simply not possible in many contexts. For the same reason it is
expensive in computing time to compute a vertice’s score, although this
disadvantage was significantly improved recently [21, 22]. The importance
of betweenness centrality as an attack strategy is further discussed below.

3 Centrality Measures As Attack Strategies

It has been shown in the past that the “random vertex hit” strategy performs
poorly [23, 24], due to the hierarchical effect these networks present, i.e. a
random vertex has increased probability to be one of the less connected
vertices, since there are so many of them. So it is desirable to use a strategy
that achieves better results, and such strategies could be based upon a vertex
measure that can profile each vertice’s potential by its value only. A number
of publications exist [23, 25, 26, 24, 27], addressing the question of which
strategy is best in achieving maximum destructive result with less vertex
hits, the most extensive of which, to our knowledge, is [23]. Summarizing
the results, the comparison is based upon two axes: different strategies
and recalculation of measures. The different strategies studied are vertex
deletion based upon degree centrality scores and upon betweenness centrality
scores, and it is clearly shown that betweenness produces better results.
The recalculation of the involved measures refers to the recalculation of
degree/betweenness centrality after each vertex deletion.

In this section we introduce a strategy that balances the advantages
and disadvantages of the above mentioned strategies. We will not study the
closeness centrality, as it has the same basic flaws as betweenness and none of
its advantages. Furthermore we will focus on the recalculated versions, since
the distribution of these measures may vary significantly between deletions.

3.1 How to measure destructive power?

We are interested in the destruction of the network under consideration. Ide-
ally that would meant the isolation of each vertex, but it can be argued that
it is enough to break the network to a sufficiently large number of connected
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components. We choose to examine only the size of the largest component,
as a particulary small largest component would mean that the network has
degenerated into many small connected components. Additionally, we can
measure directly the impact of vertex deletions in the hierarchical structure
by examining what happens to the largest component: a successful attack
would probably target this component and shrink its size dramatically. An-
other reason is that this technique has been used successfully during previous
studies [23], and its use will make our results directly comparable. We use
specifically a normalization over the largest component size with the initial
network size, in order to produce a percentage comparable between different
size networks.

Since we start with a connected network, it would take some time be-
fore it becomes disconnected, and during that time the size of the largest
component would not carry significant information. Thus, in addition to
the largest component size, we use the mean shortest path length of the
network, and specifically its mean inverse. The mean shortest path length
is the mean length of all shortest paths in the network, between all pairs of
vertices. If by duv we denote the length of the shortest path between vertices
u and v, then the mean shortest path length l, in a network of n vertices, is

l =

∑

u∈V

∑

v 6=u∈V

duv

n (n − 1)
.

The mean inverse of shortest path length l−1 is defined as

l−1 =

∑

u∈V

∑

v 6=u∈V

1
duv

n (n − 1)

In practice we use the mean inverse of shortest path length because by
doing that we nullify the effects of disconnected vertices and their “infinite”
distance. Increasing mean value of this measure means that average dis-
tances in the network are increasing, and this subsequently means that the
attack in the network produces quantifiable, destructive results. Clearly,
since we use the mean inverse of this measure, we expect it to decrease with
time.

3.2 Standard Centrality Measures Explained

As it was already mentioned, the random vertex hit strategy has practi-
cally no effect to the network’s integrity, and that is because it cannot take
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into consideration its hierarchical structure. This is exactly where degree
based attack succeeds. By targeting the highest degree vertices first, it at-
tacks directly the global network connectivity. It must be pointed out that
not all properties of Barabási-Albert networks are known. Initially it was
believed that high degree vertices were connected with other high degree ver-
tices preferably over lower degree vertices (assortative mixing) [28]. Recent
studies [29] show that Barabási-Albert networks are rather neutral on this
property, and in some cases even show the opposite behavior (disassortative
mixing), i.e. high degree vertices prefer lower degree vertices to connect to.
We believe this observation can explain the success, albeit partial, of this
strategy, as in the disassortative mixing the deletion of highest degree vertex
would effect many vertices: but since this is not a predominant phenomenon
the effectiveness of this strategy would be limited.

On the other hand, the betweenness based strategy seems ideal, espe-
cially with the performance metrics used (mean shortest path length, largest
component size). By definition, the betweenness measures the ability of a
vertex to be irreplaceable in shortest paths throughout the network. So when
this vertex is removed, inevitably all shortest paths depended on it will be
removed also, and equally long or longer paths would take their place. This
has an obvious impact in the mean shortest path length, which is constantly
non-decreasing, at least as long as a unique giant component exists. Such
high betweenness vertices, which connect many others with shortest paths,
would be initially located in the largest component as most vertices would
be located there. Therefore, the failure of these paths effects also the largest
component size, since multiple failures may produce disconnected vertices.
Similar arguments can be used with the closeness centrality.

3.3 Proposed Strategies

We propose a family of strategies based, in part, on edge degree. Although a
formal definition of edge degree does not exist, we experimented with several
possible definitions, all based on vertex degree. Specifically, an edge’s degree
has some connection with the endpoint vertices of this edge. As was the case
in [23] we settled with the edge degree being the product of the endpoint
vertices’ degrees, as it followed closely our intuition on the importance of
edges. If e = (w, u) an edge with endpoints w and u, having degrees kw and
ku respectively, its edge degree kΓ1

e is defined as:

kΓ1

e = kw · ku

The first strategy which uses the edge degree to select vertices does so
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by first selecting the edge with maximum degree, and then the vertex of
this edge with maximum (vertex) degree. In case of multiple edges/vertices
with same (maximum) degree, we choose uniformly at random. Note that
this strategy examines the immediate neighbourhood of each endpoint ver-
tex, and scores higher edges having endpoints with large 1-neighbourhoods.
From now on we will refer to this strategy as “1-neighbourhood edge degree”
strategy.

The second strategy defines edge degree as the product of the 2-neighbour-
hoods of its endpoint vertices. This 2-neighbourhood edge degree kΓ2

e of an
edge e = (w, u) is defined formally as:

kΓ2

e =
∑

i∈Γ1(w)

ki ·
∑

j∈Γ1(u)

kj

The vertex selection is exactly the same as before: choose the edge with
maximum degree and then the endpoint vertex with maximum degree. We
will refer to this strategy as “2-neighbourhood edge degree” strategy.

The third proposed strategy is based on the “2-neighbourhood edge de-
gree”, as defined above. The main difference is that it penalizes the existence
of triangles in which the edge is present. Specifically, it divides the above
computed edge degree by the number of triangles that this edge participates
in, plus one to avoid division by zero. Thus, if T is the number of triangles
involving the edge in question as a side of the triangle, the formal definition
of the alternative edge degree is:

KΓ2

e =

∑

i∈Γ2(w)

ki ·
∑

j∈Γ2(u)

kj

T + 1

We will refer to this strategy as “2-neighbourhood edge degree with penalty”.

4 Experiments

For the experiments we used networks of 1500 vertices, created by the BA
procedure mentioned in Section 2. The parameters of importance are the
size of the initial network (before the procedure starts adding vertices) and
the degree of each added vertex. We used degree 5 for each new vertex
and we kept the initial network small, consisting of 5 vertices connected
with random edges. Each edge between two vertices had 0.5 probability of
existing, so as to differentiate the vertices for the growing procedure. We
kept the initial network intentionally small because larger (initial) networks
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create larger gaps between high degree and low degree vertices during the
network growth. As a result, highly central vertices are fewer and more
easily recognizable by any targeting strategy and are diminished quickly,
leaving no time for the various strategies to produce different results.

The results are shown in figures 4, 5, 6 and 7, located at the appendix.
The inverse mean shortest path length, the size of the largest component
and the clustering coefficient are measured after each vertex deletion and
shown in separate illustrations. For each of these parameters, five different
data sets exist, corresponding to the five strategies under study (highest
degree, betweenness, 1-neighbourhood edge degree, 2-neighbourhood edge
degree and 2-neighbourhood edge degree with penalty). Their values at
each deletion step are the average of 50 experiments with different networks
of 1500 vertices. Of the monitoring parameters, the easiest to read is the
size of the largest component and its transition is shown in magnification
in fig. 6. It is easy to see the relation between the various strategies, as
each one, having done a preliminary work, performs better or worse than
the others during the transition.

4.1 Drilling into experimental results

The inverse mean shortest path length initially declines, meaning that dis-
tances inside the network begin to grow in general. At some point this trend
is reversed because during the deletion process the connected components
become quite small and the distances inside them are even smaller than in
the initial network. Thus the inverse length continues to increase as con-
nected components are cut into smaller pieces and this continues until they
stop breaking up. At this point the inverse length is at its maximum value
and almost all significant vertices are gone, as subsequent deletions leave the
components at roughly the same size. From this maximum point on, the
network continues to shrink with almost constant rate. The five strategies
differ mainly in their ability to break the already small connected compo-
nents to even smaller ones, leading to higher maximum points, as is shown
in fig. 4 in appendix.

The size of the largest component is a more straightforward measure.
After each deletion the size of a component is reduced by one and, at least
initially, the deleted vertex is selected from the largest component. As more
“central” vertices are deleted, critical paths collapse and the largest com-
ponent breaks into smaller pieces. Figure 5 in appendix shows clearly that
there is an early stage where the strategies built up tensions by deleting
important vertices, a transition phase where very important vertices are
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gone and each deletion breaks the largest component in small pieces, fol-
lowed by a slow shrinking of the largest component. The transition phase is
where the various strategies compete, and betweenness is the most success-
ful in making the transition in fewer deletions. However, comparable to the
degree strategy which performs poorly, our proposed strategies bridge the
gap with betweenness by up to 23%, 29% and 55% for 1-neighbourhood, 2-
neighbourhood and 2-neighbourhood with penalty edge degree respectively.

The clustering coefficient during the early stage is decreasing by orders
of magnitude, meaning that the deleted vertices, tagged as central by the
various strategies, contribute greatly to the global clustering coefficient (fig.
7 in appendix). During the transition phase it appears fluctuating due to
the shrinking of the largest component and the increase in the number of
components, and in the last phase it is completely wiped out as triangles
do not practically exist. The betweenness stands out, since during the tran-
sition phase it creates a seesaw effect on the clustering coefficient, never
destroying all triangles in the connected components. Although we have no
solid evidence, we feel that this observation is the key to understanding the
role and the success of betweenness, and to replicate its behaviour in other
measures.

In order to understand why the proposed strategies work as they do,
we focus on a high degree edge and examine its specific characteristics (fig.
1). Just by looking at the high degree edge alone, one can argue that it
connects high degree vertices, therefore is important for the communication
of (kw − 1) vertices (at the one endpoint) with another (ku − 1) vertices
(at the other endpoint). So its deletion alone would probably effect many
vertices and the distances between them. As for the highest degree endpoint
(which will eventually be deleted), one must keep in mind that high degree
vertices don’t usually connect to other high degree vertices. On one hand,
deleting high degree vertices is a successful enough strategy on its own (see
degree centrality strategy), but with maximum edge degree we ensure that
the high degree vertex to be deleted will be connected to the highest possible
degree vertex (given its not a common phenomenon) and the deletion will
effect a greater number of vertices. On the other hand, since high degree
vertices don’t connect often, this filter differentiates adequately otherwise
equal vertices (i.e. when degree centrality is used).

The 2-neighbourhood edge degree strategy operates in an similar way.
The same arguments as above are still valid here, i.e. a high degree edge con-
nects more vertices than a low degree one. The main difference is that we are
now talking about vertices that are part of the 2-neighbourhood of the one
endpoint vertex which connect with the vertices of the 2-neighbourhood of
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Figure 1: 1-neighbourhoods of two connected vertices

the other endpoint vertex. This may be more reliable than the 1-neighbour-
hood of the endpoints since there seems to exist a light disassortative mixing.
This means that high degree vertices connect to lower degree, thus their in-
fluence dies out quickly as we move further from their center. By using
2-neighbourhoods we favor vertices that their influence two steps away is
still strong. The downside of this strategy is its slightly larger computa-
tional load compared to the 1-neighbourhood edge degree, but this is still
far from that of betweenness centrality. Furthermore it uses semi-local in-
formation for its computation, which, we estimate, should not be a problem
in most practical uses.

The mechanism behind the alternative 2-neighbourhood edge degree
strategy is somewhat different. Obviously the same arguments of the two
previous strategies are still valid here. An instance that is handled differ-
ently is shown in fig. 2. Normally the 2-neighbourhood edge degree of this
edge would be

∑

i∈Γ2(w)

ki ·
∑

j∈Γ2(u)

kj

but since it participates in a triangle due to the common neighbour of both
endpoint vertices, this edge degree is divided by 2. Thus edges that connect
two “smaller” vertices in terms of 2-neighbourhoods can have larger edge
degree and be selected instead. The situation is even worse if the edge
participates in more triangles, as in fig. 3, for its edge degree would be even
smaller. The edge degree can gradually increase, if vertices comprising the
triangles become selected for the deletion process, and the triangles collapse.

This edge degree with penalty measures the size of two 2-neighbourhood
connecting through one edge, as was the case in the previous 2-neighbour-
hood edge degree. But it also considers the importance of alternative paths
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between these two 2-neighbourhoods. There is no doubt that selecting one
endpoint of an edge participating in many triangles will destroy these tri-
angles also, but vertices connecting same size 2-neighbourhoods with no
triangles are more important to the whole network, and this is expressed by
this measure and verified by our results.

ew{ u }
Figure 2: 2-neighbourhoods of two connected vertices

ew }{ u

Figure 3: 2-neighbourhoods of two connected vertices with triangles

4.2 Algorithm Complexities

Theorem 1. The worst case time complexities of the proposed strategies are

O (m), O (m
√

n) and O (mn) for 1-neighbourhood, 2-neighbourhood and

13



2-neighbourhood with penalty edge degrees, respectively. Furthermore the

average case time complexity is O (m) for all strategies.

Proof. The 1-neighbourhood edge degree just multiplies two integers, namely
the vertex degrees of the edge endpoints, for all edges. The query of a ver-
tice’s degree is an O(1) operation in the LEDA enviroment we are using [30],
so the total cost of computing 1-neighbourhood edge degree for all edges is
O (m) in any case.

The 2-neighbourhood edge degree queries for each endpoint vertex, the
vertex degree of all its neighbours and sums it, multipling the two endpoint
sums, and does this for all edges. The iteration of all neighbouring vertices
of a vertex has guaranteed asymptotic complexity on the number of actual
neighbours. So in the worst case, this computation has O (mkmax) complex-
ity, where kmax is the maximum degree in the network. Specifically for the
Barabási-Albert network there exist an analytic solution [31] for the degree
ki(t) of a vertex i at timestep t, as

ki (t) = l

√

t

ti
(4)

where l is the number of edges per new vertex and ti is the timestep when
vertex i was added to the network. After n timesteps the maximum degree
in the network is

kmax = O
(√

n
)

And so the worst case time complexity is O (m
√

n). But since the mean
degree in the network is k = 2l (as can be easily seen), the average case time
complexity is O (m).

The third strategy is computed as above, but for one endpoint of the
edge, we scan its neighbour’s neighbour lists to find the other endpoint (indi-
cating the existence of triangles). So its worst case complexity is O

(

mkmax
2
)

and thus O (mn). Similarly its average case complexity is O (m).

5 Conclusions

We have studied three novel strategies in network attack and compared them
with two traditional approaches, degree and betweeness centrality, both with
its own merits and flaws. These strategies have proven to be simple enough
to implement, with low computational cost, and yet efficient compared to
the best strategy. In addition to their value as attack strategies, they can
help to shed light to the inner workings of a power law network. One of
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the great difficulties in their study is our ignorance as to what measures
are important to the behaviour of these networks. Our experiments link
the degree-degree correlations among vertices with their centrality in the
network. Furthermore, to the extent of our knowledge, it is the first time
that the clustering effect is linked to the centrality of a vertex. Although we
know this is responsible for the “denseness” of power law networks, its exact
role remains unclear. Our third strategy indicates that it plays a major role
in conjunction with other phenomena, such as the degree-degree correlations.
It would be of interest to study several models of networks, other than the
BA model, that show documented assortative or disassortative behavior
and models that have known clustering coefficient distributions, in order to
explore further these effects of our strategies. Furthermore, it is the subject
of future research to determine whether the utilization of other network
structures, similar to the triangles we are using in this study, will help
bridge the gap between local strategies and global ones, as is betweenness.
This development will not only help us to study larger networks but will
also reveal the role of individuals in such a vast network.
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Appendix
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Figure 4: Inverse mean shortest path length shown as percent of the initial length, as
vertices are sequentially deleted. The results are the average of 50 experiments with
networks of 1500 vertices.
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Figure 5: Size of largest connected component shown as percent of the initial size, as
vertices are sequentially deleted. The results are the average of 50 experiments with
networks of 1500 vertices.
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Figure 6: Size of largest connected component shown as percent of the initial size, as
vertices are sequentially deleted. Detail of the transition.
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Figure 7: Clustering coefficient of network, as vertices are sequentially deleted. The results
are the average of 50 experiments with networks of 1500 vertices.
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