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Abstract: Distinguishing between chaotic and random data are quite difficult. Many
chaotic processes generate outcomes, which are random while random processes may
generate data that satisfy tests for chaos. Here, we show with example of both random
and chaotic data sets that they can be characterized by applying surrogate data method
and then comparing values of correlation dimension calculated from the original data set
and its surrogate counter-part. Obviously, we comment on the data generated by the
process- not about the process as a whole.
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1. Introduction
There are not only several definitions of randomness but in significant number of cases
they can produce conflicting classifications of a given time series or a line segment
thereof. One of the most popular one is as follows. A run is random if there is no theory
for it, and no description of the data is more concise than the data itself. [1]
Any process is random when it is so designed and operated so that each outcome is
generated independently of all others, past, present and future, regardless of what any
give run looks like or how it tests. For example — the output of a fairly designed, well
manufactured, well maintained and fairly operated roulette wheel. Details of randomness
and various examples are given in earlier work [2].
On a more technical level concept, random data are not only the product of a random
process but in addition, meet the following criteria by test, when the outcomes are
arranged in order of generation —
1. Each outcome is independent of the other.
2. Each outcome represents one of all possible outcomes of the operation of a process.
3. The outcomes are mutually exclusive.
4. Collectively the outcomes are exhaustive.
5. Each outcome has a probability of less than one.
6. The probabilities of all the outcomes add to one.

The concept of randomness used to classify a specific run should be based on the run’s
characteristics, not on the characteristics of the generating process. An important lesson is
that a simple chaotic system can produce a time series that passes most tests for
randomness. Conversely, a pure random system with a nonuniform power spectrum
(correlated noise) can masquerade for chaos. [3] As Mandelbrot (2004) noted “…a
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financial market is especially prone to …statistical mirages. My mathematical models can
generate charts that — purely by the operation of random processes — appear to trend
and cycle”. [4]

In this paper we attempt to test whether a given set of data in the form of a time series - is
chaotic and random. As noted earlier that it is quite difficult to predict as a whole about
the process generating that data as chaotic or random one. So we here confine the
prediction about the time series only.
Our proposed scheme is as follows: applying the method of surrogate data. While
shuffling data of the given series- it preserves the probability distribution function, it does
not preserve the power spectrum and correlation function. The surrogate data will be
white and uncorrelated even when the original time series is not. [3] Now suppose one
developed some statistic that purports to distinguish chaos from noise. In our case, it will
be correlation dimension (D2). Now one compute the statistic for the original and the
surrogate data, and the values are inevitably different. One needs to decide if the
difference is statistically significant.
In section2, we give the description of data and in section3 we briefly outline the
surrogate method and correlation dimension concepts. In section4, we give the results in
tabular from and draw some conclusions. The reference section is given at the end of the
paper.

2. Data
Here we have tested a number of time series. Some of them (A, B & C) are generated
with random numbers produced by a computer program. Some other (D & E) series are
chaotic, they are formed by recording of human EEG data in various conditions (for
example, EEG1 has its subject's eyes open, while in EEG2- eyes were closed. Another
data series (that is, F) was formed by numerical simulation of low dimensional Artificial
Neural Network models. All these (D, E & F) three chaotic time series were under study
in some different context but the dynamics of EEGs & Theoretical data were confirmed
to be chaotic [5]. Another data set, G is well known chaotic Lorentz system.

Analyzing a time series with a nonlinear approach is definitely a complicated problem.
Simple answers have been repeatedly offered in the literature, but researchers like Kantz
et al. [6] are against such simple answers. We have calculated the correlation dimension
(D2) of both the original and surrogate of each dataset and then compared the values to
test the existence as well as the nature of chaos.

3. Mathematical tools
As underlined in [3] to find a statistic which is to be compared between the original
and the surrogate data sets, we pick up correlation dimension as that statistic. Before
analysis, we give below a simple outline of the D2 as well as the surrogate process.

3.1 Correlation  Dimension (D2)
Being   one of  the  characteristic   invariant of  nonlinear  system   dynamics,  the
correlation  dimension gives a measure of complexity for  the underlying attractor of
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the system [7]. To detect the saturation value of the correlation dimension, the
function plots the computed correlation dimension as a function of the embedding
dimension. Mathematically, the correlation  dimension is a special case of the
generalized dimension, and it is given by

D2= lim [ ∑
M(r)

 Pi

2
 / log r ]                     (1)

        r  →0    i =1    

with Pi being the probability to find a point of the attractor within the ith subcube of
phase space when  phase space is subdivided into disjunctive cubes of side length r.
The number M(r) of cubes that contain attractor points, is related to the dimension D
of the attractor :

M(r) ~ (1/r)D (2)
Parameters involved are
i) delay τ  ii)  minimum (mmin) and  maximum (mmax) embedding dimension (m)
iii) Lower relative radius r0 and upper relative radius r1, between which the
correlation dimension is calculated as the derivative of the log C(r)/log(r) plot. Thus
r0 and  r1 should both lie within the scaling region of the attractor. Here we draw for
each data set figures by plotting D2 versus m in the range of mmin and mmax and by
choosing appropriate value of m for that data set as given in table2, estimate the value
of D2, as shown for a data set in Fig. 1. Details of such process have been discussed
in our earlier work [5].

3. 2 Surrogate data method
We follow the approach of Theiler et al. and Schreiber et al. [8, 9]. Surrogate signal is
produced by phase randomizing the given data. It has similar spectral properties as of
the given data, that is, the surrogate data sequence has the same mean, the same
variance, the same autocorrelation function and therefore the same power spectrum as
the original sequence, but (nonlinear) phase relations are destroyed. In the case of
data shuffling the histograms of the surrogate sequence and the reference sequence
are identical, too (Refer to Fig. 2).

We have used the first way to produce the surrogate data set of all the data sets under
consideration. Next we have calculated fractal dimension of them and compared with
respective original data sets as given in Table 1. For a chaotic dataset, there will be
considerable difference in values as the "surrogating" process destroys the
nonlinearity. For a random data set, there will be little effect of surrogate process and
thus there will be little difference in D2 before and after surrogating it.

We took help of following software, apart from our own programs written in C,
i) Dataplore  2.0-6 (c) 1995-2000: from DATAN GmbH, Germany [10]
ii)        TISEAN 2.1 (2000)-Nonlinear Time Series Analysis: by R. Hegger,
            H. Kantz, and T. Schreiber.  [6]
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4. Results

 Table 1: Details of results with data sets
Data D2 D2(Surrogate) % change Data Description

Chaotic Series
A Rand4000 4.2 4.7 11.94 Random series of 4000 points
B Rnd2sgn 4.9 4.7 4.08 Signed random number
C Rnd4k2sr 4.6 4.4 4.35 Subtraction of 2 random series

Random Series
D. EEG1 2.98 1.26 57.72 Elecroencelophalogram data
E. EEG2 2.08 2.74 31.73 Do
F. Theoretical 1.48 1.99 68.64 Mathematical simulation
G. Lorenz 1.95 3.94 102.05 Well known Lorenz series

Table 2: Showing values of parameters taken as discussed in Sec. 3
 mmax,     mmin     τ Reference pts   r0 r1 Skip
20,       5     1 100 .2 1 20
Values of m for data sets A,B,C  m=5 for D,E,G m=8 For G m=6

We find from the above table that for known series consisting random data has change of
less than 12% in their D2 value due to surrogate process. But the same difference is much
higher for a truly chaotic data (more than 30%). Obviously, there are differences in
dimension of chaos. But in any case, even for low dimensional chaotic series [4] E or a
high dimensional G series, the change is much higher.
So effectively, we can conclude that for a set of data (signed or unsigned, integer or
fractional etc.), we may apply the surrogate process and D2 calculation to conclude
whether they are random data or chaotic data.
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