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Catastrophic events in MAS 
 
A large number of real systems exhibit dynamics that bear the potential for chaos. The 
domains over which stability of the systems occurs can be relatively large. But once in a 
while, systems may move towards the edge of stability and little nudges to the system 
may move it from stability to instability, that is, into a catastrophe. Subsequently, 
reorganisation of system components, which may occur as a reaction to bring the system 
back into a stable domain, a kind of evolutionary process. This stable domain, however, 
may not be the same as the one prior to the disturbance. In this new stable domain a 
novelty spreads by meanings, objects and subjects, and produces innovation. 
 
The system undergoes a catastrophic event in the sense that it is moved from an initial 
state of stability through a dramatic phase of reorganisation and back to some degree of 
stability. Examples of such catastrophic events include landslides, avalanches, 
earthquakes, and pest outbreaks in ecosystems. In each case, small changes in the 
system occur, where these individually may not be critical to the system’s behaviour. 
Collectively, however, they lead to the evolution of the system towards a critical state. 
This is apparent, for example, in the case of pest outbreaks in ecosystems. Each infected 
individual potentially adds to the instability of the system. When a critical point is 
reached, the next infected individual may trigger an epidemic that affects a larger part of 
the system. Temporary stability is quickly reached if the epidemic is not too intense. 
Even if not in a large scale, the epidemic adds to the stress of the system’s fragile 
regions, making these more susceptible to further epidemics as more individuals are 
infected at those regions or as additional diseases are received from the most fragile 
regions of the system. Ultimately, a large-scale catastrophic event may occur that affects 
the entire system, not just individual regions. The system components regroup and 
finally enter a phase of new, temporary stability. 
 
Evolutionary processes are hence at work, making the system more efficient. We refer 
to this as evolution toward catastrophe. A system in such a state can transgress to a 
stable state by another process of evolution, faster than the first kind, where this new 
stable state may not be very efficient. Large living natural systems are similarly 
constrained from operating at or near peak efficiency by random intervention of 
uncoordinated external processes at the regional levels. 
 



We can develop a simple model of catastrophe and then proceed to create an epidemic 
model. Before this, we consider the following equation (Beltrami, 1998): 
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Figure 1.  

 
 
Consider Figure 1, which illustrates the surface defined by Eq.(1). Imagine a ball lying 
at the top of this surface such as point A. The ball may be still, and very small nudges 
away from its first equilibrium point A, leading to a new equilibrium. After a series of 
such small perturbations, however, the ball will roll off the top part of the surface, and a 
priori it is difficult for us to determine exactly where it will end up. All we know for 
certain is that the new equilibrium position is somewhere at the bottom of the surface, 
say point B. Small nudges to the ball in B will again move it slightly away from B. And 
if we push it hard enough, we can propel the ball through the fold, or cusp, to the upper 
part of the surface again. Where exactly will it end up? A precise answer requires exact 
knowledge of the shape of the surface, the properties of the ball, and the magnitude and 
direction of the force exerted on the ball. In more complicated real-life systems not all 
the variables describing the system and the forces exerted are known well enough. As a 
result, we may only know stability domains rather than specific locations.  
 
 
Budworm Dynamics 
 
A classic example for the implications of ecosystem catastrophes is budworm dynamics 
(Royama, 1984). Budworms are caterpillars that feed on spruce and fir forest in north-
eastern Canada and the United States. When forest stands reach maturity, budworm 
populations explode, seriously affecting the forest by defoliating the trees. With the 
death of trees comes a loss of food and consequent population crash. The cycle of [low 
population density]-[stand maturity]-[budworm population explosion (and collapse)] 
tends to repeat itself over a lapse of time. A natural systems way of controlling, amongst 
others, relates to the patch size. Natural systems no doubt avoid large catastrophes 
because they operate in patches, where the degree of maturity of adjacent tree patches is 
nearly always different. Consequently, pests and disease find difficulty in spreading 
beyond a patch, and the size of the catastrophe is kept small. Current MAS practice 
seems to ignore such system behaviour. Our model is not a regional one and such inter-



patch dynamics are not captured. However, we have conceptualised such patch 
dynamics to combine with this conceptual-theoretical model. 
 
To model a bio-inspired MAS catastrophe, we use a budworm dynamics model (see 
Beltrami, 1998). Let us denote B as the agent population density, k the information 
carrying capacity, S the network density, and Br  the agent population growth rate. Thus,  
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describes the population dynamics for a fixed information carrying capacity and no 
negative influences on agent population growth. This is a logistic growth equation. Let 
us introduce the effects of a negative agent population growth factor, with a maximum 
rate of c, which is assumed to be constant. At small densities, c has only a minor effect 
on agent population because it is small, and thus the probability of those affected by the 
negative factor is also small. A negative agent population growth factor that captures 
such interactions is: 
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With a as a scalar that captures the effectiveness of the ‘negative agent population 
growth factor’ to affect and eradicate an agent. In a developed (more populated) system 
of agents, it is assumed that the negative factor is more effective than in a less 
developed system. Thus, a may be assumed to increase with increased development of 
the MAS, that is, network density 
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And thus 
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Where m  is a constant. 
 
Combining negative population growth with the logistic function yields 
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Which is the equation used in the model that drives agent population changes, ∆B. 
 
Changes in network density are assumed to also follow the logistic growth curve, with 

Sr  as the rates of increase and Sk  as information carrying capacity.  
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Where E is the percentage of nodes of the network. The denser the network, the higher 
E becomes. The percentage of nodes is assumed to decrease as the average agent 
density per network density B/S increases. To model the reduction of stress as agent 
population decreases, we multiply B/S by E2. The combined effect of logistic growth in 
network and agent induced nodes loss is: 
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Where Er  is the rate of nodes increase and p a proportionality factor. 
 
Let us consider the case of B ≠ 0 and introduce the following notation: 
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And rewrite 
 

mSxB =                                                                                                                         (11) 
 
It can be shown that the nontrivial equilibrium of Eq. (6) fulfil  
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With 
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The left side of Eq. (12) is a straight line f(x) with slope –R/Q. Equilibrium occurs 
where this line intersects with g(x). Both, S and R increase in Q. At first, there is a single 
equilibrium, corresponding to the situation shown in Figure 1.  
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