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Abstract

This paper compares two fundamental building blocks of complex interaction-based systems:
communication and cooperation. We investigate the effectiveness of communication in an envi-
ronment where the need for cooperation is scalable as well as the available resources. Several
aspects of communication are considered: firstly, we compare a centralised with a decentralised
communication protocol; secondly, we compare a population that always communicates with one
where the entities can (evolutionary) learn to communicate. This work is part of a larger project
whose main goal is to investigate the emergence of cooperation and communication in response
of (scalable) environmental challenges. Our application context is an artificial society, i.e., a sim-
ulation of a societal system that was inspired by the classical SUGARSCAPE that embodies a
bottom-up approach to investigate complex effects that do not necessarily have complex causes.
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1 Introduction

The building blocks of a complex system with many active entities arecommunicationand coop-
eration. Communication is used for information exchange beetween the entities and cooperation is
necessary if the entities want to achieve goals that are beyond their own reach. If we are to design
complex artificial systems, we have to know the effects of deciding for available ways to communicate
with respect to a given problem environment. This paper presented a first step towards such design
questions.

We investigate the communication and cooperation properties of a complex system with many
interacting entities among three different dimensions.

• Firstly, we compare i) acentralisedcommunication protocol – where individuals multicast mes-
sages that can be received by any individual – and ii) adecentralisedcommunication protocol –
where information is transferred directly between agents without a third party (messageboard,
or alike).

• Secondly, we vary the availableresourcesand thecooperation threshold; the resources are
needed by the agents to survive, the cooperation threshold determines how strong the pressure
is on the agents to cooperate.

• Thirdly, we parameterise the communication protocols (e.g., probability that an agent talks or
listens to other agents) and we empirically compare the implications of i) fixing these parame-
ters and ii) letting the agent learn these parameters themselves.

Our agents are equiped with a hardwired mechanism for communication, and learn (by evolution)
to use this mechanism. Our notion of cooperation is rooted in the environment. It is interesting to
mention that our approach is complementary to some of the classics. Namely, we study the emer-
gence of communication under fixed properties of cooperation (hard-coding its mechanics), while
many studies focus on the emergence of cooperation under fixed properties of communication (see for
instance [2], which assumes there is none).

Our experiments are conducted in a straightforward artificial society. This society consists of a
collective of agents that lives off harvesting sugar resources in the environment. In some situations,
agents may be forced to harvest sugar together with other agents. Each agent is able to communicate
information about the amount of sugar at its location and may also receive such information from
other agents.

Our main research objective can now be specified as follows: To study the development of the
agents communication attitude (talk/listen gene distributions) and cooperative behaviour (eating to-
gether) under varying levels of cooperation (maximum amount of sugar they can eat alone).

This paper is organised as follows. In Section 2 we explain the concept of an artificial society, the
communication protocols that we researched and some earlier work that we did on this topic. Section
3 describes the system that we designed for carrying out the experiments. Section 4 contains the setup
of the experiments and presents the obtained results. Section 5 analyses the results. We conclude and
present future work in Section 6.
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2 Background

2.1 Artificial Societies

Our research can be positioned in a broader context, that of artificial societies. We let artificial so-
cieties be agent-based models of social processes [11]. This definition brings with it some notion of
agents (the “people” of the artificial society), simulation (models are computationally executed to ex-
plore societal phenomena) and social structures (the macroscopic behaviour of a group of interacting
individuals).

Epstein and Axtel [11] let an artificial society consist of 1) agents, 2) an environment or space,
and 3) rules. An agent then has internal states and behavioral rules, which each can be fixed or
flexible. Interactions and changes of internal states depend on rules of behaviour for the agents and
the space. Environments can be abstractly defined (e.g., a communication network) or more resemble
our own natural environment (e.g., a lattice of resource-bearing sites). The environment is a medium
separate from agents, on which the agents operate and with which they interact. Rules can be defined
to describe the behaviour of agents and the environment on different interaction levels, i.e., agent-
environment (e.g., agents looking for and consuming food), environment-environment (e.g., growing
resources), and agent-agent (e.g., combat and trade).

2.2 Communication

As mentioned, our research compares a centralised with a dentralised communication protocol.

Centralised Communication In the centralised approach, communication between agents is sup-
ported by a centralised component; this is a component that is accessible by all agents, e.g., commu-
nication through a messageboard. A messageboard enables the agents to communicate by facilitating
the storage and retrieval of communicated information. All agents wanting to communicate can access
the board to post a message to it, or read messages posted on it.

Decentralised CommunicationIn the decentralised approach, there is no central support for com-
munication. Agents that wish to communicate to other agents need to manually find agents to com-
municate to and exchange the information with them. Many decentralised communication protocols
(e.g., gossip, epidemic-based) have been proposed and researched recently. We have implemented the
newscast model [12] in the experiments described below that we explain in more detail.

Newscast Communication

The newscast computing model is a fully distributed information propagation protocol for large-scale
peer-to-peer computing [12]. The main idea of newscast is that each agent maintains a cache of
information items holding the information for and from the agent; the cache also contains the names
of all agents that are ”friends” with the agent. The cache of names, i.e., IDs and addresses, is used
each time a communication is initiated by the agent. Each agent can listen and receive the messages
from other agents that have it in their cache. At fixed time intervals, the agent updates the information
in its cache and the list of names.

The used metaphore for illustrating the newscast model is the concept of anews agency. This
agency regularly asks all agents for news. Additionally, the agency provides each agent with news
about the other agents in the society.
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Each agent has acorrespondent modulethat maintains a cache ofc > 0 newsitems, wherec
is fixed. A news item contains a timestamp, the agent ID and the message itself (location + sugar
amount). Agents regularly exchange their caches by following this procedure (where the local agent
is the agent who initiates an exchange with a peer agent):

1. Request a fresh news item from the local agent and merge the item into the cache.

2. Randomly select a peer correspondent by considering its ID as found in the cache.

3. Send and receive each other’s caches. Merge received items into the local cache.

4. Since the cache now contains2c + 1 cache items, the oldest ones are thrown away to keep the
c freshest ones (breaking ties randomly).

2.3 Scalable Environments

As mentioned, the work presented here is part of a larger research project investigating the (commu-
nication) responses of an artificial society to scalable environmental challenges (here: cooperation).
As such, this work extends earlier work [9] where we also compared the centralised messageboard
protocol with the decentralised newscast protocol, but where we fixed the cooperation threshold and
available resources on single values. Other work [5] investigated the message removal methods for
the messageboard protocol. We investigated the following settings: 1) removal after fixed number of
iterations, 2) removal after the message has been listened to, and 3) removal after cooperation took
place resulting from the message. No significant differences between methods 1) and 2) were found,
whereas method 3) consistently resulted in early extinction of the society. In the work reported here,
we used removal method 2).

In related work [4] we investigated the agent’s learning capabilities to developphysicalandmen-
tal properties. We researched both lifetime and evolutionary learning. The results indicate that the
evolutionary approach is able to sustain larger and more stable agent populations as well as maintain a
higher degree of individual success comparated to the lifetime learning approach. Furthermore, quite
unexpectedly, the method used for mental development has a strong effect on the development of
the physical features within the very same environment: the individuals bodies evolve to completely
different segments of the physical feature space under the two regimes.

In [8] we extended 1) the environment to include a heterogeneous set of resources, and 2) the
agent’s reproduction mechanism as to where and when reproduction took place. For the first extension,
the environment presented here knows only one type of resource (defined in terms of the benefit to
the agent utilising this resource), whereas in [8] we researched three different types of resources. For
the second extension, agents could reproduce 1) only with their neighbours or with anyone in the
environment and 2) during their lifetime or only at the end of their lifetime. The results show that
indicate that utilizing reproduction at the end of an agents lifetime and local reproduction (only with
neighbours) afforded the agent collective a significantly higher level of performance in its cooperative
task.

Finally, in [9] we also present a preliminary theoretical model on the relationship between the
decay of value of information that agents act upon and the rate at which agents exchange information
with each other. The environments that we investigate turn out to have a very rapid decay of informa-
tion value: a communicated message may long have lost its value once its reaches its listeners. This
puts the results found in these environments in the following perspective: the used communication
protocol must be able to remove outdated information fast enough. We later indeed find that the news-
cast protocol (due to its decentralised nature) is not able to remove outdated information fast enough.

4



Because our decentralised communication protocol (messageboard) removes information once it has
been listened to, this gives it an advantage in these environments already from the outset.

3 System Description

The system in which we conduct our experiments consists of a simulated environment that represents
an artificial society (called VUSCAPE) and a set of agents that populates this society.

3.1 JAWAS

The JAWAS1 simulation platform is comparable with existing social simulation software such as As-
cape [13], Repast [6] and Swarm [7]. All settings in JAWAS can be specified either in configuration
files or via command line arguments. This enables the user to automate experiments, which sub-
stantially speeds up the time needed for, for example, investigating effects of varying experimental
parameters (often requiring a large number of runs). Data are automatically saved at specified loca-
tions, enabling detailed experimental logging. Thorough statistically based experimental research on
complex systems that depend on numerous parameters requires a large number of runs. Facilitating
this is one of the main design objectives of JAWAS. It is very easy to add, replace or delete code
when changes or extensions to the model need to be implemented. No direct connection is necessary
between the program and the graphical user interface. Initial exploration can use the graphical user
interface, and for automated experimentation, the system can be run solely with configuration files or
from the command line.

3.2 Simulated Environment

The simulated environment is an artificial society called VUSCAPE [5], which is based on SUG-
ARSCAPE [11]. This artificial society concerns a two dimensional grid, wrapped around the edges,
where each position corresponds with an area which can contain multiple agents and some amount
of sugar. Agents move through the world by vertically or horizontally jumping to another location
(cf. moving in SUGARSCAPE). The agents live off the sugar, determining their level of fitness; if
an agent’s fitness reaches zero, it dies. The major differences between VUScape and SUGARSCAPE
concern the implementations of cooperation, communication, explorative behaviour, increased grid-
point inhabitance, randomised sugar distribution, and randomised age initialisation. We investigated
the effects of these differences experimentally in [5].

Cooperation

Each agent can only harvest a maximum amount of sugar on its own. This amount is set by the
maxSugarHarvest (MSH) parameter. If an agent is at a location at which the amount of sugar is over
this threshold, it needs other agents to harvest the sugar. If there are more agents at such a location,
these agents harvest the sugar together and the sugar is evenly distributed over these agents. In the
experiments described below, the cooperation threshold is the same for all agents.

In addition to theMSH parameter, we scale the necessity to cooperate by varying the number of
available resources in the environment, called the maximum sugar size (MSS) in VUSCAPE. Based on
the settings ofMSH (implements the earlier mentionedcooperation threshold) andMSS (implements

1JAWAS: Java Artificial Worlds and Agent Societies, can be downloaded from http://www.cs.vu.nl/ci/eci/.
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Figure 1: The agent control loop.

the earlier mentionedavailable resources), we can create easier and more difficult environments for
the agents to survive.

3.3 Agents

Our agents were based on the classical SUGARSCAPE agent design: prominent features include
metabolism, gender, child bearing, death, vision, allow sex and replacement. An agent was able to
detect agents and resources for a number of grid-cells determined by itsvisionparameter. It was able
to move for a number of grid-cells determined by itsmoveparameter.

The control loop of the agent is shown in Figure 1:

• An agent gathers information about the distribution of sugar in the world. This is done by means
of listening (to other agents) and looking (at the directly surrounding locations and the current
location). Upon completion of this stage, the agent has at its disposal an array of locations and
amounts of sugar on these locations.

• Based on this array, the agent makes a decision about its next action. In particular, it chooses
a location and moves to this location. This location chosen is always the one containing the
largest amount of sugar. If there are more than one such location, the agent chooses a random
one.

• Having arrived at the sugar, this sugar is harvested in case the amount is under the cooperation
threshold. If the amount is above the cooperation threshold, the agent cooperates immediately
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if there are more agents at the location. Otherwise, it multicasts (with some probability) to other
agents that it needs help.

• If possible, the agent reproduces and generates offspring. For this, it is (at least) necessary that
there is another agent of the opposite sex at the location.

Communication

Agents are endowed with talk and listen capabilities. The talk feature determines whether the agent
performs a communicative action itself, namely informing other agents of: 1) the amount of sugar that
is on its location, and 2) the coordinates of its location. The listen feature is used in the observation
and decision making processes of the agent. By listening, the agent receives information from other
agents about amounts of sugar at the locations of those agents.

The listen and talk genes express probabilities and are formally real valued numbers between 0
and 1. They are calledlisten preferenceandtalk preference, respectively. These probabilities are used
in the control loop of the agent - steps “listen to others?” and “talk to others?” in Figure 1. In these
steps, a random real is drawn and if the resultant value is under the (talk or listen) preference, the
agent listens or talks to others.

Evolution

Agents underwent an evolutionary process of selection and variation. Agents with a high fitness
were selected for and variation of agents was accomplished bycrossoverof agent genotypes. The
agent genes involved are the talk and listen preferences and the initial amount of sugar. Crossover
happens by reproduction of two agents; this is not subject to individual decisions, nor is there any
mate selection. If 1) two agents are on the same location or next to each other, 2) the genders differ,
3) their sugar levels are above the reproduction threshold, 4) they are both in the fertile age range, 5)
there is a vacant cell in the vicinity for placing the offspring, agents will always mate and generate
offspring.

Reproduction takes place by crossover applied to two parents yielding the child, followed by
a mutation operator on the child. The value of a gene in a child is the inherited value (from the
wealthiest parent) plus a random number drawn from a Gaussian distribution with zero mean and
fixed standard deviationσ. The child receives from each of the parents half of their sugar. The child
inherits each of the values for vision, age of death, metabolism, and child bearing independently from
one of the parents without change. After mating, each agent has a so-called recovery period, which is
the number of cycles after mating that an agent cannot mate.

To illustrate the process of reproduction, consider the following example (without mutation). Two
agents are next to each other one with 24 sugar units, a listen preference of 0.7 and a talk preference
of 0.55; the other has 16 sugar units, a listen preference of 0.6 and a talk preference of 0.5. A child of
these two agents gets its listen and talk preferences from the first agent (0.7 and 0.55 respectively). Its
initial sugar amount is the sum of half of the sugar amounts of each of the parents, thus 12 from the
first parent and 8 from the second parent - its initial sugar amount is thus 20.

4 Experiments

4.1 Setup

The experimental setup is shown in Table 1. We varied four parameters:
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maxSugarHarvest maxSugarSize Communication Communication
(cooperation) (resources) protocol parameters

[0 . . . 10] [1 . . . 10]
messageboard evolutionary
newscast fixed

Table 1: An overview of the experimental setup.

• The cooperation threshold - in VUSCAPE this is implemented by the maxSugarHarvest (MSH)
(maximum amount of sugar that agent can harvest on its own). We varied theMSH from 0 to 10
in single increments.

• The number of resources - in VUSCAPE this is implemented by the maxSugarSize (MSS)
(amount of sugar that is ditributed in the world). We varied theMSS from 1 to 10 in single
increments.

• The communication protocol - this was either the centralisedmessageboardprotocol or the
decentralisednewscastprotocol.

• The communication parameters - these could be eitherfixed(agents always listen and talk) or
evolutionary(agents learn to use their communication capabilities by evolution).

This makes a total of11× 10× 2× 2 = 440 experimental runs. Each run was done 50 times.
An overview of all experimental parameter values is given in Table 2. Additionally, talk and listen

features are inherited from the parent with the most sugar. The mutation sigma is 0.1.

4.2 Results

The obtained results have been included in Figures 2, 3 and 4.

Figure 2 shows the results concerning theperformanceof the research populations2. Each datapoint
corresponds to an environment with a certain need for cooperation. This need is expressed by the
number of available resources (maximum sugarsizeMSS) and the cooperation threshold (maximum
sugar harvestMSH). Each line should be interpreted as follows: in environments on and under the
line, all runs resulted in extinction of the agent population. In environments above the line, the agent
population size stabilised at some value. (Note that Figure 2 also contains the results of a benchmark
experiment that we conducted without communication.)

Figure 3 and 4show the results of the experimental runs where the communication parameters were
evolutionary. Each graph shows, for some givenMSH andMSS, the final talk and listen preferences of
these runs. In other words, every datapoint represents the average talk preference and average listen
preference of all agents of the population at iteration 2000.

Because we used10 × 11 = 110 different combinations ofMSH and MSS, it is infeasible to
give separate graphs for each environment; we therefore definedlow (MSH ∈ [0− 2]), medium(MSH

∈ [3 − 5]) andhigh (MSH ∈ [6 − 10]) cooperation thresholds. The ranges have not been chosen

2This graph is very dense presentation of many experimental runs. Each of the 5 graph lines (no communication,
messageboard (fixed), newscast (fixed), messageboard (evolutionary) and newscast (evolutionary)) was extracted from the
set of experimental runs covering the completeMSH× MSS range. These graphs can be found in [15].
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Experiment Agent
numberOfRuns 10 maxSugarHarvest (msh)exp

Scape singleStep false
height 50 initAgeZero false
width 50 minVision 1
runLength 2000 maxVision 1
reseedSugar true minSugarMetabolism 1
initialPopulation 400 maxSugarMetabolism 1
sugarSeed.uniqueCell false minDeathAge 60
sugarDistributionUnif 3 maxDeathAge 100
sugarGrowBackRate 1.0 sexRecoveryPeriod 0
numberOfSeeds 1000 minReproductionSugar 0
sugarDistributionType uniform allowSex true
maxSugarSize (mss) exp minInitialSugar 50

Cell maxInitialSugar 100
allowMultipleAgents true preferNearestCell false

Table 2: An overview of the experimental parameters. Parameters indicated withexpare varied in the
experiments.

arbitrarily, but are related to the percentage of seeds that can be eaten by the agents when they are
alone on a cell. They are chosen such that when the cooperation threshold is low, and when the most
sugar is available (MSS = 10), the agents can harvest less than 25% of the seeds without the help of
other agents. When the cooperation threshold is medium, the agents can harvest only about 50% of
the seeds without the help of other agents. When the cooperation threshold is high, the agents can
harvest nearly all seeds without help. Note that the above mentioned percentages are not stable during
the simulation; they only apply to the initial situation where all seeds are at their maximum size. (For
space restrictions, we did not include the graphs formss = 2, 4, 7, and 9; these can be found in [15].)

5 Analysis

We analyse the results according to how we presented them in the graphs. Firstly, we analyse Figure
2 that says something about theperformanceof the populations. Secondly, we analyse Figures 3 and
4 to find out about theevolution of communication(what values did the talk and listen preferences
evolve to?) in our experiments.

5.1 Performance

Figure 2 shows the performances of the populations3 under the investigated communication protocols.
Each line in the graph represents aextinction borderand should be read as such: on all datapoints

3Our notion ofperformanceonly takes into account thepopulation size. In [15] we present a more elaboratewelfare
function, but extensive testing (reported in [15]) demonstrated no significant difference between the population size and the
population welfare for the environments that we investigate here. Hence, this paper only reports on the population sizes.
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Figure 2: Summary of the performance results of our comparison of protocols. Each datapoint corre-
sponds to an environment with a certain need for cooperation. This need is expressed by the number
of available resources (maximum sugarsize mss) and the cooperation threshold (maximum sugar har-
vest). Each line should be interpreted as follows: in environments on and under the line, all runs
resulted in extinction of the agent population.

under and on the graphline the population died out during the runs; on all environments above the
line, the population stabilised at some value.

From the data from which we generated Figure 2 (covering the completeMSH × MSS spectrum),
we drew the following conclusions. (Note that these conclusions can only in part be observed in
Figure 2; we included them here because of their relevance to the findings we make later.) We found
that overall the messageboard protocol with fixed communication parameters performs much better
than the newscast protocol with fixed communication parameters. Also for the evolutionary variant,
we saw that the messageboard protocol outperforms the newscast protocol. However, the difference is
smaller here, because the performance of the newscast protocol with evolutionary parameters performs
better that with fixed parameters. In general, we saw that the messageboard performs better in the
fixed variant than in the evolutionary variant, whereas the newscast protocol performs better in the
evolutionary variant than in the fixed variant.

In Figure 2 the graphs show that the messageboard (with evolution) performs best, followed by
the newscast protocol with evolution, then by pure newscast and finally no communication, which
performs worst. In more detail:

• Communication gives an advantage to the agents that use it.
In Figure 2 we see that communication improves the life expectancy of agents. All protocol
variants we used extend the set of environments in which agent populations are viable. There
are no environments in which agents using communication go extinct while agents which do not
use communication survive; the set of environments in which agents not using communication
survive is a true subset of the set of environments in which agents using communication survive.

• In environments in which agents can survive without using communication, the added value of
communication is relatively small.
When we only look at environments in which non-communicating societies survive, we see that

10



adding communication leads to a relatively small increase in the ‘performance’ of the agent
population. We contemplate that there exists some minimum population size for the population
to survive; this may logically follow from the fact that the probability of reproduction depends
on the population size. If the population size is too small, the probability of finding a partner for
reproduction may also be too small. Based on our results, we expect the minimum population
size necessary for survival to be somewhere close to 500.

5.2 Evolution of Communication

Messageboard (Figure 3)

• Talk preference evolves to higher values when the need for cooperation increases.
In figure 3(a) we see that when the need for cooperation is high (mss ≤ 6), the runs in which
the agent population survive result in higher average talk preference than when the need for
cooperation is lower4 (e.g.mss = 10). We observe the same effect in figure 3(b). The effect is
not visible in figure 3(c); this is possibly because the selective pressure on higher talk preference
is insignificant when the cooperation threshold is too high.

• Listen preference evolves to higher values when the need for cooperation increases.
What we observed for talk preference also holds for listen preference. When looking at fig-
ure 3(c) (high cooperation threshold) we see that as the value formss increases, the surviving
runs result in higher average listen preferences. The effect is also visible when comparing
the corresponding graphs in figures 3(a), 3(b) and 3(c) to each other; when the cooperation
threshold is low, the surviving runs result in higher average listen preferences than when the
cooperation threshold is higher.

• Listen preference evolves to higher values than talk preference.
In almost all graphs in figure 3 we see that listen preference evolves to higher values than talk
preference. In other words, in almost all graphs we see that most points are below the diagonal
from (0, 0) to (1, 1).

Newscast (Figure 4)

• Listen preference evolves tolowervalues when the need for cooperation increases.
The results for the newscast protocol show that the average listen preference evolves tolower
values when the need for cooperation increases. This effect is most clearly observable in fig-
ure 4(b). Supposedly there exists some optimal level of use of the newscast protocol which the
agents should not exceed. These results indicate that this level of use involves an average listen
preference of less than0.5.

• Talk preference does not evolve consistently.
We observe no effects for the evolution of average talk preference in the results of the newscast
protocol. The resulting average talk preferences of the surviving agent populations seem to span
the entire possible range for average talk preference. The evolution of talk preference observed
may be due to genetic drift. Such genetic drift may explain some observation made in Figure
4(c). In the bottom right corners of the graphs in this figure, we see many experiments in which

4We assume that the need for cooperation is lower when more sugar is available. Although more sugar also means larger
seeds, and thus less seeds that can be harvested by single agents, we assume that the need for cooperation in order to survive
is lower, because when agents harvest, they harvest more sugar.
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nearly all agents talk whenever possible, while hardly any agents listen. We can also observe
such results for the messageboard protocol, but they are much more prevalent in the results for
the newscast protocol.

• Listen preference evolves to higher values than talk preference.
As for the messageboard protocol, in the results of the newscast protocol we see that listen
preference generally evolves to higher values than talk preference. Still, the effect is weaker
than in the results of the messageboard protocol because of the earlier mentioned findings.

Summary

In both experiments, we observed thatthe listen preference evolves consistently to higher values than
talk preference. This indicates that, for some reason, listening is more ‘important’ to the agents than
talking. Although we think that this is because of the induced distribution of talk and listen events, we
do not speculate further about what may be this reason - this is subject to future study.

6 Conclusions

The building blocks of a complex system with active entities are communication and cooperation.
Communication is used for information exchange beetween the entities and cooperation is necessary if
the entities want to achieve goals that are beyond their own reach. If we are to design complex artificial
systems, we have to know the effects of deciding for available ways to communicate with respect to a
given problem environment. This paper presented a first step towards such design questions.

In a straightforward artificial society, we compared a centralised communication protocol (mes-
sageboard) with a decentralised protocol (newscast). The environments we investigated were scalable
as we varied the need for cooperation (by including actions to be carried out by multiple agents) and
the available resources. In addition we considered hardwired agents (that always communicate) with
learning agents (that evolutionary learn to communicate).

The results show that the performance of the messageboard protocol is much better than that of
the newscast protocol in the environments that we examined. We observe this with both types of
agents. Preliminary further investigation of this result indicates that the ratio between the speed at
which information is distributed and the speed at which information looses its value is essential for
the success of a given communication protocol [9]. Surprising still, with the newscast protocol, the
learning agents outperformed the hardwired agents. Also, with the learning agents, we consistently
observe that agents develop a higher preference for listening (receiving information from others) that
talking (communicating information to others).

In the long run, we aim to design Emergent Collective Intelligence (ECI). The end goal of ECI re-
search is to combine and exceed achievements in multi-agent systems [1], swarm intelligence [3], and
evolutionary computation [10] research via developing synthetic methodologies such that groups of
computationally complex agents produce desired emergent collective behaviors resulting from the
bottom-up development of certain individual properties and social interactions. Forthcoming re-
sults will be published on different scientific forums; for locating them conveniently one can visit:
http://www.cs.vu.nl/ci/eci.
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(b) maxSugarHarvest ∈ [3− 5]
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(c) maxSugarHarvest ∈ [6− 10]
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Figure 3: Messageboard results (mss= maxSugarSize)
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(b) maxSugarHarvest ∈ [3− 5]
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(c) maxSugarHarvest ∈ [6− 10]
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Figure 4: Newscast results (mss= maxSugarSize)

15


