Long PaperID169, 2005 European Conference on Complex Systems
Paris, 14-18 November 2005.

Title: Emergent Group-Level Selection in a Peer-to-Peer Network

Short Title: Group Selection in P2P

Author: David Hales, Dept. of Computer Science, The University of Bologna, Mura Anteo Zamboni 7,
40127 Bologna, Italy.
Email: dave@davidhales.com, Tel: +39 051 19980461, Fax: +39 051 2094510

Keywords: Design of Complex Systems, Robustness, Network Dynamics, Emergent Structure.



Emergent Group-Level Selection in a Peer-to-Peer Network '

David Hales
Department of Computer Science, University of Bologna, Italy.
dave@davidhales.com

Abstract. Many peer-to-peer (P2P) applications benefit from node specialisation. For example, the use
of supernodes, the semantic clustering of media files or the distribution of different computing tasks
among nodes. We describe simulation experiments with a simple selfish re-wiring protocol (SLAC) that
can spontaneously self-organise networks into internally specialized groups (or “tribes”). Peers within
the tribes pool their specialisms, sharing tasks and working altruistically as a team — or “tribe” even
though their individual behaviour is selfish. This approach is scalable, robust and self-organising. These
results have implications and applications in many disciplines and areas beyond P2P systems.

1. Introduction

Open Peer-to-Peer (P2P) networks (in the form of applications on-top of the internet) have become

very popular for file sharing applications (e.g. Kazaa?, Gnutella3, Bittorrent4). However, can such
technology be applied to other computing tasks? For example consider a system in which some nodes
have lots of free storage, some high bandwidth and others non-firewalled connections to the network.
Those nodes could cooperate to provide a data back-up service — something that no individual node
could provide. Obviously, in such a situation, if there is demand for a back-up service we would wish the
nodes to, somehow, get together and provide the service — but how?

One solution (and currently, it would seem, the only viable one for deployable applications) is to code
the process of specialisation, coordination and cooperation into the protocol directly for each different
kind required. So for example, where semantic clustering of media files is required for file sharing,

protocols exist that implement itd (Handurukande et al 2004). Where systems require supernodes
(Montresor 2004), again, these are implemented directly. There are tow problems with this approach;
firstly, for every kind of specialisation required a programmer must envisage this a priori, design a
protocol then implement and test it. Secondly, since this process is complex enough on its own, it is
generally assumed that nodes will follow the protocol — it is rare to find protocols robust to node failure,
noise or malicious behaviour, such as free riding, although this is, to a certain extent, true within the
BitTorrent system (Cohen 2003).

Additionally, it is also rare that nodes can spontaneously change their specialism if they come to
recognise that they might be able to do better following a different role. The specialsim of the node
tends to be hard-coded or relies on user level switches. This kind of approach limits the ability of the
system to automatically adapt to changing task scenarios — however see Montresor (2004) in which
supernodes are dynamically allocated to improve performance.

Ideally, we would like a more general approach that could be applied to a range of different task
domains with minimal tuning. We would like the approach to offer dynamic specialisation and re-
specialisation if nodes come to recognise they could do better playing another role and have the ability

IThis work partially supported by the EU within the 6th Framework Programme under contract 001907 (DELIS).

’The Gnutella home page: http://www.gnutella.com

3The Kazaa home page: http://www.kazaa.com

“The BitTorrent home page: http://www.bittorrent.com. See also Cohen (2003) for a description of the way BitTorrent works.
3 For example see the MLdonkey system: http://mldonkey.org



to do so or if the task domain changes requiring different kinds of skills to be combined. In addition, we
want the system to be able to deal with freeriders and errant or malicious nodes but also to support
altruistic cooperation between specialists when this is required for job completion. Finally, we require
this to be as scalable, self-organising and robust as possible.

In this paper we do not claim to have addressed all these issues to the level of deployment, what we
propose is, we claim, the beginnings of an approach that may allow us to address these issues. In the
simulated scenarios so far implemented our results are very encouraging and we plan to continue this line
of work.

In the following sections, we state our assumptions concerning behaviour in open peer-to-peer
systems then we introduce the SLAC algorithm in general terms. We follow by formulating a minimal
task domain scenario called the SkillWorld, to which we wish to subject a simulated P2P network
running SLAC. We then describe how we apply SLAC within SkillWorld and present some experiments
and results. We interpret the results and describe a “typical history” in the SkillWorld.

At the end of the paper we summarise what we have observed and what it means. We claim that the
results indicate a process that has possibly profound implications and applications beyond just P2P
systems.

2. Behavioural Assumptions in Open Networks

How do nodes behave in open P2P networks? Of course, the simple answer is, assuming nodes are
autonomous: anyway they like to behave!

Given this fact, how then do we proceed to devise protocols that will lead to desired system-level
functions? Obviously, we have to begin by making assumptions about the likely behaviour of other
nodes in the network. Such assumptions should be as realistic as possible but also simple enough to be
practically computable and transferable between a number of domains. Assumptions made here are
essentially the axioms of a kind of mini social theory which then informs the design of peer software.

Many approaches (often unconsciously) inherit assumptions from previous social sciences (e.g.
economics, socio-biology, sociology). For example, if we assume nodes will behave “rationally” in the
context of classical game theory, then, we compute “Nash equilibrium” - as some researchers do — we
inherit our assumptions from game-theory which is a body of knowledge assuming perfect rationality
and perfect information. The basic approach is to assume that all individuals have perfect knowledge of
the game being played and all possible outcomes along with infinite computational time and common
knowledge that all individuals are the same in these respects. Given these assumptions it is sometimes
possible to analytically derive the “Nash Equilibria” of the game being played. The idea is that given the
previous classical assumptions any system will find and stay in a Nash Equilbria. However, it is unclear
that such assumptions hold in dynamic open P2P networks and the derivation of such equilbria within
dynamic topologies and changing populations is currently beyond state-of-the-art analytical techniques.

In the context of socio-biological models (Trivers 1971, Maynard-Smith 1982), which are based on
the evolution of behaviours of interacting animals over time, the assumption is that behaviours (or
strategies) reproduce in proportion to their average fitness (utility or score) such that fitter behaviours
become more numerous over time. Additionally such models assume that mutation in the form of
random changes in behaviour also take place. This evolutionary game theory approach allows for an
ecology of behaviours to evolve over time. In addition, there is no requirement that agents have perfect
rationality or perfect information — just enough, such that better performing strategies tend to increase
in the population. For biological systems this occurs via Darwinian evolution where utility equates to
fitness. However, P2P networks don’t evolve in a Darwinian fashion. Nodes don’t reproduce and it is
unclear what “fitness” means in this context.

We have shown in recent work that results from evolutionary models can be applied in networks if
we allow nodes the ability “copy and re-wire” within the network to improve their own situation (Hales
2004, Hales 2005a, 2005b). This latter innovation demonstrates it is possible to import work originally
modelled in a conventional evolutionary framework into a dynamic network model. Nevertheless, in the
absence of any deductive proof of the equivalence of evolution and the re-wire rules it is necessary to
implement and test previous mechanisms to determine if the properties of interest can be carried over
into networks.

Summary of assumptions concerning open P2P networks:
1. Nodes are in the network for what they can get out of it
2. Nodes modify their behaviours to improve their individual benefit
3. Nodes have limited knowledge about other peers and the network in general



The first assumption would appear to be plausible within open P2P networks. In the currently popular
file sharing networks the majority of uses download and run peer client software (and hence join the
network) in order to get something (e.g. to download a movie or a music file). It certainly is true that
some people would join for other reasons. For example, a user may join to feel “part of an online
community” (Strahilevitz 2003) or to distribute only their own content - not downloading. Some could
aim to damage the functionality of the network by distributing malicious content. However, we argue
that neither of these motivations informs the majority of the nodes. In any case, most functions would
be enhanced by purely altruistic behaviour (such as distributing content without downloading) and we
conjecture that there are at least as many pure altruistic as pure malicious nodes in working networks.

The second assumption is more problematic — who says nodes within a given P2P network change
behaviours to improve their benefit? Our argument here is rather speculative - if not conjectural. We
start from the assumption of autonomy and argue that the function of peer client software is ultimately
under the control of the user. For example, users may change operating system or client software
settings (e.g. limiting upload speeds), download new versions of a peer client (e.g. incorporating ways to
improve download success and rates) or simply hack their own code if they have the required skills. Of
course, a hacked client can be distributed to others if it appears to have desirable properties and will tend
to be adopted if it delivers those properties to others. We therefore claim that currently, this kind of
process is occurring at the user level — via the adoption of various clients and the control of various
node-level settings. The problem hidden in this assumption is that the space of available behaviours that
each user can choose from varies over time and is also dependent on the knowledge of the user, the kind
of network connection, form of operating system and many other related factors. However, we note
that similar assumptions have provided some insight into human socio-cultural phenomena at least as
complex as the socio-cultural phenomena of P2P systems (Binmore 1998).

Perhaps a more plausible way of thinking about the second assumption is to interpret the space of all
available clients in a given P2P domain as the space of behaviours a user can select from — that is, a user
may change clients programs, say from edonkey to BitTorrent because edonkey is too slow for the
content they required. The user has infact changed protocol and network completely — but that need not
matter to them, and in fact the interpretation then is an ecology of different networks with users
switching between them.

Alternatively, the assumption that behaviour can change regularly within a single network can be seen
as a design proposal to be incorporated into a new protocol, rather than an interpretation of existing
protocols.

The third assumption would appear to be a necessary one in any large and highly dynamic system — it
is not practical or possible to collate accurate global statistics in most such systems.

3. The SLAC Algorithm

In previous work we showed how a simple “copy and re-wire” rule (or protocol or algorithm) could
produce high-levels of cooperation within simulated P2P networks performing collective tasks. We
named this algorithm “SLAC” because it uses Selfish Link and behaviour Adaptation to produce
Cooperation. We showed that nodes in a network could emerge cooperation within the single-round
Prisoner’s Dilemma (PD) game, under, what we argue, are plausible assumptions about the kinds of
behaviour we find in P2P systems. We also demonstrated that the same results could carry over into a
more realistic file-sharing P2P task domain (Hales 2004).

The basic algorithm assumes that peer nodes have the freedom to change behaviour (i.e. the way
they handle and dispatch requests to and from other nodes) and drop and make links to nodes they know
about. In addition, it is assumed nodes have the ability to discover other nodes randomly from the
network, compare their performance against other nodes and copy the links and (some of) the
behaviours of other nodes.

As discussed above, we assume that nodes will tend to use their abilities to selfishly increase their own
utility in a greedy and adaptive way (i.e. if changing some behaviour or link increases utility then nodes
will tend to select it).

Over time nodes engage in some activity and generate some measure of utility U (this might be
number of files downloaded or jobs processed etc, depending on the domain).



DO periodically forever
select a random node j from the network
compare utility of this node (i) with node j
IF utility of j is higher (Uj >= Ui)
drop all current links (clear view of 1)
copy links of node j (copy view from j to 1)
add link to j (add to view i a link to j)
copy behavioural strategy of j
with a low probability (mutation rate 1)
drop all current links (clear view of i)
add a link to a randomly chosen node
with a low probability (mutation rate 2)
change the behavioural strategy randomly
END IF
END DO

Figure 1
The generic SLAC algorithm.
Each node executes this algorithm.

Periodically, each node (i) compares its performance against another node (j), randomly selected
from the population. If Ui < Uj node i drops all current links and copies all node j links and adds a link
to j itself. Also, periodically, and with low probability, each node adapts its behaviour and links in some
randomized way using a kind of “mutation” operation. Mutation of the links involves removing all
existing links and replacing them with a single link to a node randomly drawn from the network.
Mutation of the behaviour involves some form of randomized change - the specifics being dictated by
the application domain (see later).

Previous “tag” models, from which SLAC was developed (Hales 2005¢) have indicated that for
good scalability properties the rate of mutation applied to the links needs to be higher, than that applied
to the behaviour, by about one order of magnitude. In the context of the algorithm show in figure 1 this
means that “mutation rate 1” >> “mutation rate 2”.

When applied in a suitably large population, over time, the algorithm follows a kind of
evolutionary process in which nodes with high utility tend to replace nodes with low utility with nodes
periodically changing behaviour and moving in the network. However, as will be seen, this does not lead
to the dominance of selfish behaviour, as might be intuitively expected, because a form of incentive
mechanism emerges via a kind of ostracism in the network. The process can also be viewed as a kind of
“cultural group selection” process (see later discussion).

4. The SkillWorld Scenario

In order to determine if the SLAC approach can support specialisation within tribes we construct a
abstract and minimal simulated task domain that requires nodes to perform specialized tasks
cooperatively in order to satisfy their individual needs. We call the task domain SkillWorld and it is an
adaptation of a sociologically inspired scenario originally given in Hales 2002.

The SkillWorld consists of a population of N nodes. Each node may have zero or more links (up to a
maximum of 20) to other nodes. Links are undirected such that the entire population can be considered
as an undirected graph G with each vertex being a node and each edge being a link. Each vertex (or node)
is composed of three state variables — a “skill type” s ¢ {1,2,3,4,5}, an “altruism flag” ¢ € {0,1} and a
satisfaction score or “utility” u € R (where R is a positive real number).

Periodically, with uniform probability, a node i is selected from the population N. A “job” J is then
generated marked with a randomly chosen skill sJ. The skill is selected, again randomly with uniform
probability, from the domain {1,2,3,4,5}. Job J is then passed to node i. If node i posses the correct
matching skill (i.e. if s; = sJ) then node i may process the job itself without any help from other nodes.
For successfully processing a job J the receiving node gains one unit of credit: u < u + 1.



This process of generating and passing jobs to nodes represents user-level requests for services — such
as, for example, searching for a particular file, performing some processing task or storing some data. In
the SkillWorld we don’t represent the actual jobs to be done, rather, we represent the skill required to
perform the job. In our minimal scenario, each job only requires one skill to be completed.

But what if node i receives a job for which it does not have the correct skill (i.e. if' s; = sJ) ? In this
case I passes the job request to each neighbour in turn until all have been visited or one of them, j, agrees
to process the job J. A neighbour j will only agree to process J if its skill matches (s; = sJ) and the
altruism flag is set (a; = ). If j does agree to process the job then this costs j a quarter unit of utility (uj
< uj — 0.25) yet increases the utility of i by one unit (ui < ui + 1).

What this means is that node i looks for an altruistic neighbour with the correct skill to process job J.
If i finds such a neighbour (j) it increases its utility as if it had completed the job itself whereas j
decreases its utility. This reflects the notion that j is altruistically processing J for the benefit of i and
that users are happy when jobs submitted to their nodes are completed but are not happy when jobs from
other nodes use their node resources with no immediate benefit to themselves.

5. SLAC in the SkillWorld

We apply the SLAC algorithm within SkillWorld by making the node skill types and the altruism flags
into evolvable state variables such that they are copied from more successful nodes (based on utility)
and mutated occasionally with low probability.

Although SLAC has previously been demonstrated as successful in promoting cooperation in both a
Prisoner’s Dilemma playing scenario (Hales 2005) and a simple file-sharing scenario (Hales 2004) it has
not yet been applied within a scenario requiring intra-group (or tribe) specialisation in addition to
altruism. We are therefore asking a lot from a simple algorithm: to self-organise the population into
altruistic yet internally specialised tribes that pass and process jobs using their various skills.

The SkillWorld is the simplest scenario we could think of that captures a process of specialisation for
this initial investigation. We have a small number of skills (five in these simulations) and we only pass
jobs to immediate neighbours. Each node and job is related to a single skill only (rather than a subset of
skills which would seem more realistic). Also we assume nodes can change skills at will (randomly via
mutation). This latter assumption might not hold if skills relate to physical or unchangeable
characteristics of nodes like storage or bandwidth for example. However, at this stage we leave more
realistic scenarios with multi-hop passing and more complex skill set arrangements to future work.

In order to measure the success of SLAC we take a simple measure - the proportion of submitted jobs
that are completed. We can infer that a network in which the majority of jobs submitted are completed
is sustaining internally cooperative and specialised tribes since the only way to complete most jobs is for
nodes to pass them to altruistic neighbours with required skills.

5.1 Some Experiments and Results

Initially we ran a set of simulation experiments in which we initialised all nodes in the population with
uniformly randomly selected skills, altruism flags and links. We experimented with a number of network
sizes determining for each how many cycles before the high performance was achieved (a single cycle is
the time unit by which all nodes will have executed the SLAC algorithm at least once, on average).

In order to measure the success of SLAC we take a simple measure - the percentage of submitted jobs
that are completed (PCJ). We can infer that a network in which the majority of jobs submitted are
completed is sustaining internally cooperative and specialised groupings (or tribes) since the only way to
complete most jobs is for nodes to pass them to altruistic neighbours with the required skills.

We categorized “high performance” as a PCJ > 90%, we found that in the simulations this was the
highest stable value reached, and ran simulations until this value was obtained - recording the number of
cycles required. Hence, if SLAC was working well in the SkillWorld we would hope that within a small
number of cycles the PCJ would become high.

We used a mutation rate of 0.001 on skill type s and altruism flag a (shown in figure 1 as “mutation
rate 2”). Mutation on the links (shown in figure 1 as “mutation rate 1”) was an order of magnitude
higher (0.01). We carry over this assumption — that the mutation rate on the links should be higher
than that on the “strategies” — from previous experimental work comparing several different scenarios
and models (Hales 2005¢c). We fixed the maximum number of links between nodes to 20. Links are
undirected and therefore symmetric. If an operation results a node requiring a new link and it already has
the maximum then a random link is discarded by the node and the new link accepted. Using this method



nodes never refuse new links but may often lose old ones. This adds to the noisy and dynamic nature of
the scenario.
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Figure 2
Number of cycles to high performance for different network sizes. When PCJ > 90% this means that
over 90% of all jobs submitted to nodes are completed. Note: overlapping circles have identical
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Figure 2b
Number of cycles to high performance for different network sizes when all nodes are initialised selfish
(a = 0). This can be compared to the random initialisation results in figure 2. Note that there is a reverse
scaling cost here. The results for N = 1000 are worse than shown since three outliers at about 1000
cycles are not shown here.

Figure 2 shows results from 30 individual simulation runs. Each point is a different run showing the
first cycle at which the PCJ > 90%. As can be seen, high performance is attained within a few tens of
cycles even for networks of size N = 10°. Notice that there appears to be a very slight upward trend in
cycles as N increases, however, this is negligible — the results therefore indicate close to zero scaling
cost. This highly desirable property was also evidenced in a previous application of SLAC to a simulated
fire-sharing scenario (Hales 2005). Figure 2b shows results under the same conditions except that all



nodes are initialised to be selfish (¢ = 0). This gives a kind of “worst case scenario” as far as altruism
evolving. It is important to show that the system can escape from this, since this demonstrates that
even if a complete failure of node altruism should occur (either through chance or malicious attacks)
then the system can recover relatively quickly. We notice here the reverse scaling properties that we
originally noticed and analysed in a previous “tag” model (Hales 2000). Essentially, with bigger
populations, there is more likelihood of the chance formation of a small altruistic tribe. This then goes

on to “seed” the population with altruism®.

Interestingly, it was found that for populations where N < 1000 high performance was not produced
even when runs were extended to several thousand cycles. Intuitively this is consistent with the “group
selection” hypothesis concerning how SLAC operates. With small populations there are not enough
nodes to form enough competing groups (or tribes) so evolution can not operate at the group level.

5.2 History in the SkillWorld — Tribal Dynamics

One way to convey the dynamics of a typical SkillWorld simulation run is to describe a typical
“history” in narrative form — this method is sometimes used in computational sociology, particularly in
work with artificial societies (Epstein and Axtell 1996, Axelrod 1995) carried over from more
traditional sociological methods of explanation. In the rest of this section we give such a “typical
history”. Although we will make general points we will also refer to a specific single simulation, run
given in Figure 3, to illustrate our analysis.
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Figure 3
The time series of a typical single run in SkillWorld (N=1000). Shown are the number of
selfish nodes as a proportion of the entire population (selfish), the proportion of completed
jobs submitted (PCJ), the clustering coefficient (C), the number of components in the
population (comps, which is normalised by dividing by 60) and the average probability that
a route exists between any two nodes (conprob).

Initially, the SkillWorld is a random graph, all nodes are connected via a few hops and clustering is
low. Skills and altruism are randomly scattered. Very quickly, the graph breaks into a population of
many disconnected components because nodes quickly re-wire themselves to better performing nodes.

6 See Hales (2000) for a more detailed explanation of this reverse-scaling cost including the beginnings of an analytical
treatment.



The better performing nodes are initially the non-altruists who exploit their groups (or tribes) selfishly.
However, this is a non-sustainable strategy since this exploitation causes nodes to leave their exploited
tribes and join tribes in which there is less exploitation — nodes in tribes with less exploiters in them do
better (higher utility) because they are cooperating as a team. The tribes dominated by non-altruists
quickly “wither away” as nodes leave. When no nodes are left then the tribe no-longer exist — in this
way tribes die, even though nodes do not die. This emergent property of the birth and death of tribes
lays the ground for evolution to operate that the group (tribe) level.

Cycle 20 Cycle 30
Figure 4
Details showing just a small part of the entire population for the same typical run
as show in figure 3. From an initially random graph disconnected components (we
call tribes) emerge with internal specialisation and rich structure. The numbers in

the nodes represent the node skill type.7

Figure 3 indicates the above process occurring in the first 10 cycles or so. Notice that the number of
selfish nodes peaks, and the proportion of completed jobs (PCJ) bottoms out, at about cycle 10. The
number of components (i.e. tribes) increases in the early phase peaking just before cycle 20
(representing a peak of 60 components).

Altruistic tribes function well and grow as more nodes join, new tribes are occasionally formed as
nodes randomly, through mutation, split from a tribe. As altruistic tribes grow larger they eventually
become “infected” or “invaded” by a non-altruist node — either by mutation of an existing member node

7 Full sized pictures can be found at http://www.davidhales.com/esoa05pics.



or the entering of a new node to the tribe. When this happens the tribe is quickly destroy via dispersion
since a non-altruist will exploit the tribe selfishly and this will lead to many more nodes quickly copying
that node until the tribe “dies” because all nodes leave it — because a tribe dominated by selfish nodes
gives lower utility to all nodes within it than one dominated by altruists.

Figure 3 shows, from about cycle 20 onward, the above process occurring. A decrease in the number
of components (comps) and an increase in completed jobs (PCJ) are correlated with a decrease in the
number of selfish nodes (selfish). This is because altruistic tribes grow in size — reducing the total number
of components (comps) and reducing selfish nodes (selfish). By about cycle 30 selfishness is very low
and completed jobs (PCJ) reaches a high level. Notice that the dynamic nature of the formation and
dissolution of the tribes is reflected in the variation of the number of components over time (comps)
after PCJ goes high.

History in the SkillWorld is the history of the formation, growth and destruction of tribes. From the
simple rules of the SLAC algorithm an evolutionary process emerges at the tribal or group level.
Essentially one can think of this evolution as the competition between tribes to retain nodes to
continue to exist. This process is in constant flux due to mutation and movement, no equilibrium state is
attained and no tribe lasts forever. As long as new altruistic tribes are created at least as rapidly as they
are destroyed then altruism can survive.

Figure 4 shows a small detail of snapshots of the population over time (space does not permit full size
snapshots). As can be seen, tribes quickly emerge and grow, producing various structures and sizes with
internally specialised nodes.

5.3 Tribal Structures

Within the SkillWorld, tribes with different structures and skill mixes will support different levels of
utility — a highly connected tribe with an even mix of skills would produce better results than a tribe
missing some skill. Hence, selection at the tribe level (group selection) will tend to operate to structure
the tribes into more optimal structures of skill types. We would therefore expect to see tribes composed
of nodes possessing each skill type linked together such that a node receiving a job can either process it
directly or will be directly linked to a node with the appropriate skill willing to do the job. In the
SkillWorld then, we have tribe level selection not only operating to control selfishness but also to tune
the internal (organisational) structure of the tribe.

We find this particularly exciting since we believe that by increasingly the complexity of the task
domains and giving nodes a little more freedom to hop more than one link within their tribe it should be
possible to evolve tribes with complex organisational structures tuned to performing in the given task
domain. Moreover, since the tribes are constantly evolving they should be able to change their structure

dynamically to address a change in the task domainS.

6. Conclusion

We have demonstrated that the SLAC algorithm can be applied in a scenario (the SkillWorld)
requiring node specialisation in addition to the suppression of selfish behaviour. When the algorithm is
executed the network quickly divides into competing “tribes” (disconnected components). An
evolutionary process then emerges at the group level selecting efficient internally specialised tribes —
which deliver high levels of service with respect to user submitted jobs at the nodes.

We adapted the SkillWorld scenario from a previous model developed for the purposes of social
scientific theorising (Hales 2002). The previous “tag-based” model relied on mean-field mixing (with no
population structure) and followed a conventional evolutionary process.

8 Further experiments not detailed here, demonstrate that even when all skills in the population are initialised to the same
single type — the network quickly adapts into an even skill spread due to mutation on the skills and selection at the tribe
level.



Our belief that the SLAC algorithm works via a kind of group selection occurring at the level of the
“tribe” gave us the a priori expectation that it would select tribes that could perform well in the
SkillWorld. In this sense, dare we claim the beginning of a “proto-theory” allowing us to make some
modest qualitative predictions?

More generally, we claim that this paper demonstrates concretely within a dynamic network the
emergence of what has been termed a “meta-state transition” (MST) within evolution (Heylighen
1992). It has been argued that the emergence of life itself and major steps in biological evolution (e.g.
multi-cellular organisms) and social evolution (e.g. large complex societies) occur over such MST’s. In
this context we advance our results as possibly of great theoretical insight.

It is important to understand that the concept of the “tribe” is actually a theoretical construct we use
to help to explain and understand the emergent phenomena produced by the SLAC algorithm over time.
The tribes are not “programmed” into the nodes a priori but rather emerge from the interplay of task
domain, interaction and the SLAC algorithm. We use the concept of “tribes” because we believe it to be
valuable in beginning to understand, control and theorise about what is occurring in SLAC networks.
However, since the tribes are emergent we do not begin with a “theory of tribes” rather we observe,
experiment and induce knowledge about them. As discussed below, this does not preclude, but, in fact,
should support, the formation of an analytical theory — we hope.

Since the nodes do not die or model genetic operators, the tribe level selection process can be viewed
as a kind of artificial cultural group selection process. What is quite extraordinary is that such a simple
node level algorithm (SLAC) based on a few plausible assumptions about preferential attachment can
lead to such complex and useful group level evolutionary dynamics.

A key issue however, is that, although SLAC is simple to implement the dynamics are complex and
currently it is not know how analytical tools can be applied to truly understand, predict and prove the
properties of SLAC. So far the only “proofs” we have are in the form of “existence proofs”
demonstrated by empirical analysis of simulation runs. Such “proofs” are not watertight and can always
be questioned given anomalous results from future simulation studies (rather like experiments in the
natural sciences). We have some confidence in the general results from SLAC-like algorithms however
(such as those based purely on “tags”) since there have been a number of replications of those results
from multiple independent implementations using different languages, machines and programmers
(Edmonds and Hales 2003). However, none of this offers predictive insight into the process as a good
analytical model would. What we currently have is a kind of “toolbox” of algorithmic heuristics that
appear to be reasonably robust over some minimal task domains and scenarios.

However, currently, the only way to apply these methods to new domains is to simulate and
experiment — copying and adapting heuristics that worked previously in similar domains. Perhaps this is
not so far away from the edit / compile / debug cycle of good old-fashioned software engineering
(GOFSE). This could bode well for future progress.
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