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1 Introduction

Both network structures and rationality of agents play a significant role in
determining the outcome of many economic economic relationships. A vast
and recent literature examines how network structure affects economic out-
comes.1 The literature on bounded rationality has become more and more
important since its introduction by Simon (1955). Our aim is to study the
process of network formation within a dynamic framework in two cases re-
lated to different levels of rationality for economic agents. In the first one,
the agents are perfectly rational. In the second one, some aspects of their
rationality are limited.

We consider a group of agents who are initially unconnected who form
or remove links with each other. A link can be removed unilaterally but
agreement by both agents is needed to form a link. Precisely, a player pays
an amount c > 0 to seek contact with an opponent and the link forms if the
opponent behaves likewise. An agent’s payoff is determined as in Gilles and
Sarangi’s (2004) model with consent. Agents receive the same value from all
direct and indirect connections. The cost to a player of creating or main-
taining a link is greater than the reward of a single direct connection as in
Watts (2002).

Since agreement is required to form links, it is crucial to distinguish an
action profile, which lists the wishes or efforts of the players, from the induced
network. In fact, several distinct action profiles may lead to an identical net-
work. We focus on a particular subset of action profiles called cost-efficient
action profiles. In such an action profile, if no link connects two players i and
j, then neither i nor j seeks contact with the opponent to create the link.
In the static network formation game, only cost-efficient action profiles are
likely to define Nash equilibria (NE) since a player incurs a cost for seeking
contact with an opponent. For the same reason, only cost-efficient action
profiles are likely to be Bentham or Pareto efficient. Precisely, we show that
in a NE, perfectly rational players must choose the cost-efficient action profile
that induces the empty network. In the finitely repeated network formation
game, perfectly rational players also remain unconnected. The unique NE
consists in a sequence of cost-efficient action profiles such that the empty
network forms in each period. In the current paper, we choose to focus on a
finite horizon of play in which a network is built in each period. If players
are individuals or firms with a finite lifetime, it seems reasonable to suppose
that the relationships they establish stop after a certain amount of time. It

1Different examples may be found in consumer’s theory (Ellison, Fudenberg, 1995),
labor market (Calvó-Armengol, Jackson, 2004), industrial organization (Bolton, Dewa-
tripont, 1994), or in game theory (Ellison, 1993).
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is assumed that players create a network in each period. Thus there are
many types of possible behaviors for a given player, which depend on the
opponents’ behavior. Networks may be entirely rebuilt from one period to
another, some former links may be maintained or removed, or new links may
be created.

In this paper, we also limit players with respect to the complexity of the
strategies they can implement. We model this by assuming that they use
finite automata with a bounded number of states to play their strategies as
in Neyman (1985). Such players are boundedly rational in the sense that
they are limited in their ability to count the number of periods played and
thus may not anticipate the opponents’ behaviors against their own actions.
However they have the ability to optimize their payoff against the oppo-
nents’ strategies given that their choice is reduced to strategies played by
finite automata. We also restrict the analysis to cost-efficient action profiles.
A player cannot use an established contact with an unconsenting opponent
in a period as a message for a possible agreement in a subsequent period.
Notice that any network is induced by a unique cost-efficient action profile.
Therefore, the restriction to cost-efficient action profiles does not limit the
architecture of static networks that may form in an equilibrium outcome. We
show that if the size of automata is smaller than the duration of the game,
then the set of NE of the repeated game is not reduced to outcomes filled
with empty networks, as it is the case with perfectly rational agents. We do
not explore whether equilibrium outcomes are affected when the analysis is
extended to all action profiles. Nevertheless, cost-efficient equilibria induce
a large variety of sequences of networks, which deserve attention.

We distinguish two types of equilibria. In the first one, the same network
is formed in all periods. We refer to such an equilibrium as a Repeated Nash
Network (RNN). We provide a sufficient condition for the existence of RNNs
based on any static network (proposition 3). Moreover, we give a practi-
cal test that determines if nonempty RNNs do exist (proposition 4). In the
second one, we define a Repeated Nash Equilibrium (RNE) where different
networks may form in the different periods of the game. The set of RNE
includes the set of RNN as a special case. We show that there exist struc-
tural relationships between the different networks that form within a given
RNE. We study the intertemporal consistency between networks and iden-
tify several properties. Proposition 5 exhibits some sequences of networks
that cannot be achieved as an outcome of a nonempty RNE. For instance,
a sequence of expanding connected networks cannot constitute an equilib-
rium outcome, or it is not possible that all players remain isolated during
the last two periods. Nevertheless, these restrictions allow for several RNE
with nonempty outcomes. The networks within a given RNE may exhibit a
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total order relationship, the smaller network being formed in the last stage.
In particular, there exist RNE in which sequences of contracting networks
form, or in which sequences of networks can expand for all but the last period
in which connections brutally run low. We also show that there are RNE in
which players forget links (proposition 6). Precisely, two directly connected
players in one period are not directly connected in another period. In spite of
the restrictions on the intertemporal consistency between networks in equi-
librium outcomes, we prove that any network can emerge in the outcome of a
RNE (proposition 7). We also investigate the question of efficiency for both
Bentham and Pareto criteria. In the finitely repeated game, the structure
of efficient strategy profiles is closely related to the structure of static effi-
cient networks (propositions 8 and 9). In addition, we prove that the sets of
Bentham-efficient networks (strategy profiles) and Pareto-efficient networks
(strategy profiles) are identical. The set of efficient strategy profiles of the
repeated game is most often slightly reduced when players are assumed to
be boundedly rational (proposition 10).

Some other papers are concerned with the structural properties of NE in
repeated games with finite automata.2 Papers relating to repeated games are
mainly concerned with the set of average payoffs that can be achieved in RNE.
In the current work, we are more interested in the structure of RNE than
in the induced average payoffs. The differences with other papers studying
a dynamic network formation3 are mostly related to the aims of the studies.
These papers are concerned with the formation of a static network as a re-
sult of several steps of a dynamic process. Limiting networks are studied in
Watts (2001), and learning or stochastic stability are used to identify limiting
equilibria in Bala, Goyal (2000). By contrast, we consider a finitely repeated
game that consists in the formation of a static network in each step of the
process. We are interested in understanding the influence of different levels
of rationality on equilibrium structures in this finite-horizon repeated setting.

The rest of the paper is organized as follows. Section 2 presents pre-
liminaries and notations. We also determine the set of Nash networks in the
static game and in the finitely repeated game for the case of perfectly rational
players. Then the machine game is introduced and studied in section 3. We
start with results on RNN and continue with results on structural properties
of more elaborated RNE. Results dealing with the efficiency of networks and
strategy profiles are in section 4. Once again, we distinguish results accord-
ing to players’ rationality. Section 5 concludes. Proofs not given in the body

2See Rubinstein (1986), Abreu, Rubinstein (1988) and Piccione, Rubinstein (1993)
among others.

3We refer the reader to Bala, Goyal (2000), Currarini, Morelli (2000), Dutta, Ghosal,
Ray (2005), Goyal, Vega-Redondo (2005), Jackson, Watts (2002) and Watts (2001, 2002).
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of the paper appear in an appendix.

2 Preliminaries and notations

2.1 Static one-period game

Let G = (I, A, π) be a finite n-player game in normal form. The set I =
{1, . . . , n} is the player set. For any i ∈ I, Ai is player i’s set of actions
and A =

∏

i∈I Ai is the set of action profiles. Let a−i be the actions chosen
by all players except i and A−i =

∏

j 6=i Aj. Player i’s payoff function is
πi : A −→ IR. An action profile a is a NE of G if for any i ∈ I and any
a′

i ∈ Ai,
πi(a) ≥ π(a′

i, a−i).

2.2 Network

The n players are connected in some network relationships. We limit our dis-
cussion to non-directed networks on the player set I. As in Jackson, Wolinsky
(1996), two players are either related to each other or not, but it cannot be
that one is related to the second without the second being related to the first.
We write ij to describe the link between two players i and j.

Let gI = {ij : i, j ∈ I, i 6= j} be the set of all potential links. Any set
of links g ⊆ gI defines a network. We apply the convention that g = gI is
the complete network and that g = g0 = {∅} is the empty network. Any
(spanning) subset g′ ⊂ g is called a subnetwork of g.

A path between players i and j in a network g is a sequence of distinct
players i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} where
i1 = i and iK = j. Two such players are said to be connected. Player i is in a
cycle of network g if there is a path with K ≥ 3 players such that i1 = iK = i.

Let ni(g) = {j ∈ I|ij ∈ g} be the set of neighbors (or direct connections)
of player i. Let Ni(g) be the set of players to whom player i is connected in
network g. Obviously, ni(g) ⊆ Ni(g). A network g is connected if there is a
path between any two players. Alike, network g is said to be k-connected if
there does not exist a set of k − 1 links whose removal disconnects the net-
work. If g is not connected, its connected subnetworks are called components.
A connected acyclic network (or 1-connected network) is called a tree and a
non connected network whose distinct components are trees is called a forest.

Let li,j(g) be the distance between two players i and j in network g. If
i and j are connected, li,j(g) is the number of links in the shortest path be-
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tween i and j. By convention, if i and j are not connected, li,j(g) = ∞. Let
Li(g) = maxj 6=i li,j(g) be player i’s eccentricity in network g. The diameter
of network g is L(g) = maxi∈I Li(g). The last two definitions apply to any
component g′ ⊂ g.

For any two distinct players i, j ∈ I, g + ij = g ∪ {ij} is the network
obtained adding link ij to network g. Likewise, let g − ij = g\{ij} be the
network obtained removing link ij from network g. The intersection g ∩ g ′

defines the set of links that networks g and g′ have in common.

2.3 Link formation cost and inefficient links

In this section, we present a non-cooperative model of costly network for-
mation with consent. We assign a network g(a) ⊆ gI to every action profile
a ∈ A. Each player i ∈ I has an action set Ai = {(aij)j 6=i : aij ∈ {0, 1}}.
Player i seeks contact with player j if aij = 1. Link ij forms if both players
seek contact. The network induced by a is given by

g(a) = {ij ∈ gI : aij = aji = 1}.

If player i seeks contact with j, then he supports a cost c > 0. As in a
wide range of models of costly network formation, player i’s payoff consists
in his value of the network minus a cost c for any attempt he made to create
links. We assume that the value of network g(a) for player i only depends
on the number #Ni(g(a)) of players to whom i is connected where # gives
the dimension of the set. Thus, the distance between two connected players
does not matter. This is true of many networks such as Internet, economic
partnership or subcontracting. This results in the following payoff function

πi(a) = v#Ni(g(a)) − c
∑

j 6=i

aij, (1)

which can be seen as a particular case of the class of payoff functions in-
vestigated by Gilles, Sarangi (2004). Following Watts (2002), we assume
c > v > 0, that is, creating a link is more costly than the reward of a single
direct connection. In other words, player i needs some indirect connections
to obtain a positive payoff. We also fix an upper bound 2v > c to avoid triv-
ial cases due to an immeasurable cost of creating a link. The next example
will help discussing these assumptions.

Example 1
Consider I = {1, 2, 3, 4, 5, 6} and the network that forms as a result of the
following players’ choices:
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aij\aji 1 2 3 4 5 6

1 0 1 1 1 0 0

2 1 0 0 0 0 0

3 1 0 0 1 0 0

4 1 0 1 0 0 0

5 0 0 0 0 0 1

6 0 0 0 1 1 0

2

3

1

4

5

6

g(a)a

Figure 1.

Network g(a) consists in two components. The value of g(a) is identical
for players 1, 2, 3 and 4 in the left component and their payoffs only differ
in the cost supported. Player 2’s payoff is thus larger than 1’s payoff since 2
intends to form a link with 1 while 1 intends to form links with 2,3 and 4.
The subset {1, 3, 4} ⊂ I defines a cycle in g(a). Since the distance between
two connected players has no influence on payoffs, it is not the interest of
player 1 to seek contact with 3 since they are already connected by player
4. Intuitively, link 13 is superfluous. Now consider the right component of
g(a) involving players 5 and 6. This component is a tree, but g(a) is not
a forest since the right component includes a cycle. The assumption c > v
implies that both 5 and 6 would gain to remain isolated as it is the case in
all components of diameter 1. Remark also that 6 seeks contact with 4. The
link 64 fails to form since a46 = 0. As player 6’s attempt is not drawn on
g(a) even if it affects his payoff, we will distinguish the action profile a and
its induced network g(a). �

Two identical networks g(a) = g(b) may correspond to distinct action
profiles a and b. Precisely, g(a) = g(b) for two action profiles a 6= b across
the player set I if both networks have the same set of links and if at least
one player seeks the creation of a link but does not receive the consent of the
opponent. We will focus on a particular form of action profiles, namely the
cost-efficient action profiles.

Definition 1 An action profile a is cost-efficient if there is no (i, j) ∈ I2

such that aij 6= aji.

Let Ace be the set of cost-efficient action profiles. In any cost-efficient
action profile, if a link between players i and j fails to form, neither i nor
j seeks contact to create it. The only cost-efficient action profile that en-
ables the empty network to form is denoted a0 = (a1,0, . . . , an,0) ∈ Ace where
ai,0 = (0, . . . , 0). Clearly, the action profile a in example 1 is not cost-efficient.

If the payoff function is given by (1) and 2v > c > v > 0, player i
may obtain a larger payoff if he removes some links. Abusing notations, if
ij ∈ g(a), let ai(j

−) be the action that differs from ai only by aij = 0.
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Definition 2 A link ij ∈ g(a) is superfluous for player i in network g(a) if
πi(ai(j

−), a−i) > πi(a). This inequality is satisfied in two cases:

1. Ni(g(a) − ij) = Ni(g(a)), i.e. link ij belongs to a cycle;

2. nj(g(a)) = {i}, i.e. player i is j’s single neighbor.

In case 1, the removal of ij does not alter player i’s connection set. This
is the case of link 13 in example 1. In case 2, link ij increases the value of
the network but costs to player i more than it yields since it provides him
with a single connection and c > v. In example 1, this is the case of link 56
for both players 5 and 6. Let d1

i (a) (resp. d2
i (a)) denote the total gain for

player i that results from removing all superfluous links in case 1 (resp. case
2). We have

d1
i (a) = c (#{j ∈ I : Ni(g(a) − ij) = Ni(g(a))} − Ci) , and

d2
i (a) = (c − v)# {ij ∈ g(a) : nj(g(a)) = {i}} ,

where Ci is the number of cycles with i as unique common player. Now let
di(a) = d1

i (a) + d2
i (a) be the maximal gain for player i if he switches from

action ai against a−i.
For any i ∈ I, we define bi ∈ Ai as player i’s best response against a−i,

that is
bi ∈ arg max

a′

i∈Ai

πi(a
′
i, a−i).

When a ∈ Ace, bi is the action that satisfies

πi(bi, a−i) − πi(a) = di(a),

since a player cannot create links by his own will. All these definitions and
notations will be used in the rest of the paper to determine whether action
profiles are NE or efficient. Now we begin by characterizing Nash networks.

Proposition 1 The only Nash network of G is the empty network g0 = g(a0).

A direct consequence of proposition 1 is that any player i ∈ I can secure
a null payoff against any opponents’ behaviors by choosing ai,0. The minmax
payoff of each player is then 0. Now we introduce the finitely repeated game.

2.4 Finitely repeated game and network formation

In the static game G, players will not create any link even if they would
be better off in some nonempty networks. In this section we assume that
the players are involved in a T -period repeated game GT that consists in
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T < ∞ repetitions of game G in period t = 1, 2, . . . , T . Throughout the
paper, we assume T > 3. It is natural to consider a dynamic process of
network formation. Such a framework fits with many economic situations in
which relationships between agents may evolve with time.

We take the view that at the beginning of period t, all players observe
at−1 and not just g(at−1). If network g(a) in example 1 forms in period t− 1,
then all players know at the beginning of period t that player 6 has contacted
player 4 even if link 64 fails to form.

Thus, a history of play ht = (a1, . . . , at−1) at period t records the action
profiles chosen by each player in periods 1, . . . , t − 1. Let H t denote the set
of histories at period t and H = {∅}∪ (

⋃T

t=2 H t) denote the set of all possible
histories of play. A repeated game strategy si is a sequence si = {st

i}
T
t=1 where

st
i : H t −→ Ai models player i’s action played at period t as a function of the

t−1 previous action profiles. For any i ∈ I, Si is the set of strategies for player
i. Let s = (s1, . . . , sn) denote a strategy profile and hT+1(s) = (a1, . . . , aT )
be the repeated game outcome induced by s ∈ S, where S =

∏

i∈I Si is the
set of all strategy profiles.

Player i’s payoff function π̃i : S −→ IR from playing GT is evaluated
according to the average payoff

π̃i(s) =
1

T

T∑

t=1

πi(a
t), (2)

and π̃ = (π̃1, . . . , π̃n). A strategy profile s ∈ S is a NE of the repeated game
GT if, for each i ∈ I and s′i 6= si,

π̃i(s) ≥ π̃i(s
′
i, s−i).

Since a network is built in each period of the repeated game, it is useful
to introduce the notion of repeated network.

Definition 3 A strategy profile s∗ induces a repeated network based on net-
work g(a∗) if s∗ induces a repeated game outcome (a1, . . . , aT ) that satisfies
g(at) = g(a∗), ∀t = 1, . . . , T .

A repeated network is simply a network that forms in all periods as a
result of players’ actions. We want to highlight the robustness of a network
being formed period after period. This notion is intuitively related to the
robustness of a given set of relationships. We may think about situations in
which trust is established among agents on a long-term basis. A Repeated
Nash Equilibrium (RNE) is a NE of the repeated game. We need to define a
Repeated Nash Network (RNN).

Definition 4 A strategy profile s∗ is a RNN based on network g(a∗) if the
induced outcome is a repeated network based on g(a∗) and if it is a RNE of
GT .
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Thus the set of RNE includes as a special case the set of RNNs. When
the horizon is finite, the only RNE induces the formation of the only Nash
network in all periods, i.e. players always remain isolated.4

Proposition 2 Assume T < ∞. The only RNE is the one in which the
empty network g0 forms in all periods.

In the present section the agents are assumed to be perfectly rational.
This results in an extreme conclusion: players have an incentive to remain
unconnected. Now, we are going to relax the assumption of perfect rationality
in order to understand the resulting differences on the types of relationships
that are likely to appear.

3 Machine game in a finite horizon setting

In this section, we assume that players use finite automata with a limited
number of states to play their strategies. We also focus on the subset of cost-
efficient action profiles. This restriction may be justified by the fact that only
cost-efficient action profiles are likely to define Nash networks in the static
game. Moreover, for any network structure, the corresponding cost-efficient
action profile is the most efficient action profile that induces the network
(see section 4). In other words, only cost-efficient action profiles are likely
to define efficient networks. We begin with the study of RNNs. Then, we
examine RNE which are not RNNs. We will prove that the structure of both
types of equilibria becomes non degenerate.

3.1 Machine game

Following Neyman (1985), we focus on the repeated network formation game
GT in which player i ∈ I chooses a finite automaton Mi to play his strategy.
A finite automaton Mi for player i is a four-tuple (Qi, q

1
i , λi, µi) where

1. Qi is the finite set of states in Mi, with #Qi = mi;

2. q1
i is the initial state;

3. λi : Qi −→ Ai is the output function, which plays action λi(qi) ∈ Ai

whenever Mi is in state qi;

4. µi : Qi × A−i −→ Qi is the transition function. In a given period, if
Mi is in state qi ∈ Qi and players −i choose a−i ∈ A−i, then the next
state of the machine is µi(qi, a−i) ∈ Qi.

4 When the game is infinitely repeated, we can prove a folk theorem like result for RNE
and RNN. Such a result includes a very large panel of structures even if, for instance, there
cannot be a RNN based on a star network.
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We assume that player i’s strategy space is limited to the set Mi of all
automata of size (the number of states in the machine) 1 < mi < T . Before
proceeding to the results, we must apply these notations to the repeated
network formation game. A strategy profile of the machine game is an n-
tuple (M1, . . . , Mn) of automata. We also use the notation (Mi, M−i) instead
of (M1, . . . , Mn). Abusing notations, we keep up writing at for the action
profile chosen in period t instead of using the notation (λ1(q

t
1), . . . , λn(q

t
n)).

3.2 Existence of nonempty RNN

The main goal of this section is to provide a sufficient condition for a nonempty
network to be sustained as a RNN. Before stating the result, notice that there
cannot be a RNN based on a star network. In fact, the central player obtains
a negative payoff as he supports a cost for creating a link with each opponent.

Proposition 3 Consider any network g(a∗) such that a∗ ∈ Ace and, for any
i ∈ I,

0 ≤ di(a
∗) ≤ min

{v

2
#Ni(g(bi, a

∗
−i)), 2πi(a

∗)
}

. (3)

Then there exists a RNN (M1, . . . , Mn) such that g(a∗) forms in each period.

Proof. Suppose that condition (3) is satisfied. Choose any a∗ ∈ Ace. We
show that there exists a RNN (M ∗

1 , . . . , M∗
n) that induces g(a∗) in all periods

by constructing the required automata. For any player i ∈ I, let us consider
the trigger strategy si defined for t = 1 by s1

i (∅) = a∗
i , and for t > 1, by

st
i(h

t) =

{
a∗

i if aτ
−i = a∗

−i, ∀τ = 1, . . . , t − 1,
ai,0 otherwise.

This strategy is implemented by the two-state automaton M 1
i represented

below:

a∗
i ai,0

a∗

−i

∀a−i 6= a∗

−i

∀a−i

M1 :

Figure 2.

If the opponents play M 1
−i, then player i’s payoff from playing M 1

i is

π̃i(M
1
i , M1

−i) = πi(a
∗) ≥ 0, (4)

since the outcome of the machine game is assumed to be a repeated network.
Notice that any deviation from M 1

i by player i releases a definitive pun-
ishment by players j 6= i. Recall that each player i is limited to automata
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of size 1 < mi < T . This prevents player i from using the standard best
response against M 1

−i that consists in playing a∗
i to create g(a∗) until the last

stage and then playing bi in round T . In fact such a strategy requires at least
a T -state automaton. As a consequence, a deviation by player i must occur
in a period t < T and implies T − t ≥ 1 periods of punishment. This also
implies that if player i has an incentive to deviate, then this deviation must
occur as late as possible in the game. However, as we will see below, this
does not exactly amount to say that if player i has an incentive to deviate,
he will do so in stage T − 1.

Any deviation in stage t < T is followed by some punishment stages.
Thus, player i aims at minimizing the cost of seeking contacts in the actions
he plays in periods t+1, . . . , T against a−i,0 since the value of the network in
each of these periods is null. Even if the amount paid for seeking contacts in
the deviating action is less than a∗

i , it may be very costly. Therefore, it may
not be the interest of player i to play this action at stage t+1 and thereafter.
This is why all possible deviations for player i’s may be grouped into the two
following cases:

1. He plays bi in periods T − 1 and T ,5

2. He plays bi in period k ≤ T − 2 and uses a (k + 1)th state that plays
ai,0 for the remaining stages. Clearly, player i’s highest incentive to
deviate is in period k = T − 2.

We now consider these two possibilities.

Case 1.
The deviation is implemented by the following (T − 1)-state automaton:

a∗
i a∗

i bi

∀a−i ∀a−i ∀a−i

∀a−i

M2 :

T−2 states playing action a∗

i

︷ ︸︸ ︷

Figure 3.

Using M2
i , player i mimics a full cooperation to form network g(a∗) up to

period T −2, and then plays bi to obtain the best payoff against a∗
−i = aT−1

−i .6

5Recall that using T −2 states for playing a∗

i and one more state for playing bi prevents
player i from playing ai,0 in stage T as a response to a−i,0. Moreover, player i has not
interest in deviating at stage T − 1 to any action ai which is less costly than bi. This is
due to the fact that using ai removes at least two more players from i’s set of connections
than bi. Therefore, πi(ai, a

∗

−i) + πi(ai, a−i,0) < πi(bi, a
∗

−i) + πi(bi, a−i,0) due to 2v > c.
6Notice that action profiles considered in the deviation tests are not cost-efficient. In

fact removing links from a∗

i by playing bi induces an action profile (bi, a
∗

−i) 6∈ Ace that is
not cost-efficient.
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He also plays bi in period T against the punishment a−i,0 since

bi = arg max
ai∈{bi,a

∗

i }
πi(ai, a−i,0) = arg min

ai∈{bi,a
∗

i }
−c

∑

j 6=i

aij.

In words, player i’s machine has not enough states to use another action
than bi or a∗

i . Moreover, the cost of seeking contacts in bi cannot be more
expensive than in a∗

i since the assumption a∗ ∈ Ace prevents the deviating
player from creating links unilaterally. Player i obtains the payoff

π̃i(M
2
i , M1

−i) =
(T − 2)πi(a

∗) + πi(bi, a
∗
−i) + πi(bi, a−i,0)

T
, (5)

which has to be compared to (4). It is not the interest of player i to switch
from M1

i to M2
i if and only if

πi(a
∗) ≥

(T − 2)πi(a
∗) + πi(bi, a

∗
−i) + πi(bi, a−i,0)

T

⇐⇒ πi(a
∗) ≥

v

2
#Ni(g(bi, a

∗
−i)) − c

∑

j 6=i

a∗d
ij

⇐⇒ πi(a
∗) ≥ πi(bi, a

∗
−i) −

v

2
#Ni(g(bi, a

∗
−i))

⇐⇒ di(a
∗) ≤

v

2
#Ni(g(bi, a

∗
−i)). (6)

Case 2.
The deviation is implemented by the following (T − 1)-state automaton:

∀a−i ∀a−i∀a−i ∀a−i

∀a−i

a∗
i ai,0a∗

i biM3 :

T−3 states playing action a∗

i

︷ ︸︸ ︷

Figure 4.

Using M3
i , player i simulates a full cooperation to create network g(a∗)

up to period T − 3, and then plays in stage T − 2 the action bi against
a∗
−i = aT−1

−i . He uses a new state playing ai,0 for the last two stages. Thus,
player i obtains the average payoff

π̃i(M
3
i , M1

−i) =
(T − 3)πi(a

∗) + πi(bi, a
∗
−i) + 2πi(ai,0, a−i,0)

T
,

12



which also needs to be compared to (4). It is not the interest of player i to
switch from M1

i to M3
i if and only if

πi(a
∗) ≥

(T − 3)πi(a
∗) + πi(bi, a

∗
−i) + 2πi(ai,0, a−i,0)

T

⇐⇒ di(a
∗) ≤ 2πi(a

∗). (7)

Combining the two cases, player i will not deviate from strategy M 1
i if

and only if

di(a
∗) ≤ min

{v

2
#Ni(g(bi, a

∗
−i)), 2πi(a

∗)
}

,

the condition stated in the proposition. By definition, di(a
∗) ≥ 0 so that

inequality (3) guarantees that players obtain at least the minmax payoff.
Thus, the strategy profile (M ∗

1 , . . . , M∗
n) is a RNN based on g(a∗). �

Remark that the condition in proposition 3 does not depend on whether
T is large or not since the average payoff function does not include a discount
parameter. This condition implies that RNNs must be based on networks
that are not too much over-connected if players are very rancorous. Indeed,
the gain that each player obtains may not be too small. In static network
theory, the fact that networks be too much over-connected is important too,
mostly for efficiency considerations (Calvó-Armengol, 2003). The condition
in proposition 3 also implies that a player must not support a too large share
of the cost needed to connect his component. For instance g(a∗) cannot con-
tain a star subnetwork since a player would be directly connected to each
opponent and obtains in average less that the minmax payoff.

Condition (3) is necessary and sufficient to prevent any deviation from
(M1

i , M1
−i). However, it is not a necessary condition to achieve a RNN based

on g(a∗). To see this, notice that M 1 induces the hardest possible punish-
ment, either for the duration or for the loss of static game payoffs per period.
One can think of an automaton that induces a less significant loss of payoff
for a single period of punishment. If all players use such a machine and none
of them has an incentive to deviate, then the necessary and sufficient condi-
tion to achieve a RNN based on network g(a∗) must be less restrictive than
(3). We limit our result to the sufficient condition because it is difficult to
determine the action for which the threat of punishment is minimal.

Let g(l), l ∈ Ace, be an n-player line network: for any i ∈ I\{h, j}, ni = 2
and nh = nj = 1 and all players have n− 1 connections. The line begins and
ends with players h and j. The next proposition gives two practical tests to
determine whether the set of RNN contains nonempty repeated networks. In
the first test, it is enough to check if a repeated line network is not a RNN
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to make sure that any other nonempty repeated network is not a RNN. This
test proves useful if one wants to check that there cannot be a RNN based
on a large and complex static network. In the second test, it is sufficient to
look at the number of players to guarantee that some nonempty RNNs do
exist.

Proposition 4 (i) Suppose that the repeated network based on g(l) cannot
be a RNN. Then the only RNN of GT induces the empty network g0 in all
periods.

(ii) Suppose n ≥ 5. Then there exists a nonempty RNN of GT .

Proof. (i) Suppose that there is no automata profile such that the repeated
network based on g(l) is a RNN. Firstly, observe that if the value to a player
of any network g(a) is more than v, then there is at least one player whose
cost is 2c or more. Given that, g(l) is the network in which the minimal payoff
across the player set is maximal across the set of all networks. Secondly, the
players in the line network are connected with a minimal number of links and
the cost for creating links is distributed such that a player pays at most 2c,
which cannot be less in a connected network. In other words, the network
g(l) is the unique architecture that satisfies the maxmin criterion. That is,

min
i∈I

πi(l) = max
a∈Ace

min
i∈I

πi(a). (8)

It follows from (8) that if a player has an incentive to deviate from the
repeated network based on g(l), then there is at least one player who can do
so in a repeated network based on any network a ∈ Ace. The assumption
that the repeated network based on g(l) is not a RNN implies that the only
RNN of GT induces a Nash network in all periods. Therefore, the empty
network must form in all periods.

(ii) We next prove that g(l) is sustained as a RNN (whatever 2v > c > v)
if n ≥ 5. We are going to use the sufficient condition of proposition 3. In the
cost-efficient action profile that induces network g(l), all players except the
first and the last of the line seek the creation of two links (the cost to each
of these players in the network is 2c), while they benefit from connections
with all opponents (in fact, the value of g(l) is v(n − 1) for all players). For
players h and j, the value of g(l) remains v(n − 1) as g(l) is connected but
they only create a single link. As a consequence,

min
i∈I

πi(l) = v(n − 1) − 2c,

In g(l), only the neighbors of h and j have a superfluous link. Let i be h’s
neighbor. It follows that bi = li(h

−) which implies that g(bi, l−i) consists in
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an (n−1)-player line of extermities i and j and an isolated player h. Player i
has di(l) = c − v. Therefore, di(l) ≥ dj(l) for any player j 6= i. By condition
3, there is a RNN based on g(l) if

c − v ≤ min
{v

2
(n − 2), 2(v(n − 1) − 2c)

}

.

The ineguality c−v < v(n−2)/2 is satisfied when n ≥ 4 and the ineguality
c − v < 2(v(n − 1) − 4c) is satisfied when n ≥ 5. Thus, the condition n ≥ 5
is enough to guarantee the existence of nonempty RNN. �

So far, two sufficient conditions for the existence of nonempty RNNs are
provided. The second one has been stated in the most general form to keep
the exposition as simple as possible. We may notice that any line network
with at least 5 players can be sustained as a RNN. The results of this section
enable to make precise the cases in which nonempty RNNs do exist. But
not much is said about the structural properties of RNE that are not RNNs.
This is the aim of the next section.

3.3 Structural properties of RNE

In this section, we are mainly concerned with the structural properties of
RNE of GT . We identify a property satisfied by any RNE. This property
has a crucial impact on the intertemporal consistency between networks that
form in the outcome of RNE. In propositions 5 and 6, we use graph theory
to characterize these restrictions and to represent the sequences of networks
that can be achieved at equilibrium. We also offer economic interpretations.

We begin with an intuitive property satisfied in any RNE of GT . There is
a key argument in the analysis of the structure of RNE. To see this, suppose
that player i uses an action ak

i in a period k < T that is more beneficial than
aT

i against actions aT
−i used by the opponents in stage T . It is the interest of

player i to play this action in the last stage since he cannot be punished in
a forthcoming period and a (T − 1)-state automaton can do it. Therefore,
players must not have such an opportunity to deviate in any RNE.

Lemma 1 Consider any RNE (M ∗
i , M∗

−i) of the machine game GT with
outcome (a∗1, . . . , a∗T ). Then there is no network g(a∗k) that forms in period
k < T such that for any player i ∈ I, πi(a

∗k
i , a∗T

−i ) > πi(a
∗T ).

Proof. The proof is by contradiction. Consider a RNE (M ∗
i , M∗

−i) of GT ,
a player i and a period k < T in which network g(a∗k) forms such that
πi(a

∗k
i , a∗T

−i) > πi(a
∗T ). We prove that player i has an incentive to deviate

from M∗
i towards the following (T − 1)-state automaton Mi:
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1. Qi =
{
qs1

i , . . . , qst

i , . . . , q
sT−1

i

}
, mi = T − 1;

2. q1
i = qs1

i ;

3. λi(q
st

i ) = a∗t
i ∈ hT+1(M∗

i , M∗
−i) = ((a∗1

i , a∗1
−i), . . . , (a

∗T
i , a∗T

−i )), ∀t ≤ T−1;

4. µi(q
t
i , λ−i(q

t
−i)) =

{
q

st+1

i if t ≤ T − 2
qsk

i : λi(q
sk

i ) = a∗k
i if t = T − 1

The output function indicates that for each t < T the action used by M ∗
i

against M∗
−i in period t is played when in state qst

i . The transition function of
Mi mimics the sequence of actions played by M ∗

i against M∗
−i for all but the

last period. In any period t < T , the deviation towards Mi keeps player i’s
payoff unchanged. In stage T , Mi transits to the state qsk

i that implements
action a∗k

i used by M∗
i against M∗

−i in stage k. Using Mi, player i obtains
the following average payoff:

π̃i(Mi, M
∗
−i) = π̃i(M

∗
i , M∗

−i) +
πi(a

∗k
i , a∗T

−i) − πi(a
∗T )

T
,

which is larger than π̃i(M
∗
i , M∗

−i) since πi(a
∗k
i , a∗T

−i ) > πi(a
∗T ) by assumption.

This contradicts the initial assumption that (M ∗
i , M∗

−i) is a RNE. �

The idea that a player may use a former state to deviate in stage T with-
out being punished is central in the question of the architecture of RNE.
Lemma 1 states restrictions on the intertemporal consistency between static
networks that form within a given RNE of GT . Unfortunately, these restric-
tions are described in terms of payoff. We are more interested in structural
properties of the networks induced by such RNE. We specify some of these
properties in points (i) and (ii) of the next proposition. The third point is
related to both proposition 2 and lemma 1.

Proposition 5 The outcome (a1, . . . , aT ) induced by any RNE (M1, . . . , Mn)
of game GT must have the three following features:

(i) there is no connected network g(at) ⊂ g(aT ), ∀t < T ,

(ii) in network g(aT ), there is no player i with eccentricity Li(g(aT )) = 1,

(iii) if there is a period t < T − 1 such that g(at) 6= g0, then it cannot be
the case that g(aT−1) = g(aT ) = g0.

Proof. (i) The proof is by contradiction. Consider any RNE (M1, . . . , Mn)
of GT in which, for some t ∈ {1, . . . , T − 1}, a connected network g(at) ⊂
g(aT ) forms (see definition page 4). The assumptions g(at) connected and
g(at) ⊂ g(aT ) imply of course that g(aT ) is also connected. By definition
2, there is a player i who has some superfluous links in g(aT ) that he does
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not have in g(at). This player is able to play at
i in stage T against aT

−i by a
mechanism similar to that in proof of lemma 1. In network g(at

i, a
T
−i) player

i maintains a connection with all opponents since g(at) is a connected sub-
network of g(aT ) (in fact, #Ni(g(at

i, a
T
−i)) = #Ni(g(aT )) = n− 1). Moreover

the cost to player i of forming links in g(at
i, a

T
−i) is smaller since he seeks

less contacts in at
i than in aT . Thus, if player i chooses the machine that

simulates what plays Mi against M−i for all but the last period and then
transits to the state used in period t, he obtains a larger payoff in stage T .
Player i obtains a larger average payoff, which implies that (Mi, M−i) is not
a RNE. This contradicts the initial assumption.

(ii) By contradiction, consider a RNE (M1, . . . , Mn) in which Li(g(aT )) =
1 for a player i ∈ I. Such an eccentricity means that player i is directly con-
nected with each opponent. This implies that player i obtains the worst
possible stage payoff πi(g(aT )) = (n − 1)(v − c). Since (M1, . . . , Mn) is a
RNE, we know that π̃i(M1, . . . , Mn) ≥ 0. Thus player i obtains a positive
payoff in some periods, that is, he does not seek contact with each opponent
in these periods. Formally, there exists t < T such that Li(g(at)) > 1. Let at

i

be the action played by player i in such a period. As in the proof of lemma
1, player i is able to deviate from Mi towards a (T − 1)-state machine that
simulates what plays Mi against M−i in the first T − 1 periods and then
transits in stage T to the state playing action at

i. Using this altered strategy,
player i must obtain in stage T a payoff πi(a

t
i, a

T
−i) > πi(a

T ) as he seeks less
contacts and πi(a

T ) is the worst payoff in the game. All other stage payoffs
being identical, the deviating strategy yields player i a larger average payoff
than Mi. This contradicts the fact that (M1, . . . , Mn) is a RNE.

(iii) Consider any RNE (M1, . . . , Mn) for which g(aT−1) = g(aT ) = g0

and for some periods t ≤ T − 2, g(at) 6= g0. Let

t∗ = max
t≤T−2

{t : g(at) 6= g0}

be the most remote period in which a nonempty network forms. By proposi-
tion 1, at least one player i is such that di(a

t∗) > 0. Suppose that i chooses to
deviate from Mi towards a (t∗ + 1)-state machine that mimics Mi’s behavior
against machines M−i up to period t∗−1, then plays action bi in stage t∗ and
transits to a (t∗ +1)th state playing action ai,0 until the end of the game (see
proof of lemma 1). Clearly, such a deviation yields player i a larger payoff,
which implies that (M1, . . . , Mn) is not a RNE. We conclude that two empty
networks cannot form in the last two stages of a nonempty RNE. �

These results lead to some conclusions. Result (i) has several interpre-
tations. Firstly, the only minimal network that is likely to be connected is
the last that forms. Secondly, there may be other connected networks in
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previous periods but this result implies that these networks must contain
the last one. We may say that the formation of a connected network (if it
occurs) has to be progressive. A connected network may form quickly in the
process but it will be over-connected. If a connected network forms in a given
period t < T (of a RNE) and another one forms in the final period, the last
network is more beneficial to all players and strictly more to one of them.
Even a link formation process by a player generates an externality on the
set of direct neighbors, this effect would be gradually internalized by some
players. Thirdly, one may also interpret the first result in proposition 5 as the
impossibility that the outcome of a RNE consists in a sequence of connected
networks that extends as time goes by. This once again emphasizes that too
much over-connected networks fail to form in a RNE.

Result (ii) shows that in the last network that forms, a player cannot
create a direct link with all opponents.7 For instance, the complete network
and the star network are two such networks, and cannot form in the last
stage of a RNE. Recall that point (i) does not prevent players from creating
a connected network in stage T . By point (ii), if players are all connected in
the last network induced by a RNE, any of them avoids the burden to seek
contact with all others. This shows how players learn to divide the task of
connecting the network up among themselves. A consequence of this result
is that the diameter of the network formed in the final stage must satisfy
L(g(aT )) > 1. This could be interpreted as the absence of an extreme small-
world effect as observed by Milgram (1967). Notice that the star network is
the only tree of diameter 2. Thus, by point (ii), if L(g(aT )) = 2 then g(aT ) is
not a tree. In words, a small-world effect (diameter 2) in stage T is possible
only with inefficient networks (see section 4 for efficiency considerations).

Result (iii) displays that if the players have established relationships in
the T − 2 first periods, some old connections remain or new links form in at
least one of the two last stages. In other words, if players create links in early
periods, they must maintain some former links or create new links in at least
one of the last two periods. For example, relationships between individuals
in a connected population of agents never completely disappear with time.
Consider a market represented by a network of firms. Links model competi-
tion between firms and the finite horizon of T periods indicates the lifespan of
the product. A firm leaving the market is symbolized by an isolated vertex.
By result (iii), if some firms have competed in the market in some of the first
T −2 years, then the market cannot become empty of firms in the final years.

In proposition 5, we provide necessary conditions that any RNE has to
fulfill. In the next proposition we are going to state two sufficient structural
properties for a given strategy profile to be a RNE.

7However, it is possible that a player obtains less than the minmax payoff in stage T .
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Proposition 6 Consider a strategy profile (M1, . . . , Mn) with outcome
(a1, . . . , aT ) such that, for any i ∈ I and any t ≤ T , πi(a

t) ≥ 0, and

πi(a
T ) ≥ max

{

di(a
T−1) − c min

a1
ij ,...,aT−1

ij

∑

j 6=i

at
ij; max

k<T−1
di(a

k) −
T∑

t=k+1

πi(a
t)

}

. (9)

If either,

(i) g(at) ∩ g(at′) = ∅, for any t, t′ ∈ {1, . . . , T} or

(ii) there is a permutation p : {1, . . . , T − 1} −→ {1, . . . , T − 1} such that
g(aT ) ⊆ g(ap(1)) ⊆ g(ap(2)) ⊆ · · · ⊆ g(ap(T−1)),

then (M1, . . . , Mn) is a RNE of GT .

Proof. Assume that for any i ∈ I and any t ≤ T , πi(a
t) ≥ 0. The proof

has two parts. Firstly, we show that in both situations (i) and (ii), a player
has no incentive to deviate as in the proof of lemma 1.

(i) The assumptions that any action profile in the outcome is cost-efficient
and that for any t, t′ ≤ T , g(at) ∩ g(at′) = ∅ implies that for any i ∈ I,
Ni(g(at

i, a
t′

−i)) = Ni(g(at′

i , at
−i)) = {∅}.8 As player i may still intend to create

some links, this implies that πi(a
t
i, a

T
−i) ≤ 0 and πi(a

t′

i , aT
−i) ≤ 0. By as-

sumption, we then have πi(a
t
i, a

T
−i) ≤ πi(a

T ) and πi(a
t′

i , aT
−i) ≤ πi(a

T ). This
means that there is no period t < T such that player i benefits from using
the automaton constructed in the proof of lemma 1.

(ii) The assumption that for any t ≤ T , g(aT ) ⊆ g(at) implies that
g(aT )∩ g(at) = g(aT ). Thus, for any player i ∈ I, g(aT ) = g(at

i, a
T
−i) ⊆ g(at).

This relation can be rewritten as Ni(g(aT )) = Ni(g(at
i, a

T
−i)) ⊆ Ni(g(at)). We

also know that the cost to player i in at is not less than in aT . Therefore,
for any i ∈ I and for any t ≤ T , πi(a

T ) ≥ πi(a
t
i, a

T
−i). This implies once

again that there is no period t < T such that player i benefits from using the
automaton constructed in the proof of lemma 1.

Secondly, we prove that condition (9) guarantees that (M1, . . . , Mn) is a
RNE. Each machine Mi in (M1, . . . , Mn) is assumed to include a punishment
state playing ai,0 to threaten any deviation by an opponent as the one in
machine M1 in the proof of proposition 3. It is not the interest of player i to
deviate in stage T in both situations (i) and (ii). Thus, two cases similar to
the one in the proof of proposition 3 must be considered.

8As mi < T , only T − 1 totally different networks may form. We thus assume that the
empty network g0 forms in at least two periods. This does not contradict condition (i)
since trivially g0 ∩ g0 = {∅}.
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Case 1.
Player i can deviate by using a (T − 1)-state machine that plays bi in stage
T −1 and ai = arg mint<T c

∑

j 6=i a
t
ij in the last period (remember that player

i cannot use a new state playing ai,0 is stage T since mi < T ). Player i will
not choose such an automaton if and only if

πi(a
T−1) + πi(a

T ) ≥ πi(b
T−1
i , aT−1

−i ) − c min
t<T

∑

j 6=i

at
ij

⇐⇒ πi(a
T ) ≥ di(a

T−1) − c min
t<T

∑

j 6=i

at
ij. (10)

Case 2.
Player i can deviate in period k < T − 1 by playing bi and then using a
(possibly) new state playing ai,0 until the end of the game. It is not the
interest of player i to behave like this if and only if

T∑

t=k

πi(a
t) ≥ πi(b

k
i , a

k
−i) ⇐⇒ πi(a

T ) ≥ di(a
k) −

T∑

t=k+1

πi(a
t). (11)

Condition (9) in proposition 6 results from the combination of (10) and (11).
By condition (9) we know that these deviations are not profitable to player
i. This concludes the proof. �

In words, if the payoff that each player obtains in the last round is large
enough, then two kinds of interesting structures are likely to emerge. These
structures are antagonistic. In the first one, at each round a new static
network is built. These networks have no common link with any network
formed in previous periods. As a consequence, if any two players are direct
neighbors in a given period, this is the first period for which they are direct
neighbors and they will never be directly connected once again. In a sense, we
can refer to such an equilibrium as one with forgotten neighbors. This may
highlight that players prefer a variety of one-period direct neighbors than
long term direct relationships. In economic relationships, such a pattern of
behavior is quite common. In a trading market, some buyers prefer visiting a
variety of sellers than establishing a long term relationship with a particular
seller (the so-called searchers).

In the second one, networks share an identical subnetwork and the struc-
ture allows for a total order relationship among networks that form within a
RNE. The sequence of static networks corresponding to the equilibrium may
reveal a contraction phenomenon. At each new period, the network that
forms may be more and more restricted. This is the case of many economic
situations. Consider for example several firms competing in a new market.
A link between two firms can represent the investment supported by both
firms to differentiate their product from that of the other firm. As time goes
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by, least competitive firms are not strong enough to face competition. They
either stop investing to differentiate their product (cuts links but preserve
some) or leave the market (remain isolated). The competition network may
retract progressively. Another interpretation is that more and more efficient
networks may form within a RNE (see next section). The network should be
k-connected in the initial period. The contraction process may lead to the
formation of a tree network in the last stage. The total order may also exhibit
an expansion phenomenon from the initial period to period T − 1 and then a
network contained in all others forms in the last round. If all networks in the
sequence are connected, one can interpret such a phenomenon as T−1 periods
of test before stage T in which agents choose the most valuable configuration.

In proposition 6 each player’s payoff is assumed to be positive at each
round. Despite the drastic restrictions on the intertemporal consistency be-
tween networks formed in any RNE, the next result shows that it is possible
that any static network based on a cost-efficient action profile forms within
a RNE. In the next proposition, we give a sufficient condition on the number
of players for which any static network can appear in the outcome of a RNE.

Proposition 7 Fix n ≥ 11. There exists a RNE (M1, . . . , Mn) whose
outcome contains any network g(a∗) ⊆ gI , a∗ ∈ Ace, at least once.

Proof. Fix n ≥ 11. We prove that any network g(a∗) ⊆ gI, a∗ ∈ Ace, can
form in the first period of a RNE. Denote by g(l′) the network that consists
of the line network g(l) (see the proof of proposition 4) except that player h
is isolated. Let g(l′′) be the network isomorphic to g(l′) with player j being
the isolated player.

We proceed in two steps. In a first step, we exhibit an n-tuple of automata
(M1, . . . , Mn) such that any network g(a∗) 6∈ {g(l′), g(l′′)} forms in the initial
period and the (n-player) maxmin line network g(l) forms in all remaining
periods. Any deviation from Mi will release a definitive minmax punishment.
The choice to form g(l) in each period t > 1 has been already justified in
the proof of proposition 4. In such a network the player who obtains the
worst payoff is better than in any other network. Therefore, the condition on
the number of players that prevents deviations is smaller if g(l) forms from
period 2 than if any other network forms.

However, by lemma 1, g(l′) and g(l′′) cannot form within the outcome of
a RNE in which g(l) forms in the mast stage. In fact, πi(li

′, l−i) > πi(l) for
the neighbor in g(l) of the isolated player h in g(l′). this is also true of g(l′′).
As a consequence, in a second step, we deal with the cases g(a∗) = g(l′) and
g(a∗) = g(l′′). We show that g(l′) and g(l′′) can be sustained as a RNN.

In a first step, consider any network g(a∗) 6∈ {g(l′), g(l′′)} and suppose
that each player i chooses the following automaton:
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a∗

−i a−i 6= l−i

a−i 6= a∗

−i

l−i ∀a−i

li ai,0a∗
iM4 :

Figure 5.

As it is described in the first paragraph of the proof, the strategy profile
(M4

1 , . . . , M4
n) outputs network g(a∗) 6∈ {g(l′), g(l′′)} in period 1 and there-

after T − 1 line networks g(l). Player i obtains the average payoff

π̃i(M
4
i , M4

−i) =
πi(a

∗) + (T − 1)πi(l)

T
.

Any deviation induces a definitive minmax punishment. Thus, deviating
in the first period yields player i the average payoff πi(bi, a

∗
−i)/T . It is not

the interest of player i to deviate in stage 1 if and only if

πi(a
∗) + (T − 1)πi(l)

T
≥

πi(bi, a
∗
−i)

T
⇐⇒ (T − 1)πi(l) ≥ di(a

∗) (12)

Observe that di(a) is maximal for a network a ∈ Ace in which player i
seeks contact with each of the n − 1 opponents whereas only one contact is
needed to connect the network. Such a network being cost-efficient, player i
keeps the network connected by removing n − 2 superfluous links and saves
(n − 2)c. That is, for any action profile a∗ ∈ Ace,

max
a∈Ace

di(a) = (n − 2)c ≥ di(a
∗)

From the proof of proposition 4, we also know that the minimal payoff
obtained by a player in g(l) is (n − 1)v − 2c. This implies that

πi(l) ≥ (n − 1)v − 2c,

for any i ∈ I. Thus, condition (12) holds if

(T − 1)((n − 1)v − 2c) ≥ (n − 2)c ⇐⇒ c ≤
(n − 1)(T − 1)

n + 2T − 4
v.

As 2v > c and T > 3, the reader can check that n ≥ 11 is enough
to guarantee that player i has no incentive to deviate. Next, consider a
deviation in stage t > 1. The outcome (a∗, l, . . . , l) satisfies the necessary
condition of lemma 1, that is, for any i ∈ I, there is no stage k < T such
that πi(a

k
i , l

T
−i) > πi(l

T ). In other words, players cannot benefit from deviat-
ing in stage T . Since we have also proved that n ≥ 11 garantees that players
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will not deviate in stage 1, it remains to test deviations in stages 2, . . . , T −1.
The line network is formed in each of these stages. Thus, the condition that
prevents deviations in these periods is identical to the one in proposition 3
for a RNN based on g(l). To see this, recall that if a player has an incentive
to deviate, then he does it late in the game because of the definitive punish-
ment. Condition (3) in proposition 3 is satisfied for the RNN based on a line
network when n ≥ 11. Therefore, any network g(a∗) 6∈ {g(l′), g(l′′)} is likely
to form in a RNE when n ≥ 11.

In a second step, assume that each player i chooses the following two-state
automaton:

li
′ ai,0

l−i
′

∀a−i 6= l−i
′

∀a−i

M5 :

Figure 6.

The strategy profile (M 5
1 , . . . , M5

n) leads to the formation of a repeated
network based on g(l′). Once again, any deviation releases a definitive
minmax punishment. This situation is a particular case of proposition 3.
Therefore, it is enough to check that condition (3) is satisfied to show that
(M5

1 , . . . , M5
n) is a RNN. As n ≥ 11, remember that only the direct neighbors

of the first and last players in the line component have an incentive to deviate
from l′. Let i be one of these two players. We need

di(l
′) ≤ min

{v

2
#Ni(g(bi, l−i

′)), 2πi(l
′)
}

⇐⇒ c − v ≤ min
{

(n − 2)
v

2
, 2((n − 1)v − 2c)

}

⇐⇒ c − v ≤ (n − 2)
v

2

⇐⇒ n ≥
2c

v
, (13)

which always holds when n ≥ 11. We conclude that network g(l′) can also
form in an equilibrium of GT . The networks g(l′′) and g(l′) being isomorphic,
the same conclusion applies to g(l′′). �

There is a contrast between this result and previous results of this section.
On one hand, any static network can form if one considers just a particular
period of the repeated game. On the other hand, the T -period outcomes of
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RNE must satisfy restrictive conditions. In the initial period, players can
set links, which form any network (proposition 7). But the formation of
this first network then prevents players from creating some other networks in
future periods (lemma 1 and proposition 5). For instance, if the network that
forms in stage 1 is connected, then by proposition 5 this network cannot be
a subnetwork of the network that forms in stage T . Thus, the initial network
conditions the structure of the whole outcome of a RNE.

4 Efficiency

In this section, we characterize the set of efficient action profiles for both
Bentham and Pareto criteria (see the appendix for the proofs). Next, we
examine this question in the finitely repeated game and compare the results
with those of the static case. Again, we consider two cases (players being
perfectly rational or not) and we study the differences in the corresponding
sets of efficient strategy profiles. Precisely, we give a condition on the dura-
tion of the game for which boundedly rational players can implement strictly
less efficient strategy profiles than perfectly rational players. We denote by
W (a) =

∑

i∈I πi(a) the welfare resulting from a.

Definition 5 An action profile a∗ ∈ A is

• Bentham-efficient if a∗ ∈ arg maxa∈A W (a);

• Pareto-efficient if for any i ∈ I and any a 6= a∗,

[πi(a) > πi(a
∗)] =⇒ [∃j 6= i|πj(a) < πj(a

∗)].

We say that an action profile is efficient if it is efficient either in the sense
of Bentham and/or in the sense of Pareto.

Proposition 8 Suppose n > 4. An action profile a∗ ∈ A is efficient if and
only if (i) it is cost-efficient and (ii) g(a∗) is a tree.

Thus in our model, the sets of Bentham and Pareto efficient action profiles
do coincide. This is quite noteworthy. Remark that the star network with
n > 4 players is efficient for both Bentham and Pareto criteria although the
player in the center of the star obtains less than the minmax payoff. This
shows that a static efficient network is not always sustained as a RNN. The
efficiency of strategy profiles in the repeated game is defined with respect to
the average payoff. Let AE be the set of efficient action profiles and SE be
the set of efficient strategy profiles. We use the subscripts BE and SE for the
Bentham and Pareto criteria. The set SE is characterized in the following
proposition.
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Proposition 9 A strategy profile s∗ is efficient if and only if it induces an
efficient action profile in each period. Formally,

SE = {s ∈ S : at ∈ AE, at ∈ hT+1(s), t ≤ T}.

Proof. Firstly we prove that SBE = SE. A strategy profile s∗ in which a
Bentham-efficient action profile occurs in each period has a maximum average
welfare W (s∗) since the welfare is maximal is each period. Thus, the set of
Bentham-efficient strategy profiles consists in all strategy profiles that induce
T Bentham-efficient action profile, that is SBE = SE.

Secondly, we prove that any Pareto-efficient strategy profile induces a
Pareto-efficient action profile in each period. We proceed by contradiction.
Consider a Pareto-efficient strategy profile s ∈ SPE in which at least one non
Pareto-efficient action profile a does occur. It is sufficient to suppose that
there is only one such action profile, and that it occurs at round t. Thus,
by definition, we know that there exists an action profile p ∈ A such that,
for any i, πi(p) ≥ πi(a), and πj(p) > πj(a) for some j. Now consider the
strategy profile s′ that induces p at round t, and the same action profiles
than s at the other rounds. Then we check easily than π̃i(s

′) ≥ π̃i(s), and
π̃j(s

′) > π̃j(s). This contradicts the Pareto-efficiency of s. By proposition 8,
s′ also induces a Bentham-efficient action profile in each period. We conclude
by contradiction that SPE = SBE . �

The results regarding the question of efficiency show that in our model
Bentham-efficient and Pareto-efficient action profiles or strategy profiles have
identical structures provided that the number of players is not too small.
This correspondence between Bentham-efficiency and Pareto-efficiency is dis-
cussed in Jackson (2003) for the case of static network formation games.

A population of perfectly rational players can implement any efficient
strategy profile in SE. Now, let ME denote the set of efficient strategy
profiles of the machine game. A particular efficient strategy profile s ∈ SE

may induce T different efficient networks. Thus, when players are assumed
to use finite automata of limited size as in section 3, one can ask whether n
automata with at most T − 1 states may form T different efficient networks.
In example 2, we show that combining actions played in the first T − 1
stages may not allow for the creation of the T th efficient network in the final
period. We give a sequence of T line networks that cannot be implemented
by automata with at most T − 1 states. From this example, we will state a
general proposition.

Example 2 Fix N = {1, 2, 3, 4, 5}, T = 4 and assume that players used
strategies that can be implemented by automata with 2 or 3 states. Consider
the sequences of four trees represented below and suppose that each action
profile at, t = 1, 2, 3, 4, is cost-efficient.
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1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

g(a3) g(a4)

g(a1) g(a2)

The strategy profile that induces the sequence of networks (a1, a2, a3, a4)
is efficient. Remark that player 2 has a totally distinct set of neighbors in
each period. To implement the four actions at

2, t = 1, 2, 3, 4, player 2 must
use an automaton with 4 states which does not belong to his strategy set. It
follows that there does not exist an automata profile with 2 or 3 states that
implement (a1, a2, a3, a4). �

Next, we generalize the idea of example 2. Each player i has 2n−1 − 1
different nonempty set of neighbors in the set of all networks with n players.
Player i has also the same number of different nonempty set of neighbors in
the set of all trees with n players. This remark leads to the following result.

Proposition 10 Suppose 2n−1 − 1 ≥ T . Then Me ( Se.

Proof. Suppose 2n−1 − 1 ≥ T . We construct a sequence of cost-efficient
action profiles (a1, . . . , aT ) that induce T trees and such that for any two
periods t and t′, ni(g(at)) 6= ni(g(at′)). There exists such a sequence since
2n−1 − 1 ≥ T . It follows that at

i 6= at′

i such that player i’s automaton has to
implement T different actions. This can be done only if player i’s machine has
at least T states. Such a strategy does not belong to M1T

i . Thus, there is no
automata profile of size 1 < mi < T for each i ∈ N that induce (a1, . . . , aT ).
We conclude that Me ( Se. �
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This result contrasts with those found on RNE. On one hand, the set of
RNE is more important when players are boundedly rational (propositions 2
and 3). On the other hand, boundedly rational players can implement less
efficient strategy profiles than perfectly rational players (proposition 10).

5 Conclusion

Within a finite-horizon repeated game framework we study the problem of
(dynamic) network formation when the players are either perfectly rational,
or boundedly rational in the sense of Neyman (1985), and by a restriction to
a subset of action profiles. We prove that the set of RNE is reduced to the
empty network when the agents are perfectly rational, while this set is much
more elaborate when the complexity of their strategies is limited. Then we
identify structural properties of RNNs and RNE. In the case of RNNs, we
prove that each network that is sustained as a RNN cannot be too much
over-connected, and that each player cannot bear a too important share of
the cost needed to connect the network. This highlights a lack of robustness
of architectures such as star networks. In the case of RNE, we prove that the
networks induced in any period satisfy some structural properties. Within a
RNE, players may prefer to set links with totally different partners at each
round, or the networks may retract progressively. Bounded rationality has
a noticeable influence both on the existence of (non trivial) equilibria and
on the dynamics of network formation. Assuming a limited ability to imple-
ment link formation seems reasonable since it is consistent with well-known
economic behaviors (searchers in a trading market for instance). Finally, we
make some comparisons between the sets of (Bentham and Pareto) efficient
strategy profiles. In this part, the nature of results is reversed. Under some
condition between the duration of the game and the number of players, it is
shown that more rational players will implement a larger number of efficient
strategy profiles. One of the main assumptions of the present work is that
consent is needed to form links. A possible extension to this paper would be
to see what happens if this assumption is relaxed. In particular, the result-
ing networks may be directed with the consequence that information is only
one-way flow. This is left for future research.

Appendix

Proof. (proposition 1) Firstly, we show that in any network g(a) 6= g0,
at least one player has an incentive to deviate. Secondly, we prove that
g0 = g(a0) is a Nash network.

Consider any network g(a) 6= g0. Two cases must be studied:

1. Suppose that a is not cost-efficient, then ∃i, j ∈ I such that aij = 1 6=
aji = 0. It is the interest of player i to choose action ai(j

−) that only
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differs from ai by aij = 0. Player i saves c while g(ai(j
−), a−i) = g(a).

He obtains πi(ai(j
−), ai) = πi(a) + c, which implies that g(a) is not a

Nash network.

2. Suppose that a is cost-efficient. If g(a) is a cyclic network, then there
are at least two players i and j such that Ni(g(a) − ij) = Ni(g(a)).
Link ij is superfluous. We have d1

i (a) > 0, which implies that g(a) is
not a Nash network. If g(a) is an acyclic network, then there is a player
i whose set of connections satisfies #Ni(g(a)) = 1. Let Ni(g(a)) = {j},
then link ij is superfluous for player j. Therefore d2

j(a) > 0, which
implies g(a) is not a Nash network.

The empty network g0 = g(a0) is the unique network that does not fit
with any of the two previous cases. In g(a0), there is no player i who has an
incentive to deviate from ai,0 since he cannot create links alone and would
support a cost c for any such attempt. Then the cost-efficient empty network
is the only Nash network of G. �

Proof. (proposition 2) Consider network g(a) 6= g0 and suppose g(aT ) =
g(a). By proposition 1 and a backward induction argument, there is at least
one player say i who has interest in altering his action in the last period.
Player i’s opponents anticipate this behavior and also remove some links.
As a consequence, the empty network necessarily forms in the last stage. A
similar process leads to the formation of the empty network in all periods. �

Proof. (proposition 8) The proof is divided in two parts, one for each
criterion.

Bentham-efficiency
(=⇒) Suppose b ∈ A is Bentham-efficient. Firstly, b must be cost-efficient.

Otherwise there are players i, j ∈ I with bij = 1 6= bji = 0 such that player
i saves c if he plays bi(j

−) = 0. Player i’s altered action does not remove
any link and maintains other players’ payoffs. Remark that g(b) must be
acyclic, otherwise there is a player i in g(b) who has some superfluous links
or equivalently d1

i (b) > 0. If i removes one such link, say with j, he obtains
πi(bi(j

−), b−i) = πi(b) + c and πh(bi(j
−), b−i) = πh(b), ∀h 6= i, j since bi(j

−)
keeps unchanged all other players’ connections (and payoffs).

Secondly, we have to show that g(b) must be a tree. To see this, we prove
that the welfare of a tree is larger than in any other type of network. In a
tree, the n vertices must be connected by exactly n− 1 links. The formation
of a link costs c to two players. Thus, the total cost of a tree g(b) is (n−1)2c.
The value of g(b) for each player is (n − 1)v. The welfare of any tree g(b)
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induced by a cost-efficient action profile b is 9

W (b) = n(n − 1)v − (n − 1)2c = (n − 1)(nv − 2c). (14)

Now consider any non connected network g(a). By definition, g(a) is split-
ted in K > 1 components, which are connected subnetworks. If g(a) is can-
didate to be Bentham-efficient, then each subnetwork g(ak), k ∈ {1, . . . , K},
satisfies condition 1 of the proposition, that is, g(a) is a forest of K trees
induced by cost-efficient action profiles. The component g(ak) has #Ik = nk

vertices (or players). The welfare of g(ak) is

W (ak) = (nk − 1)(nkv − 2c),

and the total welfare of a is

W (a) =

K∑

k=1

(nk − 1)(nkv − 2c).

By definition of Ik,

nv − 2c > nkv − 2c =⇒
K∑

k=1

(nk − 1)(nv − 2c) >
K∑

k=1

(nk − 1)(nkv − 2c).

Furthermore,
∑K

k=1 nk − 1 = n − 1 implies that

(n − 1)(nv − 2c) >
K∑

k=1

(nk − 1)(nv − 2c),

and we conclude that W (b) > W (a).

(⇐=) Suppose b satisfies the two conditions listed in the statement of
proposition 8. By the previous calculation, the welfare in b is larger than in
any other action profile.

Pareto-efficiency
(⇐=) By the first part of the proof, any tree induced by a cost-efficient

action profile is Bentham-efficient. And it follows from definition 5 that any
Bentham-efficient network is Pareto-efficient. Therefore, any cost-efficient
action profile that induces a tree is a Pareto-efficient.

9Such a network ranges from the n-player line network to the n-player star network.
These two networks exhibit extreme situations according to their diameter. A line network
has a diameter of n − 1, the largest diameter among trees, while a star network has a
diameter of 2, the smallest diameter among trees.
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(=⇒) Firstly, any Pareto-efficient action profile must be cost-efficient for
the same reason than in the first part of the proof. Secondly, to show that
any Pareto-efficient action profile induces a tree, we argue by contradiction.
Consider any Pareto-efficient action profile p for which g(p) is not a tree.
Note that g(p) cannot be k-connected, k > 1, since the existence of some
superfluous links would contradict the fact that p be Pareto-efficient. Then,
suppose that the Pareto-efficient action profile p induces a non connected
network. We group all possibilities in three cases according to the structure
of g(p):

Case 1.
Network g(p) consists in at least 2 connected components with at least 2 play-
ers. Each component must be a tree to avoid cycles (and superfluous links).
Let K be the total number of components in the forest g(p). Construct
the network g(p′) that consists in connecting the K components all together
with the creation of K − 1 links (see for instance the first part of the proof).
Since 2v > c, it is easy to check that the resulting network yields all play-
ers a larger payoff than g(p). This proves that g(p) cannot be Pareto-efficient.

Case 2.
Network g(p) consists in a connected component and k > 1 isolated players.
The component must be a tree to avoid cycles. The method described in
case 1 is still beneficial to all players whenever at least 2 isolated players can
be linked to the main tree component.

Case 3.
Network g(p) consists in a connected component and a single isolated player.
The component must also be a tree to avoid cycles. If the connected com-
ponent includes all but one player denoted h, it follows that the creation of
link ih with any player i in the component is beneficial to all players ex-
cept i, who loses v − c. Nonetheless, it is possible to connect player h to
all other opponents in a way that increases everyone’s payoff. Let i be a
player such that #ni(g(p)) = 1. Player i must exist since the connected
component is a tree. Precisely, let ni(g(p)) = {j}. Construct the network
g(p′) = g(p) − ij + hj + hi. The reader can check that all players except h
have the same number of direct neighbors in g(p′) than in g(p) and benefit
from the additional connection with player h. Player h creates two links but
is connected to at least 4 players. Thus, his payoff is larger than that of a
isolated player. Therefore all players obtain a larger payoff, which implies
that p cannot be Pareto-efficient.

Thus, we conclude by contradiction that any Pareto-efficient action profile
induces a tree. �
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