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Abstract 
 

In this paper we will explicit the complex system and adaptive nature of behaviour. The 
complex system nature of behaviour derives from the fact that behaviour and behavioural 
properties are phenomena that occur at a given time scale and result from several non-
linear interactions occurring at a smaller time scale. Interactions occur in time (i.e. con-
sists of a sequence events in which future interactions are constrained by preceding in-
teractions) and might eventually consists of a vector of concurrent interactions. Moreover 
we argued that behaviour might involve several emergent dynamical processes, hierar-
chically organized, that affect each others bottom-up and top-down. The adaptive system 
nature of behaviour derives from the fact that, due to the very indirect relationship be-
tween the properties of the interacting elements and the emergent results of the interac-
tions, behavioural systems can hardly be designed while they can be effectively developed 
through self-organizing methods in which properties emerging from interactions can be 
discovered and retained through an adaptive process based on exploration and selection. 
These two claims will be demonstrated in two concrete examples involving mobile robots 
in which non-trivial individual and collective behaviours have been developed through an 
evolutionary technique. 

 
 
 
1. Introduction 
 
A new research paradigm, that has been called Embodied Cognitive Science [1-4], has recently chal-
lenged the traditional view according to which intelligence is an abstract process that can be studied 
without taking into consideration the physical aspects of natural systems. In this new paradigm, re-
searchers tend to stress (1) situatedness, i.e., the importance of studying systems that are situated in an 
environment [2-3], (2) embodiment, i.e., the importance of study systems that have bodies, receive 
input from their sensors and produce motor actions as output [2-3], and (3) emergence, i.e. the impor-
tance of viewing behaviour and intelligence as the emergent result of fine-grained interactions (i.e. 
interactions that occur at small time scales) between the control system of an agent including its con-
stituents parts, the body structure, and the environment. An important consequence of this view is that 
the agent and the environment constitutes a single system, i.e. the two aspects are so intimately con-
nected that a description of each of them in isolation does not make much sense [5-7].  

In section 1 we clarify why behaviour is a complex adaptive system and we discuss how behav-
ioural systems can be developed. After discussing the advantages of self-organizing over design meth-
ods, we present two concrete example of effective and robust behavioural system developed through a 
self-organizing method based on artificial evolution. The first example concerns the development of 
the control system for an artificial finger that should be able to discriminate objects’ shape on the basis 
of tactile information (section 2). The second example involve the development of the control system 
of a group of physically assembled robots that should produce coordinated behaviours (section 3). In 
section 4, we point the hierarchical organization of behaviour. Finally, in section 5, we draw our con-
clusions. 
 
1.1 Behaviour as a dynamical process resulting from sequences of fine-grained interac-
tions 
 
Behaviour is a dynamical process resulting from the non-linear interactions between an agent (natural 
or artificial), its body, and the external environment (including the social environment). As we will 
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see, this implies that behavioural systems (such us mobile robots): (1) are extremely difficult to design 
from the perspective of an external observer, and (2) can be effectively developed through self-
organizing methods (e.g. evolutionary methods) that allow to discover and retain useful behavioural 
properties emerging from the interactions between agents, their bodies, and the environment. 
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Figure 1. Individual behaviour results from fine-grained non-linear interaction between the agent’s control system, its body, 
and the environment.  
 
At any time step, the environmental structure and the agent/environmental relation influence the body 
and the motor reaction of the agent that in turn influences the next environmental structure and/or the 
agent/environmental relation (see Figure 1). Sequences of these form of fine-grained interactions lead 
to a dynamical process – the behaviour – in which the contributions of the different aspects (i.e. the 
agent, the body, and the environment) cannot be separated. This implies that even a complete knowl-
edge of the elements governing the interactions provides little insights on the behaviour emerging 
from the interactions [5-6]. Please notice that we will use the term ‘emergence’ to indicate a property 
resulting from a sequence of interactions that can hardly be predicted or inferred from an external ob-
server even on the basis of a complete knowledge of the interacting elements and of the rules govern-
ing the interactions. 

The relation between the interaction rules and the resulting behaviour is further complicated by 
the fact that, when interactions are non-linear, small variations at the levels of the rules governing the 
interactions might translate to very different forms of behaviour due to cumulative and amplifying ef-
fects. 
 
1.2 On the advantages of self-organizing over design techniques 
 
From a theoretical point of view, the complex adaptive system nature of behaviour has several impor-
tant consequences that are far from being fully understood. One important aspect, for instance, is the 
fact that motor actions partially determine the sensory pattern that agents receive from the environ-
ment. By coordinating sensory and motor processes organisms can select favourable sensory patterns 
and thus enhance their ability to achieve their adaptive goals [8-11].  

From a engineering point of view, the complex adaptive system nature of behaviour explains why 
methods based on explicit design are inadequate for developing behavioural systems and why self-
organizing methods (e.g. methods based on evolutionary techniques) might be appropriate instead. 

The inadequacy of design methods lay on the fact that they require from the designer an ability to 
infer the rules governing the interactions between the agent and the environment that will lead to a 
desired behaviour. Unfortunately, as we pointed out above, the properties of the behaviour that 
emerges from a sequence of fine grained non-linear interactions between the agent and the environ-
ment can hardly be inferred from the structure of the interacting elements and the rules governing the 
interactions. The inverse problem faced by the designer (i.e. the problem of determining the rules gov-
erning the interaction that will lead to a desired behaviour) is at least equally hard. 
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The advantage of self-organizing methods is indeed the fact that they do not require to identify 
the relation between the rules governing the interactions and the resulting behaviour. They are based 
on an evolutionary and/or learning process in which the rules governing the interactions, initially ran-
domly assigned, are progressively modified through a process of random variation and selection. Al-
gorithms with this property include evolutionary, simulator annealing, and reinforcement learning al-
gorithms when: (a) the rules governing the interaction are encoded in free parameters, and (b) varia-
tions of free parameters are retained or discarded on the basis of variation of performance observed at 
the behavioural level (i.e. at the time scale of seconds or more). These characteristics allow these 
methods to discover and retain useful properties emerging from the several interactions without the 
need to identify the relation between the rules governing the interaction (and/or the interacting ele-
ments) and the resulting behaviour.  

The possibility to discover and retain useful properties emerging from the interactions also allow 
self-organizing methods to come up with solutions that are simple from the point of view of the inter-
action rules (for examples, see [8-9]). Indeed, while in design methods the effects of the detailed char-
acteristics of the agent and the environment (i.e. inertia, elasticity of materials, detailed characteristics 
of the shape etc.) cannot be predicted and thus constitute problems to be avoided, in self-organizing 
methods they constitute possibilities to be exploited.   

Two example of how self-organizing methods might be used to develop effective behavioural 
system and to exploit properties emerging from the interactions will be presented in section 2 and 3. 
 
1.3 Collective behaviour emerge from a large number of interactions 
 
Collective behaviour is a dynamical process resulting not only from the fine-grained interactions be-
tween agents, their bodies, and the external environment but also between agents (see Figure 2).  
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Figure 2. Collective behaviour results from a sequence of several concurrent interactions occurring between agents, their 
body, and the environment and between agents. The figure schematically represents the situation of four agents in which 
each individual interacts with two adjacent individuals directly (through physical contact) and indirectly (through environ-
mental modifications that affect other agents’ sensors).  
 
The fact that collective behaviour results from a much larger number of fine-grained interactions im-
plies that the relation between the rules governing the interactions and the resulting behaviour is more 
indirect and more difficult to infer than in the case of individual behaviour. In fact, (a) individual be-
haviour might be hard to infer or predict on the basis of the rules governing the interactions between 

 4



the agents, their body, and the external environment (see previous section), (b) groups’ aggregate-level 
behaviour might be hard to infer or predict on the basis of individual behaviours, and (c) the effects of 
group level dynamics on individual behaviour might be hard to infer or predict. For these reasons, the 
problem of designing the interaction rules that lead to a desired collective behaviour might be ex-
tremely hard even in simple cases [12-13]. 

As we mentioned above, however, the indirect relation between the rules governing the interac-
tions and the resulting collective behaviour does not constitute a problem for self-organizing methods. 
On the contrary the large number of interactions might increase the possibility to identify parsimoni-
ous solutions (from the point of view of the complexity of the rules governing the interactions) by ex-
ploiting useful behavioural properties emerging from the interactions.  

An example of how self-organizing methods might be used to develop effective and robust col-
lective behaviours will be presented in section 3.  
 
2. Evolving the control system of an artificial finger able to discriminate ob-
jects with different shapes on the basis of tactile information. 
 
Consider the case of a robot with an artificial finger that has to discriminate objects with different 
shapes on the basis of rather rough tactile information [10].  
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Figure 3. Left: The artificial finger and a spherical object. Right: A schematic representation of the finger. 
 

The artificial finger consists of 3-segments with 6 degrees of freedom (DOF) and coarse touch sensors 
(see Figure 3, left). More precisely, the artificial finger consists of a basic structure of two bodies and 
two joints replicated for three times (see Figure 3, right). These two bodies are connected by means of 
a joint (i.e. the Joint E in Figure 3, right) that allows only one DOF on axis Y , while the shorter body 
is connected at the floor, or at the longer body, by means of a joint (i.e. the Joint R) that provides one 
DOF on axis X. In practice, the Joint E allows to elevate and to lower the connected segments and the 
Joint R allows to rotate them in both direction. Joint E and Joint R are free to moves only in a range 
between [0 and π/2] and [-π/2, +π/2], respectively. Each actuator is provided with a corresponding 
motor that can apply a varying force. Therefore, to reach every position in the environment the control 
system has to appropriately control several joints and to deal with the constraints due to gravity (colli-
sions and physical dynamics was carefully simulated on the basis of VortexTM libraries).    

The sensory system consists of three simple contact sensors placed on each longer body that de-
tect when these bodies collides with obstacles or other bodies and six proprioceptive sensors that pro-
vide the current position of each joint. The motor system consists of six motors controlling the corre-
sponding six DOF.  

The controller of each individual consists of a neural network with 10 sensory neurons directly 
connected to 7 motor neurons and 2 internal neurons receiving connections from the sensory neurons 
and from themselves and projecting connections to the motor neurons. The first 9 sensory neurons en-
code the angular position (normalized between 0.0 and 1.0) of the 6 DOF of the joints and the state of 
the three contact sensors located in the three corresponding segments of the finger. The last sensory 
neuron is a copy of the last motor neuron that encodes the current classification produced by the indi-
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vidual (see below). The first 6 motor neurons control the actuators of the 6 corresponding joints. The 
output of the neurons is normalized between [0, +π/2] and [-π/2, +π/2] in the case of elevation and 
rotational joints respectively and is used to encode the desired position of the corresponding joint. The 
motor is activated so to apply a force proportional to the difference between the current and the de-
sired position of the joint. The seventh motor neuron encodes the categorization output (value below 
or above 0.5 are interpreted as classifications corresponding to a cubic or spherical object respec-
tively).  

The connection weights of the neural controllers were evolved. An initial population of different 
artificial genotype, each encoding the connection weights of a corresponding neural controller, is cre-
ated randomly. Each connection weight was represented in the genotype by eight bits that were trans-
formed into a number in the interval [–10, +10]. Each robotic finger is then allowed to interact with 
the environment on the basis of a corresponding, genetically specified, neural controller. The fittest 
robots are allowed to reproduce by generating copies of their genotypes with the addition of changes 
(random mutations). This process is repeated for a number of generations.  

Evolving individuals were allowed to "live" for 36 epochs, each epoch consisting of 150 actions. 
At the beginning of each epoch the finger is fully extended and a spherical or a cubic object is placed 
in a random selected position in front of the finger (the position of the object is randomly selected be-
tween the following intervals: 20.0 >= X <= 30.0; 7.5 >= Y <= 17.5; -10.0 >= Z <= 10.0). The object 
is a sphere (15 units in diameter) during even epochs and a cube (15 units in side) during odd epochs 
so that each individual has to discriminate the same number of spherical and cubic objects during its 
“lifetime”  Fitness is computed by counting the number or epochs in which individuals correctly cate-
gorize the object (i.e. the number of times in which at the end of the epoch  the activation of the last 
motor units is below 0.5 and the object is a cube or is above 0.5 and the object is a sphere). Therefore, 
individuals are free to determine how to interact with the objects, i.e. the are only selected on the basis 
of the ability to correct categorizations.  

Population size was 100. The best 20 individuals of each generation were allowed to reproduce 
by generating 5 copies of their genotype with 1% of their bits replaced with a new randomly selected 
value. 

By running 10 replications of the experiment and by evolving individuals for 50 generations we 
observed that in many of the replications evolved individuals display a good ability to categorize ob-
jects and, in some cases, produce close to optimal performance. Figure 4 shows how a typical evolved 
individual behave with a spherical and a cubic object (left and right sides of the Figure, respectively). 
As can be seen, first the finger bends on the left side and move to the right so to start to feel the object 
with the touch sensor of the third segment. Then the finger continues to move on the same direction by 
slightly moving up when the third segment of the finger touches the object. As a result of this simple 
motor rules, in the case of spherical objects, the finger keeps moving toward the left side following the 
curvilinear surface. In the case of cubic objects, instead, it remains stuck in one of the angles by mov-
ing back and fourth.  

The behaviour emerging from the interactions between the finger and the objects lead to two 
rather different behavioural outcomes in the case of spherical and cubic objects: (a) a fully extended 
position of the finger in the case of spherical objects, and (b) a fully bended position of the finger, in 
the case of cubic objects.  These two positions, in turn, provide a straightforward indication of the type 
of object the finger interacted with. For other example, involving different environment and robots 
with different morphologies, in which the convergence or the luck of convergence on a limit cycle be-
haviour can be used to categorize the environment, see [8-10]). 
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Figure 4. Behaviour of a typical evolved individual during an epoch (150 cycles) in which the object consists of a sphere 
(left pictures) and of a cube (right pictures). For reason of space, the pictures show the position of the finger each 15 cycles. 
 
Individuals of other replications of the experiments display similar behaviour although the length of 
the phase with which individuals interact with spherical objects before leaving them varies. The fact 
that the best performance are observed in cases in which the interaction phase lasts longer (result not 
shown), demonstrates that the discrimination process is not the result of a single decision but rather the 
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end result of a sequence of interactions between the finger and the object. A similar temporally-
extended decision process has been observed in a different experimental set-up in which evolving 
agents are asked to catch and avoids objects with different shapes [11]. 
 
3. Evolving the control system of a collection of physically assembled robots 
able to display coordinated collective behaviour 
 
Consider the case of four assembled robots forming a linear structure (Figure 5) that should move and 
reach a light target [14]. Given that the orientations of individual robots might vary and given that the 
target might be out of sight, robots should be able to coordinate to choose a common direction of 
movement and to change their direction as soon as one or few robots start to detect a light gradient. 
 

   
 
Figure 5. Left: Four robots assembled into a linear structure. Right: A simplified simulation of the robots described in the 
left part of the figure based on VortexTM libraries. 
 
Each robot [15] consists of a mobile base (chassis) and a main body  (turret) with a diameter of 116 
mm that can rotates with respect to the chassis along the vertical axis. The chassis has two drive 
mechanisms that control the two corresponding tracks and teethed wheels. The turret has one rigid and 
one flexible gripper, that allow robots to assemble together and to grasp objects, and a motor control-
ling the rotation of the turret with respect to the chassis. Robots are provided with a traction sensor, 
placed at the turret-chassis junction, that detects the intensity and the direction of the force of traction 
that the turret exerts on the chassis (along the plane orthogonal to the vertical axis) and light sensors. 
The robots also have several other sensors (a sound sensors, an omnidirectional camera, accelerome-
ters etc.) that, however, were not used in the experiments reported below. 

Robots’ controller only have access to local sensory information. In particular, each robot’s con-
troller consists of a neural network with nine sensory neurons directly connected to two motor neu-
rons. The first four sensory neurons encoded the intensity of the traction from four different orienta-
tions with respect to the chassis (rear, left, front and right). The next four sensory neurons provide in-
formation on the light gradient with respect to the chassis. The last neuron consists of a bias unit that is 
always activated to 1.0.  The activation state of the two motor neurons was normalized within [–5, +5] 
rad/s and was used to set the desired speed of the two corresponding wheels and of motor controlling 
the degree of freedom between the turret and the chassis. The initial population consisted of 100 ran-
domly generated genotypes that encoded the connection weights of 100 corresponding neural control-
lers. Each connection weight was represented in the genotype by eight bits that were transformed into 
a number in the interval [–10, +10]. Each genotype encoded the connection weights of a correspond-
ing neural controllers that was then duplicated four times and embodied into the four robots forming 
the team (i.e. the team is homogeneous). 

By evolving the connection weights of the robots’ controller and by selecting the team of four ro-
bots on the basis of the distance travelled from its initial position (when the light target was not on 
sight) and for the distance travelled toward the target light (when the light target was on sight) we ob-
served that evolving individual are able to effectively solve their problem by negotiating a common 
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direction of movement and by collectively moving toward the light as soon as a light gradient can be 
detected.  

By testing evolved controllers in different conditions we surprisingly observed that they are able 
to generalize their abilities in new conditions and also to spontaneously produce new unexpected be-
haviours. More precisely, evolved robots display a capacity to generalize their abilities to:  (a) the 
number of assembled robots, (b) the shape with which robots are assembled together, and (c) the use 
of flexible rather than rigid links. Moreover, evolved robots also display an ability to:  (a) spontane-
ously produce a collective obstacle avoidance behaviour, (b) dynamically rearrange the physical shape 
of the team in interaction with the environment to negotiate narrow passages, (c) spontaneously pro-
duce a coordinate object pushing/pulling behaviour when assembled to or around an external object.   

 
 

 
 
Figure 6. A circular shape structure formed by eight robots assembled through flexible links in a maze with obstacles consist-
ing of walls and cylindrical objects (represented with grey lines and circles). The team of robots starts in the central portion 
of the maze and reach the light target located in the bottom-left side of the environment (see the light grey circle) by exhibit-
ing a combination of collective obstacle avoidance and collective light approaching behaviour. The irregular lines, that rep-
resent the trajectories of the individual robots, provide an indication of how the shape of the assembled robots changes dur-
ing motion by adapting to the local structure of the environment. 

Figure 6, shows the behaviour displayed by eight robots assembled into a circular shape through flexi-
ble links (i.e. links that allow two connected robots to modify their relative positions within certain 
limits) placed in a maze environment with walls and cylindrical obstacles. As shown in the figure the 
same control system evolved to control four robots assembled into a linear structure generalize to: (1) 
a team consisting of eight robots assembled into a different shape, (2)  robots assembled through flexi-
ble links that modify the shape of the assembled structure during motion. The figure also show how 
robots: (a) produce a collective obstacle avoidance behaviour (as a result of the traction force gener-
ated during collisions with obstacles), and (b) rearrange the shape of the team to pass narrow passages. 

Figure 7, that shows the behaviour of how 8 robots assembled through flexible links around a cy-
lindrical object. As shown on the figure, the same control system evolved to control four robots as-
sembled into a linear structure generalizes in new conditions and display a coordinate object pushing-
pulling behaviour. 
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Figure 7: Left: Eight robots connected around an object. Right: Coordinated object pushing/pulling behaviour exhibited by a 
team of robots assembled around an external cylindrical object. The empty circles and the full circle indicate the final posi-
tions of the robots and of the object, respectively.  The thin lines and thick line indicate the trajectory of the robots and of the 
object.   
 
For a demonstration of how the neural controller evolved in simulation are able to display similar be-
haviours when embodied and tested in the real physical robots see [16].  

 

4. Behaviour as dynamical system organized hierarchically 
 
In the introduction we pointed out that behaviour is a dynamical process emerging from the interac-
tions between the agents’ control systems, the agents’ body, and the external environment (eventually 
including the social environment). The fact that behaviour (even in simple cases such us grasping an 
object or reaching a target location) is a property that can be observed only at macro time scale (in the 
range of seconds or minutes) while interactions occur at micro time scales (milliseconds) imply that 
behaviour emerge from a large number of non-linear interactions not only in the case of collective be-
haviour but also in the case of individual behaviour. Behaviour is always the result of a sequence of 
fine-grained interactions (distributed in time) and eventually of a number of concurrent interactions 
between different agents (distributed in space). Overall this implies that both individual behaviour and 
collective behaviour are the emergent result of a large number of fine-grained interactions. Although 
this fact is widely recognized in the case of collective behaviour, it is much less recognized in the case 
of individual behaviour. 

The picture is further complicated by the fact that behaviour might be based on a series of emer-
gent dynamical processes, hierarchically organized, that affect each others bottom-up and top-down 
(for a similar view, see [17]). More precisely: (a) interactions between properties emerging from a se-
quence of fine-grained interactions might lead to higher level emergent properties (that typically ex-
tend over larger time scales than the interacting properties), (b) higher level properties might affect the 
interactions between lower level properties. 

As an example of a top-down effects of high level properties (emerging from the interaction be-
tween the agent and the environment) and the interaction between the agent and the environment con-
sider the example of the discrimination behaviour described in section 2. The behavioural properties 
emerging from the interactions between the agent control system, its body, and the external object (oc-
curring at a time scale of 100ms) result in two different emerging behaviours (in the case of cubic or 
spherical objects respectively): (1) the finger remains bended and keeps touching the object, or (2) the 
finger becomes fully extended by passing over the object. These two emergent properties occur at a 
time scale of seconds while the interaction between the agent and the environment are mediated by 
control rules that operate at the time scale of milliseconds.. These two high level properties, in turns, 
affect the successive lower level interactions mediated by the agent neural controller (i.e. the neural 
controller produces a categorization output corresponding to “cubic object” or “spherical object” on 
the basis of the state of the sensors that detect the current angular position of the joints of the finger). 

As an example of behaviours organized in three hierarchical levels and in which level 3 properties 
emerge from the interaction between level 2 properties, that in turn emerge from the interaction be-
tween the agent and the environment, consider the case of the collective navigation problem described 
in section 3. Interactions occurring between the agents and the environment (at a time scale of 100ms) 
lead to two behavioural properties (that extend at a time scale of seconds): (1) an ability to negotiate 
and converge on a common direction of movement, and (2) an ability to turn toward the light. The in-
teractions between these two high level properties, in turn, lead to several collective behaviours that 
occur at larger time scales (i.e. several seconds). More precisely, the interaction between these two 
behavioural capacity lead to: (a) an ability to collectively approach the light target (even when only 
few agents detect the light because of their relative distance with respect to the light or because of 
shadows), (b) an ability to display a collective exploration behaviour and a collective light approach-
ing behaviour, and (c) an ability to combine the two behaviours by avoiding to get stuck in situations 
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in which these two behavioural capacity, by triggering opposite motor responses, might interfere one 
with the other. 

 
5. Conclusion 
 
In this paper we pointed out the complex system and adaptive nature of behaviour.  

The complex system nature of behaviour derives from the fact that (both in the case of individual 
and collective behaviour) behaviour and behavioural properties are phenomena that occur at a given 
time scale and result from several non-linear interactions occurring at a smaller time scale. Interactions 
occur in time (i.e. consists of a sequence events in which future interactions are constrained by preced-
ing interactions) and might eventually consists of a vector of concurrent interactions. Moreover we 
argued that behaviour might involve several emergent dynamical processes, hierarchically organized, 
that affect each others bottom-up and top-down. 

 The adaptive system nature of behaviour derives from the fact that, due to the very indirect rela-
tionship between the properties of the interacting elements and the emergent results of the interactions, 
behavioural system can hardly be designed while can be effectively synthesized on the basis of a self-
organization process (in which properties emerging from interactions can be discovered and retained 
through an adaptive process based on exploration and selection). 

These two claims have been demonstrated in two examples in which non-trivial individual and 
collective behaviour have been developed through an evolutionary technique. 
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