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Abstract

Complexity in the description of big chemical reaction networks has both structural
(number of species and reactions) and temporal (very different reaction rates) aspects. A
consistent way to make model reduction is to construct the invariant manifold which describes
the asymptotic system behavior. In this paper we present a discrete analog of this object: an
invariant grid. Invariant grid is introduced independently from the invariant manifold notion
and can serve itself to represent the dynamic system behavior as well as to approximate the
invariant manifold after refinement. The method is designed for pure dissipative systems and
widely uses their thermodynamic properties but allows also generalizations for some classes
of open systems. The method is illustrated by two examples: the simplest catalytic reaction
(Michaelis-Menten mechanism) and the hydrogen oxidation.
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1 Introduction

Reaction networks serve as a good model to imitate and predict behavior of complex systems
of interacting components. Modern research faces with constantly increasing complexity of the
systems under study: as a good example, nowadays one can observe a boom connected with
studies of biochemical processes in a living cell (for recent overviews, see [1],[2]). There is no need
to underline emerging needs for the methods of reducing the complexity of system description
and behavior.

Complexity in modeling big chemical reaction networks has both structural (number of
species and reactions) and temporal (very different reaction rates) aspects, see Fig. 1. In general,
it is not possible to disregard the temporal organization of the network when one wants to create
a realistic system model. Of course, the rate constants and reaction laws are rarely available
completely. This makes extremely desirable the development of methods allowing to reduce the
number of system parameters as well as methods for qualitative analysis of chemical reaction
networks [2].

The idea of model reduction with respect to slow motion extraction can be introduced as
follows: we have a system of ordinary differential equations describing time evolution of n species
concentrations (or masses) in time:

dx

dt
= J(x), (1)

Every particular state of the system corresponds to a point in the phase space U and the system
dynamics is determined by the vector field J(x), x ∈ U . We construct new (reduced) dynamics

dy

dt
= J ′(y), (2)

where yi, i = 1..m,m ¿ n is a new set of variables corresponding to slow dynamics of the initial
system (1). By analogy with statistical physics it corresponds to the ”macroscopic” description
of the chemical system (we observe only effects of slow system changes, comparable in time scale
with characteristic times of experimental measurements) as opposite to ”microscopic” variables
xi. The reduced system dynamics exists on a m-dimensional manifold (surface) Ω embedded in
the n-dimensional phase space and defined by functions xi = xi(y1, ..., ym).

A consistent way for model reduction is to construct a positively invariant slow manifold Ωinv,
such that if an individual trajectory of the system (1) has started on Ωinv, it does not leave Ωinv

anymore, i.e. the vector field J(x) in the points of the manifold is tangent to it, Fig. 2a. The
‘ideal’ picture of the reduced description we have in mind is as follows: A typical phase trajectory,
x(t), where t is the time, and x is an element of the phase space, consists of two pronounced
segments. The first segment connects the beginning of the trajectory, x(0), with a certain point,
x(t1), on the manifold Ωinv (rigorously speaking, we should think of x(t1) not on Ωinv but in
a small neighborhood of Ωinv but this is inessential for the ideal picture). The second segment
belongs to Ωinv. Thus, the manifolds appearing in our ideal picture are “patterns” formed by
the segments of individual trajectories, and the goal of the reduced description is to “filter out”
this manifold (Fig. 2a).

Usually construction of invariant manifold in the explicit form is difficult. Most of the time
one deals with its approximation constructed using some method (see, for overview, [6], [8], [4],
[5]). It is formally possible to induce new dynamics on any given manifold Ω, not necessarily
invariant, if one introduces a projector operator P of the vector field on the tangent bundle of
the manifold Ω: PJ(x ∈ Ω) ∈ TxΩ. By definition, the manifold Ω is invariant with respect to
the vector field J if an only if the following equality is true for each x ∈ Ω:

[1− P ]J(x) = 0, (3)
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Figure 1: Graphical representation of two model systems considered as examples in this paper: a)
Michaelis-Menten mechanism; b) Hydrogen burning model with 6 variables. Here circles represent chem-
ical species, squares represent chemical reactions. Line widths reflect direct reaction rate constants,
thicker line corresponds to a slower reaction (in a logarithmic scale). All reactions here are governed by
mass action law and supposed to be reversible.

where projector P depends on the point x and on the manifold Ω in the vicinity of x. This
equation is a differential equation for functions that define the manifold Ω. Newton method
and relaxation method, both iterative, were proposed to find a sequence of corrections to some
initial approximation Ω, in such a way that every next approximation has less invariance defect
[1− P ]J(x), see [5]. These corrections can be performed analytically in some cases.

For the case of a complex chemical reaction network, one has to develop a computationally
effective method of invariant manifold construction. If one constructs a surface of a relatively
low dimension, grid-based manifold representations become a relevant option [8]. In this paper
we present such an approach named method of invariant grids (MIG). From one hand, grid
representation can be refined and converge more and more closely to the invariant manifold.
From the other, we define invariant grid as an object independent on the manifold itself. Thus,
it can be used independently: for example, for visualization of the global system dynamics as it
will be shown in the end of this paper.

Invariant grid is an undirected graph which consists of a set of nodes and connections be-
tween them. The graph can be represented in two spaces: in the low-dimensional space of the
internal (reduced) coordinates where it forms a finite lattice (usually, regular and rectangular
or hexagonal), and, simultaneously, it is embedded in the phase space U , thus every node corre-
sponds to a species concentrations vector x. Using connectivity of the graph, one can introduce
differentiation operators and calculate the tangent vectors and define the projector operator
in every node. This is the only place where the connectivity of the graph is used. The node
positions in U are optimized such that the invariance condition (3) is satisfied for every node.
In this paper we propose two algorithms for how to do it, both iterative: of Newton type and a
relaxation method. After node positions optimization the grid is called invariant.

In this study we consider class of dissipative systems, i.e. such systems for which there
exists a global convex Lyapunov function G (thermodynamic potential) which implements the
second law of thermodynamics. For example, because of this reason, all reactions on Fig. 1
are reversible. Dissipative systems have the only steady state in the equilibrium point and as
the time t tends to infinity, the system reaches the equilibrium state while in the course of
the transition the Lyapunov function decreases monotonically. Thermodynamic properties of
dissipative systems help a lot: for example, they unambiguously define metrics in the phase space
to perform geometrical calculations and also define the choice of projector P almost uniquely
(see the next section).
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Figure 2: Main geometrical structures of model reduction: U is the phase space, J(x) is the vector
field of the system under consideration: dx/dt = J(x), Ω is an ansatz manifold, W is the space of
macroscopic variables (coordinates on the manifold), the map F : W → U maps any point y ∈ W into
the corresponding point x = F (y) on the manifold Ω, Tx is the tangent space to the manifold Ω at the
point x, PJ(x) is the projection of the vector J(x) onto tangent space Tx, the vector field dy/dt describes
the induced dynamics on the space of parameters, ∆ = (1−P )J(x) is the defect of invariance, the affine
subspace x + kerP is the plain of fast motions, and ∆ ∈ kerP . a) Here Ωinv is an invariant manifold
(all J(x ∈ Ωinv) are tangent to Ωinv) and a possible dynamics is shown in its vicinity; b) here Ω is some
manifold approximating the invariant manifold (J(x ∈ Ω) is not necessarily tangent to Ω), one can use
operator P to derive new dynamics (2).

Low dimensional invariant manifolds exist also for systems with a more complicated dynamic
behavior so why to study the invariant manifolds of slow motions for a particular class of purely
dissipative systems? The answer is in the following: Most of the physically significant models
include non-dissipative components in a form of either a conservative dynamics or in the form
of external fluxes. For example, one can think of irreversible reactions among the suggested
stoichiometric mechanism (inverse process are so unprobable that we discard them completely
thereby effectively “opening” the system to the remaining irreversible flux). For all such systems,
the method of invariant grids is applicable almost without special refinements, and bears the
significance that invariant manifolds are constructed as a “deformation” of the relevant manifolds
of slow motion of the purely dissipative dynamics. Example of this construction for open systems
is presented below in the last section of the paper. The calculations in the last chapter do not
use grid specifics and can be applied not only for grid representation of the invariant manifold,
but also for any analytical form of its representation.

2 Dissipative systems and thermodynamic projector

2.1 Kinetic equations

Let us introduce the notions used in the paper (see also [3], [9], [7]). We will consider a closed
system with n chemical species A1, . . . , An, participating in a complex reaction. The complex
reaction is represented by the following stoichiometric mechanism:

αs1A1 + . . . + αsnAn ⇀↽ βs1A1 + . . . + βsnAn, (4)

where the index s = 1, . . . , r enumerates the reaction steps, and where integers, αsi and βsi, are
stoichiometric coefficients. For each reaction step s, we introduce n–component vectors αs and
βs with components αsi and βsi. Notation γs stands for the vector with integer components
γsi = βsi − αsi (the stoichiometric vector).
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For every Ai an extensive variable Ni, “the number of particles of that species”, is defined.
The concentration of Ai is xi = Ni/V , where V is the volume.

Given the stoichiometric mechanism (4), the reaction kinetic equations read:

Ṅ = V J(x), J(x) =
r∑

s=1

γsWs(x), (5)

where dot denotes the time derivative, and Ws is the reaction rate function of the step s. In
particular, the mass action law suggests the polynomial form of the reaction rates:

Ws(x) = W+
s (x)−W−

s (x) = k+
s (T )

n∏

i=1

xαi
i − k−s (T )

n∏

i=1

xβi
i , (6)

where k+
s (T ) and k−s (T ) are the constants of the direct and of the inverse reactions rates of the

sth reaction step, T is the temperature.
The rate constants are not independent. The principle of detail balance gives the following

connection between these constants: There exists such a positive vector xeq(T ) that

W+
s (xeq) = W−

s (xeq) for all s = 1, . . . , r. (7)

For V, T = const we do not need additional equations and data. It is possible simply to
divide equation (5) by the constant volume and to write

ẋ =
r∑

s=1

γsWs(x). (8)

Conservation laws (balances) impose linear constrains on admissible vectors x:

(bi, x) = Bi = const, i = 1, . . . , l, (9)

where bi are fixed and linearly independent vectors. Let us denote as B the set of vectors which
satisfy the conservation laws (9) with given Bi:

B = {x|(b1,x) = B1, . . . , (bl, x) = Bl} .

The natural phase space X of the system (8) is the intersection of the cone of n-dimensional
vectors with nonnegative components, with the set B, and dimX = d = n− l. In addition, we
assume that each of the conservation laws is supported by each elementary reaction step, that
is

(γs, bi) = 0, (10)

for each pair of vectors γs and bi.
We assume that the kinetic equation (8) describes evolution towards the unique equilibrium

state, xeq, in the interior of the phase space X. Furthermore, we assume that there exists a
strictly convex function G(x) which decreases monotonically in time due to (8):

Ġ = (∇G(x), J(x)) ≤ 0. (11)

Here ∇G is the vector of partial derivatives ∂G/∂xi, and the convexity assumes that the
n× n matrices

Hx = ‖∂2G(x)/∂xi∂xj‖, (12)

are positive definite for all x ∈ X. In addition, we assume that the matrices (12) are invertible
if x is taken in the interior of the phase space.
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The matrix H defines an important Riemann structure on the concentration space, the
thermodynamic (or entropic) scalar product:

〈x, y〉c = (x, Hxy), (13)

This choice of the Riemann structure is unambiguous from the thermodynamic perspective. We
use this metrics for all geometrical constructions, for measuring angles and distances in the
phase space U .

The function G is the Lyapunov function of the system (5), and xeq is the point of global
minimum of the function G in the phase space X. Otherwise stated, the manifold of equilibrium
states xeq(B1, . . . , Bl) is the solution to the variational problem,

G → min for (bi, x) = Bi, i = 1, . . . , l. (14)

For each fixed value of the conserved quantities Bi, the solution is unique.
For perfect systems in a constant volume under a constant temperature, the Lyapunov

function G reads:

G =
n∑

i=1

xi[ln(xi/xeq
i )− 1]. (15)

2.2 Thermodynamic projector

For dissipative systems, we keep in mind the following picture (Fig. 2). The vector field J(x)
generates the motion on the phase space U : dx/dt = J(x). An ansatz manifold Ω is given, it is
the current approximation to the invariant manifold. This manifold Ω is described as the image
of the map F : W → U , where W is a space of macroscopic variables, U is our phase space.

The projected vector field PJ(x) belongs to the tangent space Tx, and the equation dx/dt =
PJ(x) describes the motion along the ansatz manifold Ω (if the initial state belongs to Ω). The
induced dynamics on the space W is generated by the vector field

dy

dt
= (DyF )−1PJ(F (y)).

Here the inverse linear operator (DyF )−1 is defined on the tangent space TF (y), because the
map F is assumed to be immersion, that is the differential (DyF ) is the isomorphism onto the
tangent space TF (y).

Projection operators P contribute to the invariance equation (3). Limiting results, exact
solutions, etc. only weakly depend on the particular choice of projectors, or do not depend on
it at all. However, thermodynamical validity of approximations obtained on each iteration step
towards the limit strongly depends on the choice of the projector.

Let some (not obligatory invariant) manifold Ω is considered as a manifold of reduced de-
scription. We should define a field of linear operators, P x, labeled by the states x ∈ Ω, which
project the vectors J(x), x ∈ Ω onto the tangent bundle of the manifold Ω, thereby generating
the induced vector field, P xJ(x), x ∈ Ω. This induced vector field on the tangent bundle of the
manifold Ω is identified with the reduced dynamics along the manifold Ω. The thermodynamicity
requirement for this induced vector field reads

(∇G(x), P xJ(x)) ≤ 0, for each x ∈ Ω. (16)

The condition (16) means that the entropy (which is the Lyapunov function with minus sign)
should increase in the new dynamics (2).

How to construct the projector P? Another form of this question is: how to define the plain
of fast motions x + kerP? The choice of the projector P is ambiguous, from the formal point
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of view, but the second law of thermodynamics gives a good hint [3]: the entropy should grow
in the fast motion, and the point x should be the point of entropy maximum on the plane of
fast motion x + kerP . That is, the subspace kerP should belong to the kernel of the entropy
differential:

kerPx ⊂ kerDxS.

Of course, this rule is valid for closed systems with entropy, but it can be also extended onto open
systems: the projection of the “thermodynamic part” of J(x) onto Tx should have the positive
entropy production. If this thermodynamic requirement is valid for any ansatz manifold not
tangent to the entropy levels and for any thermodynamic vector field, then the thermodynamic
projector is unique [13]. Let us describe this projector P for a given point x, subspace Tx = imP,
differential DxS of the entropy S at the point x and the second differential of the entropy
at the point x, the bilinear functional (D2

xS)x. We need the positively definite bilinear form
〈z|p〉x = −(D2

xS)x(z, p) (the entropic scalar product). There exists a unique vector g such that
〈g|p〉x = DxS(p). It is the Riesz representation of the linear functional DxS with respect to
entropic scalar product. If g 6= 0 then the thermodynamic projector is

P (J) = P⊥(J) +
g‖

〈g‖|g‖〉x
〈g⊥|J〉x, (17)

where P⊥ is the orthogonal projector onto Tx with respect to the entropic scalar product,
and the vector g is splitted onto tangent and orthogonal components:

g = g‖ + g⊥; g‖ = P⊥g; g⊥ = (1− P⊥)g.

This projector is defined if g‖ 6= 0.
If g = 0 (the equilibrium point) then P (J) = P⊥(J).
For given Tx, the thermodynamic projector (17) depends on the point x through the x-

dependence of the scalar product 〈|〉x, and also through the differential of S in x.

2.3 Symmetric linearization

The invariance condition (3) supports a lot of invariant manifolds, and not all of them are
relevant to the reduced description (for example, any individual trajectory is itself an invariant
manifold). This should be carefully taken into account when deriving a relevant equation for the
correction in the states of the initial manifold Ω0 which are located far from equilibrium. This
point concerns the procedure of the linearization of the vector field J , appearing in the equation
(1). Let c is an arbitrary point of the phase space. The linearization of the vector function J
about c may be written J(c + δc) ≈ J(c) + Lcδc where the linear operator Lc acts as follows
(for the mass action law):

Lcx =
r∑

s=1

γs[W
+
s (c)(αs, Hcx)−W−

s (c)(βs, Hcx)]. (18)

Here Hc is the matrix of second derivatives of the function G in the state c, see (12). The
matrix Lc in (18) can be decomposed as follows:

Lc = L′c + L′′c. (19)

Matrices L′c and L′′c act as follows:

L′cx = −1
2

r∑

s=1

[W+
s (c) + W−

s (c)]γs(γs,Hcx), (20)

L′′cx =
1
2

r∑

s=1

[W+
s (c)−W−

s (c)]γs(αs + βs,Hcx). (21)
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Some features of this decomposition are best seen when we use the thermodynamic scalar product
(13): The following properties of the matrix L′c are verified immediately:

(i) The matrix L′c is symmetric in the scalar product (13):

〈x,L′cy〉 = 〈y,L′cx〉. (22)

(ii) The matrix L′c is nonpositive definite in the scalar product (13):

〈x, L′cx〉 ≤ 0. (23)

(iii) The null space of the matrix L′c is the linear envelope of the vectors H−1
c bi representing

the complete system of conservation laws:

kerL′c = Lin{H−1
c bi, i = 1, . . . , l} (24)

(iv) If c = ceq, then W+
s (ceq) = W−

s (ceq), and

L′ceq = Lceq . (25)

Thus, the decomposition (19) splits the matrix Lc in two parts: one part, (20) is symmetric
and nonpositive definite, while the other part, (21), vanishes in the equilibrium. The decompo-
sition (19) explicitly takes into account the mass-action law. For other dissipative systems, the
decomposition (19) is possible as soon as the relevant kinetic operator is written in a gain–loss
form.

3 Invariant grids

In most of the works (of us and of other people on similar problems), analytic forms were required
to represent manifolds (see, however, the method of Legendre integrators [14, 15, 16]). However,
in order to construct manifolds of a relatively low dimension, grid-based representations of
manifolds become a relevant option [8].

The main idea of the method of invariant grids (MIG) is to find a mapping of the finite-
dimensional grids into the phase space of a dynamic system. That is, we construct not just a
point approximation of the invariant manifold F ∗(y), but an invariant grid. When refined, it is
expected to converge, of course, to F ∗(y), but in any case it is a separate, independently defined
object.

Let’s denote L = Rn, G is a discrete subset of Rn. It is natural to think of a regular grid,
but this is not so crucial. For every point y ∈ G, a neighborhood of y is defined: Vy ⊂ G, where
Vy is a finite set, and, in particular, y ∈ Vy. On regular grids, Vy includes, as a rule, the nearest
neighbors of y. It may also include the points next to the nearest neighbors.

For our purpose, we should define a grid differential operator. For every function, defined
on the grid, also all derivatives are defined:

∂f

∂yi

∣∣∣∣
y∈G

=
∑

z∈Vy

qi(z, y)f(z), i = 1, . . . n. (26)

where qi(z, y) are some coefficients.
Here we do not specify the choice of the functions qi(z, y). We just mention in passing that,

as a rule, equation (26) is established using some approximation of f in the neighborhood of y
in Rn by some differentiable functions (for example, polynomials). This approximation is based
on the values of f at the points of Vy. For regular grids, qi(z, y) are functions of the difference
z−y. For some of the nodes y which are close to the edges of the grid, functions are defined only
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on the part of Vy. In this case, the coefficients in (26) should be modified appropriately in order
to provide an approximation using available values of f . Below we assume this modification
is always done. We also assume that the number of points in the neighborhood Vy is always
sufficient to make the approximation possible. This assumption restricts the choice of the grids
G. Let’s call admissible all such subsets G, on which one can define differentiation operator in
every point.

Let F be a given mapping of some admissible subset G ⊂ Rn into U . For every y ∈ V we
define tangent vectors:

Ty = Lin{gi}n
1 , (27)

where vectors gi(i = 1, . . . n) are partial derivatives (26) of the vector-function F :

gi =
∂F

∂yi
=

∑

z∈Vy

qi(z, y)F (z), (28)

or in the coordinate form:

(gi)j =
∂Fj

∂yi
=

∑

z∈Vy

qi(z, y)Fj(z). (29)

Here (gi)j is the jth coordinate of the vector (gi), and Fj(z) is the jth coordinate of the point
F (z).

The grid G is invariant, if for every node y ∈ G the vector field J(F (y)) belongs to the
tangent space Ty (here J is the right hand side of the kinetic equations (1)).

So, the definition of the invariant grid includes:

1. The finite admissible subset G ⊂ Rn;

2. A mapping F of this admissible subset G into U (where U is the phase space of kinetic
equation (1));

3. The differentiation formulas (26) with given coefficients qi(z, y);

The grid invariance equation has a form of an inclusion:

J(F (y)) ∈ Ty for every y ∈ G,

or a form of an equation:

(1− Py)J(F (y)) = 0 for every y ∈ G,

where Py is the thermodynamic projector (17).
The grid differentiation formulas (26) are needed, in the first place, to establish the tangent

space Ty, and the null space of the thermodynamic projector Py in each node. It is important to
realize that the locality of the construction of the thermodynamic projector enables this without
a global parametrization.

Let x = F (y) be the location of the grid’s node y immersed into U . We have the set of tangent
vectors gi(x), defined in x (28), (29). Thus, the tangent space Ty is defined by (27). Also, one has
the entropy function S(x), the linear functional DxS|x, and the subspace T0y = Ty

⋂
kerDxS|x

in Ty. Let T0y 6= Ty. In this case we have a vector ey ∈ Ty, orthogonal to T0y, DxS|x(ey) = 1.
Then the thermodynamic projector is defined as:

Py• = P0y •+eyDxS|x•, (30)

where P0y is the orthogonal projector on T0y with respect to the entropic scalar product 〈|〉x.
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If T0y = Ty, then the thermodynamic projector is the orthogonal projector on Ty with respect
to the entropic scalar product 〈|〉x.

The general schema of solving the invariance equation (3) to optimize positions of the in-
variant grid nodes in space is the following:

0) The grid is initialized. For example, one can use spectral decomposition of (D2
xS)x in the

equilibrium;
1) Given some node positions, one calculates the tangent vectors in every node of the grid

(27), at this stage the connectivity between nodes is used;
2) With set of tangent vectors calculated at the previous step, solve the invariance equation

for every node independently and calculate a shift δy of every node in the phase space; we propose
two algorithms to calculate the shift: the Newton method with incomplete linearization and the
relaxation method (see also [6],[8], [5], [4]).

3) Repeat steps 1) and 2) until some convergence criterion will be fulfilled: for example, all
shifts δyi, i = 1..n will be less than a predefined εconv.

4) Update the structure of the grid: for example, add new nodes and extend (extrapolate)
or refine (interpolate) the grid. Some strategies for this are described further;

5) Repeat steps 1)-4) until some criterion will be fulfilled: typically, when the nodes reach
the phase space boundary or the spectral gap is too small (see further).

The idea of the Newton method with incomplete linearization is to use linear approximation
of J in the vicinity of a grid node y (keeping the projector P fixed). At the same time the node
is shifted in the fast direction (in y + kerPy affine subspace).

For the Newton method with incomplete linearization, the equations for calculation the new
node location y′ = y + δy are:

{
Pyδy = 0
(1− Py)(J(y) + DJ(y)δy) = 0.

(31)

Here DJ(y) is a matrix of derivatives of J evaluated at y. Instead of DJ(y) (especially in the
regions that are far from the equilibrium) one can use the symmetric operator L′(y) (20), this
will provide better convergence towards the ”true” invariant manifold.

Equation (31) is a system of linear algebraic equations. In practice, it proves convenient to
choose some orthonormal (with respect to the entropic scalar product) basis bi in kerPy. Let
r = dim(kerPy). Then δy =

∑r
i=1 δibi, and system (31) takes the form

r∑

k=1

δk〈bi | DJ(y)bk〉y = −〈J(y) | bi〉y, i = 1...r. (32)

This is the system of linear equations for adjusting the node location according to the Newton
method with incomplete linearization. We remind once again that one should use the entropic
scalar products.

For the relaxation method, one needs to calculate the defect ∆y = (1 − Py)J(y), and the
relaxation step

τ(y) = − 〈∆y|∆y〉y
〈∆y|DJ(y)∆y〉y . (33)

Then, the new node location y′ is computed as

y′ = y + τ(y)∆y. (34)

This is the equation for adjusting the node location according to the relaxation method.
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4 Grid construction strategy

From all the reasonable strategies of the invariant grid construction we consider here the following
two: the growing lump and the invariant flag.

4.1 Growing lump

The construction is initialized from the equilibrium point y∗. The first approximation is con-
structed as F (y∗) = x∗, and for some initial V0 (Vy∗ ⊂ V0) one has F (y) = x∗+A(y−y∗), where
A is an isometric embedding (in the standard Euclidean metrics) of Rn in E.

For this initial grid one makes a fixed number of iterations of one of the methods chosen
(Newton’s method with incomplete linearization or the relaxation method), and, after that, puts
V1 =

⋃
y∈V0

Vy and extends F from V0 onto V1 using the linear extrapolation, and the process
continues. One of the possible variants of this procedure is to extend the grid from Vi to Vi+1

not after a fixed number of iterations, but only after the invariance defect ∆y becomes less than
a given ε (in a given norm, which is entropic, as a rule), for all nodes y ∈ Vi. The lump stops
growing after it reaches the boundary and is within a given accuracy ‖∆‖ < ε.

4.2 Invariant flag

In order to construct the invariant flag one uses sufficiently regular grids G, in which many points
are located on the coordinate lines, planes, etc. One considers the standard flag R0 ⊂ R1 ⊂
R2 ⊂ ... ⊂ Rn (every next space is constructed by adding one more coordinate). It corresponds
to a sequence of grids {y∗} ⊂ G1 ⊂ G2... ⊂ Gn , where {y∗} = R0, and Gi is a grid in Ri.

First, y∗ is mapped on x∗ and further F (y∗) = x∗. Then the invariant grid is constructed
on V 1 ⊂ G1 (up to the boundaries and within a given accuracy ‖∆‖ < ε). After that, the
neighborhoods in G2 are added to the points V 1, and the grid V 2 ⊂ G2 is constructed (up to
the boundaries and within a given accuracy) and so on, until V n ⊂ Gn is constructed.

While constructing the kth-order grid V k ⊂ Gk, the important role of the grids of lower di-
mension V 0 ⊂ ... ⊂ V k−1 ⊂ V k embedded in it, is preserved. The point F (y∗) = x∗ (equilibrium)
remains fixed. For every y ∈ V q (q < k) the tangent vectors g1, ..., gq are constructed, using the
differentiation operators (26) on the whole V k. Using the tangent space Ty = Lin{g1, .., gq}, the
projector Py is constructed, the iterations are applied and so on. All this is done in order to
obtain a sequence of embedded invariant grids, given by the same map F .

4.3 Boundaries check and the entropy

We construct grid mapping of F onto a finite set V ∈ G. The technique of checking whether the
grid still belongs to the phase space U of the kinetic system (F (V ) ⊂ U) is quite straightforward:
all the points y ∈ V are checked whether they belong to U . If at the next iteration a point
F (y) leaves U , then it is pulled inside by a homothety transform with the center in x∗. Since
the entropy is a concave function, the homothety contraction with the center in x∗ increases the
entropy monotonically. Another variant to cut off the points which leave U .

By construction (17), the kernel of the entropic projector is annulled by the entropy differ-
ential. Thus, in the first order, the steps in the Newton method with incomplete linearization
(31) as well as in the relaxation method (33) do not change the entropy. But if the steps are
quite large, then the increase of the entropy may become essential, and the points are returned
on their entropy levels by the homothety contraction with the center in the equilibrium point.

11



Iteration 1
Iteration 2
Iteration 3
Iteration 4

Figure 3: Grid instability. For small grid steps approximations in the calculation of grid derivatives lead
to the grid instability effect. Several successive iterations of the algorithm without adaptation of the time
step are shown that lead to undesirable “oscillations”, which eventually destroy the grid starting from
one of its ends.

5 Instability of fine grids

When one reduces the grid spacing in order to refine the grid, then, once the grid spacing
becomes small enough, one can face the problem of the Courant instability [17, 18, 19]. Instead
of converging, at every iteration the grid becomes more and more entangled (see Fig. 3).

A way to avoid such instability is well-known. This is decreasing the time step. In our
problem, instead of a true time step, we have a shift in the Newtonian direction. Formally, we
can assign the value h = 1 for one complete step in the Newtonian direction. Let us extend now
the Newton method to arbitrary h. For this, let us find δx = δF (y) from (31), but update δx
proportionally to h; the new value of xn+1 = Fn+1(y) is equal to

Fn+1(y) = Fn(y) + hnδFn(y) (35)

where n denotes the number of iteration.
One way to choose the step value h is to make it adaptive, by controlling the average value

of the invariance defect ‖∆y‖ at every step. Another way is the convergence control: then
∑

hn

plays a role of time.
Elimination of the Courant instability for the relaxation method can be done quite anal-

ogously. Everywhere the step h is maintained as large as it is possible without running into
convergence problems.

6 Analyticity and effect of superresolution.

When constructing invariant grids, one must define the differential operators (26) for every grid’s
node. For calculating the differential operators in some point y, an interpolation procedure in
the neighborhood of y is used. As a rule, it is an interpolation by a low-order polynomial, which
is constructed using the function values in the nodes belonging to the neighbourhood of y in
G. This approximation (using values in the nearest neighborhood nodes) is natural for smooth
functions. But we are looking for the analytical invariant manifold. Analytical functions have a
much more “rigid” structure than the smooth ones. One can change a smooth function in the
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neighborhood of any point in such a way, that outside this neighborhood the function will not
change. In general, this is not possible for analytical functions: a kind of a “long-range” effect
takes place (as is well known) .

The idea is to make use of this effect and to reconstruct some analytical function fG using a
function given on G. There is one important requirement: if the values given on G are values of
some function f which is analytical in a neighborhood U , then, if the G is refined “correctly”,
one must have fG → f in U . The sequence of reconstructed function fG should converge to the
“right” function f .

What is the “correct refinement”? For smooth functions for the convergence fG → f it is
necessary and sufficient that, in the course of refinement, G would approximate the whole U
with arbitrary accuracy. For analytical functions it is necessary only that, under the refinement,
G would approximate some uniqueness set A ⊂ U . A subset A ⊂ U is called uniqueness set in
U if for analytical in U functions ψ and ϕ from ψ|A ≡ ϕ|A it follows ψ ≡ ϕ. Suppose we have
a sequence of grids G, each next is finer than the previous, which approximate a set A. For
smooth functions using function values defined on the grids one can reconstruct the function in
A. For analytical functions, if the analyticity domain U is known, and A is a uniqueness set
in U , then one can reconstruct the function in U . The set U can be essentially bigger than A;
because of this such extension was named as superresolution effect [20]. There exist formulas
for construction of analytical functions fG for different domains U , uniqueness sets A ⊂ U and
for different ways of discrete approximation of A by a sequence of refined grids G [20]. Here we
provide only one Carleman’s formula which is the most appropriate for our purposes.

Let domain U = Qn
σ ⊂ Cn be a product of strips Qσ ⊂ C, Qσ = {z|Imz < σ}. We shall

construct functions holomorphic in Qn
σ. This is effectively equivalent to the construction of real

analytical functions f in the whole Rn with a condition on the convergence radius r(x) of the
Taylor series for f as a function of each coordinate: r(x) ≥ σ in every point x ∈ Rn.

The sequence of refined grids is constructed as follows: let for every l = 1, ..., n a finite
sequence of distinct points Nl ⊂ Qσ be defined:

Nl = {xlj |j = 1, 2, 3...}, xlj 6= xli for i 6= j (36)

The countable uniqueness set A, which is approximated by a sequence of refined grids, has
the form:

A = N1 ×N2 × ...×Nn = {(x1i1 , x2i2 , .., xnin)|i1,..,n = 1, 2, 3, ...} (37)

The grid Gm is defined as the product of initial fragments Nl of length m:

Gm = {(x1i1 , x2i2 ...xnin)|1 ≤ i1,..,n ≤ m} (38)

Let us denote λ = 2σ/π (σ is a half-width of the strip Qσ). The key role in the construction
of the Carleman’s formula is played by the functional ωλ

m(u, p, l) of 3 variables: u ∈ U = Qn
σ, p

is an integer, 1 ≤ p ≤ m, l is an integer, 1 ≤ p ≤ n. Further u will be the coordinate value at
the point where the extrapolation is calculated, l will be the coordinate number, and p will be
an element of multi-index {i1, ..., in} for the point (x1i1 , x2i2 , ..., xnin) ∈ G:

ωλ
m(u, p, l) =

(eλxlp + eλx̄lp)(eλu − eλxlp)
λ(eλu + eλx̄lp)(u− xlp)eλxlp

×
m∏

j=1j 6=p

(eλxlp + eλx̄lj )(eλu − eλxlj )
(eλxlp − eλxlj )(eλu + eλx̄lj )

(39)

For real-valued xpk formula (39) simplifyes:

ωλ
m(u, p, l) = 2

eλu − eλxlp

λ(eλu + eλxlp)(u− xlp)
×

m∏

j=1j 6=p

(eλxlp + eλxlj )(eλu − eλxlj )
(eλxlp − eλxlj )(eλu + eλxlj )

(40)
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The Carleman formula for extrapolation from GM on U = Qn
σ (σ = πλ/2) has the form

(z = (z1, ..., zn)):

fm(z) =
m∑

k1,...,kn=1

f(xk)
n∏

j=1

ωλ
m(zj , kj , j), (41)

where k = k1, .., kn, xk = (x1k1 , x2k2 , ..., xnkn).
There exists a theorem [20]:
If f ∈ H2(Qn

σ), then f(z) = limm→∞fm(z), where H2(Qn
σ) is the Hardy class of holomorphic

in Qn
σ functions.

It is useful to present the asymptotics of (41) for large |Rezj |. For this purpose, we shall
consider the asymptotics of (41) for large |Reu|:

|ωλ
m(u, p, l)| =

∣∣∣∣∣∣
2
λu

m∏

j=1j 6=p

eλxlp + eλxlj

eλxlp − eλxlj

∣∣∣∣∣∣
+ o(|Reu|−1). (42)

From the formula (41) one can see that for the finite m and |Rezj | → ∞ function |fm(z)|
behaves like const ·∏j |zj |−1.

This property (zero asymptotics) must be taken into account when using the formula (41).
When constructing invariant manifolds F (W ), it is natural to use (41) not for the immersion
F (y), but for the deviation of F (y) from some analytical ansatz F0(y) [21, 22, 23].

The analytical ansatz F0(y) can be obtained using Taylor series, just as in the Lyapunov
auxiliary theorem [24]. Another variant is to use Taylor series for the construction of Pade-
approximations.

It is natural to use approximations (41) in terms of dual variables as well, since there exists
for them (as the examples demonstrate) a simple and effective linear ansatz for the invariant
manifold. This is the slow invariant subspace Eslow of the operator of linearized system (1)
in dual variables at the equilibrium point. This invariant subspace corresponds to the set of
“slow” eigenvalues (with small |Reλ|, Reλ < 0). In the space of concentrations this invariant
subspace is the quasiequilibrium manifold. It consists of the maximum entropy points on the
affine manifolds of the form x+Efast, where Efast is the “fast” invariant subspace of the operator
of the linearized system (1) at the equilibrium point. It corresponds to the “fast” eigenvalues
(large |Reλ|, Reλ < 0).

Carleman’s formulas can be useful for the invariant grids construction in two places: first, for
the definition of the grid differential operators (26), and second, for the analytical continuation
of the manifold from the grid.

7 Example: Two-step catalytic reaction

Let us consider a two-step four-component reaction with one catalyst A2 (the Michaelis-Menten
mechanism, see Fig. 1a):

A1 + A2 ↔ A3 ↔ A2 + A4. (43)

We assume the Lyapunov function of the form

S = −G = −
4∑

i=1

ci[ln(ci/ceq
i )− 1].

The kinetic equation for the four-component vector of concentrations, c = (c1, c2, c3, c4), has the
form

ċ = γ1W1 + γ2W2. (44)
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Here γ1,2 are stoichiometric vectors,

γ1 = (−1,−1, 1, 0), γ2 = (0, 1,−1, 1), (45)

while functions W1,2 are reaction rates:

W1 = k+
1 c1c2 − k−1 c3, W2 = k+

2 c3 − k−2 c2c4. (46)

Here k±1,2 are reaction rate constants. The system under consideration has two conservation
laws,

c1 + c3 + c4 = B1, c2 + c3 = B2, (47)

or 〈b1,2, c〉 = B1,2, where b1 = (1, 0, 1, 1) and b1 = (0, 1, 1, 0). The nonlinear system (43)
is effectively two-dimensional, and we consider a one-dimensional reduced description. For our
example, we chosed the following set of parameters:

k+
1 = 0.3, k−1 = 0.15, k+

2 = 0.8, k−2 = 2.0;
ceq
1 = 0.5, ceq

2 = 0.1, ceq
3 = 0.1, ceq

4 = 0.4;
B1 = 1.0, B2 = 0.2

(48)

The one-dimensional invariant grid is shown in Fig. 4 in the (c1,c4,c3) coordinates. The grid
was constructed by the growing lump method, as described above. We used Newton iterations
to adjust the nodes. The grid was grown up to the boundaries of the phase space.

The grid in this example is a one-dimensional ordered sequence {x1, . . . , xn}. The grid
derivatives for calculating the tangent vectors g were taken as g(xi) = (xi+1−xi−1)/||xi+1−xi−1||
for the internal nodes, and g(x1) = (x1 − x2)/||x1 − x2||, g(xn) = (xn − xn−1)/||xn − xn−1|| for
the grid’s boundaries.

Close to the phase space boundaries we had to apply an adaptive algorithm for choosing the
time step h: if, after the next growing step (adding new nodes to the grid and after completing
N = 20 Newtonian steps, the grid did not converged, then we choose a new step size hn+1 = hn/2
and recalculate the grid. The final (minimal) value for h was h ≈ 0.001.

The location of the nodes was parametrized with the entropic distance to the equilibrium
point measured in the quadratic metrics given by the matrix Hc = −||∂2S(c)/∂ci∂cj || in the
equilibrium ceq. It means that every node is located on a sphere in this metrics with a given
radius, which increases linearly with number of the node. In this figure the step of the increase is
chosen to be 0.05. Thus, the first node is at the distance 0.05 from the equilibrium, the second
is at the distance 0.10 and so on. Fig. 5 shows several important quantities which facilitate
understanding of the object (invariant grid) extracted. The sign on the x-axis of the graphs at
Fig. 5 is meaningless since the distance is always positive, but in this situation it indicates two
possible directions from the equilibrium point.

Fig. 5a,b represents the slow one-dimensional component of the dynamics of the system.
Given any initial condition, the system quickly finds the corresponding point on the manifold
and starting from this point the dynamics is given by a part of the graph on the Fig. 5a,b.

One of the useful quantities is shown on the Fig. 5c. It is the relation between the relaxation
times “toward” and “along” the grid (λ2/λ1, where λ1,λ2 are the smallest and the next smallest
by absolute value non-zero eigenvalue of the system, symmetrically linearized at the point of the
grid node). The figure demonstrates that the system is very stiff close to the equilibrium point
(λ1 and λ2 are well separated from each other), and becomes less stiff (by order of magnitude)
near the boundary. This leads to the conclusion that the one-dimensional reduced model is more
adequate in the neighborhood of the equilibrium where fast and slow motions are separated by
two orders of magnitude. On the end–points of the grid the one-dimensional reduction ceases
to be well-defined.
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Figure 4: One-dimensional invariant grid (circles) for the two-dimensional chemical system. Projection
into the 3d-space of c1, c4, c3 concentrations. The trajectories of the system in the phase space are shown
by lines. The equilibrium point is marked by the square. The system quickly reaches the grid and further
moves along it.

8 Example: Model hydrogen burning reaction

In this section we consider a more complicated example (see Fig. 1b), where the concentration
space is 6-dimensional, while the system is 4-dimensional. We construct an invariant flag which
consists of 1- and 2-dimensional invariant manifolds.

We consider a chemical system with six species called H2 (hydrogen), O2 (oxygen), H2O
(water), H, O, OH (radicals), see Fig. 1. We assume the Lyapunov function of the form S =
−G = −∑6

i=1 ci[ln(ci/ceq
i )−1]. The subset of the hydrogen burning reaction and corresponding

(direct) rate constants have were taken as:

1. H2 ↔ 2H k+
1 = 2

2. O2 ↔ 2O k+
2 = 1

3. H2O ↔ H + OH k+
3 = 1

4. H2 + O ↔ H + OH k+
4 = 103

5. O2 + H ↔ O + OH k+
5 = 103

6. H2 + O ↔ H2O k+
6 = 102

(49)

The conservation laws are:

2cH2 + 2cH2O + cH + cOH = bH

2cO2 + cH2O + cO + cOH = bO
(50)

For parameter values we took bH = 2, bO = 1, and the equilibrium point:

ceq
H2

= 0.27 ceq
O2

= 0.135 ceq
H2O = 0.7 ceq

H = 0.05 ceq
O = 0.02 ceq

OH = 0.01 (51)

Other rate constants k−i , i = 1..6 were calculated from ceq value and k+
i . For this system the

stoichiometric vectors are:

γ1 = (−1, 0, 0, 2, 0, 0) γ2 = (0,−1, 0, 0, 2, 0)
γ3 = (0, 0,−1, 1, 0, 1) γ4 = (−1, 0, 0, 1,−1, 1)
γ5 = (0,−1, 0,−1, 1, 1) γ6 = (−1, 0, 1, 0,−1, 0)

(52)

The system under consideration is fictitious in the sense that the subset of equations corre-
sponds to the simplified picture of this chemical process and the rate constants do not correspond
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Figure 5: One-dimensional invariant grid for the two-dimensional chemical system. a) Values of the
concentrations along the grid. b) Values of the entropy and the entropy production (-dG/dt) along
the grid. c) Ratio of the relaxation times “towards” and “along” the manifold. The nodes positions are
parametrized with entropic distance measured in the quadratic metrics given by Hc = −||∂2S(c)/∂ci∂cj ||
in the equilibrium ceq. Entropic coordinate equal to zero corresponds to the equilibrium.

17



a)
0.044 0.046 0.048 0.05 0.052 0.054 0.056

0.015

0.02

0.025

0.03
0

0.01

0.02

0.03

0.04

H

O

O
H

b)
-2 -1.5 -1 -0.5 0 0.5 1 1.5

10
-3

10
-2

10
-1

10
0

entropic coordinate along the grid

co
nc

en
tra

tio
n

H2
O2
H2O
H
O
OH

c)
-2 -1.5 -1 -0.5 0 0.5 1 1.5
0

200

400

600

800

1000

1200

entropic coordinate along the grid

ei
ge

n 
va

lu
e

λ1
λ2
λ3

Figure 6: One-dimensional invariant grid for model hydrogen burning reaction. a) Projection into the
3d-space of cH , cO, cOH concentrations. b) Concentration values along the grid. c) Three smallest by
the absolute value non-zero eigenvalues of the symmetrically linearized system.

to any experimentally measured quantities, rather they reflect only orders of magnitudes relevant
real-world systems. In that sense we consider here a qualitative model system, which allows us
to illustrate the invariant grids method. Nevertheless, modeling of more realistic systems differs
only in the number of species and equations. This leads, of course, to computationally harder
problems, but difficulties are not crucial.

Fig. 6a presents a one-dimensional invariant grid constructed for the system. Fig. 6b demon-
strates the reduced dynamics along the manifold (for the explanation of the meaning of the
x-coordinate, see the previous subsection). In Fig. 6c the three smallest by the absolute value
non-zero eigenvalues of the symmetrically linearized Jacobian matrix of the system are shown.
One can see that the two smallest eigenvalues almost interchange on one of the grid ends. This
means that the one-dimensional “slow” manifold faces definite problems in this region, it is just
not well defined there. In practice, it means that one has to use at least a two-dimensional grids
there.

Fig. 7a gives a view of the two-dimensional invariant grid, constructed for the system, using
the “invariant flag” strategy. The grid was raised starting from the 1D-grid constructed at
the previous step. At the first iteration for every node of the initial grid, two nodes (and two
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edges) were added. The direction of the step was chosen as the direction of the eigenvector of
the matrix Asym (at the point of the node), corresponding to the second “slowest” direction.
The value of the step was chosen to be ε = 0.05 in terms of entropic distance. After several
Newton’s iterations done until convergence was reached, new nodes were added in the direction
“ortogonal” to the 1D-grid. This time it was done by linear extrapolation of the grid on the
same step ε = 0.05. Once some new nodes become one or several negative coordinates (the grid
reaches the boundaries) they were cut off. If a new node has only one edge, connecting it to the
grid, it was excluded (since it was impossible to calculate 2D-tangent space for this node). The
process was continued until the expansion was possible (the ultimate state is when every new
node had to be cut off).

The method for calculating tangent vectors for this regular rectangular 2D-grid was chosen
to be quite simple. The grid consists of rows, which are co-oriented by construction to the initial
1D-grid, and columns that consist of the adjacent nodes in the neighboring rows. The direction
of the columns corresponds to the second slowest direction along the grid. Then, every row and
column is considered as a 1D-grid, and the corresponding tangent vectors are calculated as it
was described before:

grow(xk,i) = (xk,i+1 − xk,i−1)/‖xk,i+1 − xk,i−1‖

for the internal nodes and

grow(xk,1) = (xk,1 − xk,2)/‖xk,1 − xk,2‖, grow(xk,nk
)

= (xk,nk
− xk,nk−1)/‖xk,nk

− xk,nk−1‖
for the nodes which are close to the grid’s edges. Here xk,i denotes the vector of the node in
the kth row, ith column; nk is the number of nodes in the kth row. Second tangent vector
gcol(xk,i) is calculated analogously. In practice, it proves convenient to orthogonalize grow(xk,i)
and gcol(xk,i).

9 Invariant grid as a tool for visualization of dynamic system
properties

Usual way of dealing with a system (1) is to define some initial conditions and solve the equation
for a given time interval. This gives us one particular trajectory of the system. Can we have a
look at the global picture of all possible trajectories or in other words can we visualize the vector
field in RN , defined by J(x)? It would be possible if one has two or three species in the system
(1). Invariant manifolds and their grid representation allow to do it for higher dimensions, thus
they can serve as a data visualization tool. The situation is somewhat close in spirit with data
visualization using principal manifolds (for example, see [11]) where one uses two-dimensional
manifolds to visualize a finite set of points. Invariant manifolds allow to visualize the global
system dynamics on the non-linear manifold of slow motions (i.e., in the space which corresponds
to the effects observed in a real-life experiment).

In this section we demonstrate global system dynamics visualization on the model hydrogen
burning reaction. Since the phase space is four-dimensional, it is impossible to visualize the
grid in one of the coordinate 3D-views, as it was done in the previous subsection. To facilitate
visualization one can utilize traditional methods of multi-dimensional data visualization. Here
we make use of the principal components analysis (see, for example, [12]), which constructs a
three-dimensional linear subspace with maximal dispersion of the othogonally projected data
(grid nodes in our case). In other words, the method of principal components constructs in a
multi-dimensional space a three-dimensional box such that the grid can be placed maximally
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Figure 7: Two-dimensional invariant grid for the model hydrogen burning reaction. a) Projection into
the 3d-space of cH , cO, cOH concentrations. b) Projection into the principal 3D-subspace. Trajectories
of the system are shown coming out from every node. Bold line denotes the one-dimensional invariant
grid, starting from which the 2D-grid was constructed.
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tightly inside the box (in the mean square distance meaning). After projection of the grid
nodes into this space, we get more or less adequate representation of the two-dimensional grid
embedded into the six-dimensional concentrations space (Fig. 7b). The disadvantage of the
approach is that the axes now do not bear any explicit physical meaning, they are just some
linear combinations of the concentrations.

One attractive feature of two-dimensional grids is the possibility to use them as a screen,
on which one can display different functions f(c) defined in the concentrations space. This
technology was exploited widely in the non-linear data analysis by the elastic maps method [10],
[11]. The idea is to “unfold” the grid on a plane (to present it in the two-dimensional space,
where the nodes form a regular lattice). In other words, we are going to work in the internal
coordinates of the grid. In our case, the first internal coordinate (let’s call it s1) corresponds to
the direction, co-oriented with the one-dimensional invariant grid, the second one (let us call it
s2) corresponds to the second slow direction. By the construction, the coordinate line s2 = 0 line
corresponds to the one-dimensional invariant grid. Units of s1 and s2 is the entropic distance.

Every grid node has two internal coordinates (s1, s2) and, simultaneously, corresponds to
a vector in the concentration space. This allows us to map any function f(c) from the multi-
dimensional concentration space to the two-dimensional space of the grid. This mapping is
defined in a finite number of points (grid nodes), and can be interpolated (linearly, in the simplest
case) between them. Using coloring and isolines one can visualize the values of the function in
the neighborhood of the invariant manifold. This is meaningful, since, by the definition, the
system spends most of the time in the vicinity of the invariant manifold, thus, one can visualize
the behavior of the system. As a result of applying this technology, one obtains a set of color
illustrations (a stack of information layers), put onto the grid as a map. This enables applying
the whole family of the well developed methods of working with the stack of information layers,
such as the geographical information systems (GIS) methods.

Briefly, this technique of the visualization is a useful tool for understanding of dynamical
systems. It allows to see simultaneously many different scenarios of the system behavior, together
with different system’s characteristics.

Let us use the invariant grids for the the model hydrogen burning system as a screen for
visualisation. The simplest functions to visualize are the coordinates: ci(c) = ci. In Fig. 8 we
displayed four colorings, corresponding to the four arbitrarily chosen concentrations functions
(of H2, O, H and OH; Fig. 8a-d). The qualitative conclusion that can be made from the
graphs is that, for example, the concentration of H2 practically does not change during the first
fast motion (towards the 1D-grid) and then, gradually changes to the equilibrium value (the
H2 coordinate is “slow”). The O coordinate is the opposite case, it is the “fast” coordinate
which changes quickly (on the first stage of the motion) to the almost equilibrium value, and
it almost does not change after that. Basically, the slopes of the coordinate isolines give some
impression of how “slow” a given concentration is. Fig. 8c shows an interesting behavior of the
OH concentration. Close to the 1D grid it behaves like a “slow coordinate”, but there is a region
on the map where it has a clear “fast” behavior (middle bottom of the graph).

The next two functions which one could wish to visualize are the entropy S and the entropy
production σ(c) = −dG/dt(c) =

∑
i ln(ci/ceq

i )ċi. They are shown on Fig. 9a,b.
Finally, we visualize the relation between the relaxation times of the fast motion towards the

2D-grid and the slow motion along it. This is given on the Fig. 9c. This picture allows to make
a conclusion that two-dimensional consideration can be appropriate for the system (especially
in the “high H2, high O” region), since the relaxation times “towards” and “along” the grid
are well separated. One can compare this to the Fig. 9d, where the relation between relaxation
times towards and along the 1D-grid is shown.
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Figure 8: Two-dimensional invariant grid as a screen for visualizing different functions defined in the
concentrations space. The coordinate axes are entropic distances (see the text for the explanations) along
the first and the second slowest directions on the grid. The corresponding 1D invariant grid is denoted
by bold line, the equilibrium is denoted by square.

10 Invariant manifolds for open systems

10.1 Zero-order approximation

Let the initial dissipative system (1) be “spoiled” by an additional term (“external vector field”
Jex(x, t)):

dx

dt
= J(x) + Jex(x, t), x ⊂ U. (53)

For this new system the entropy does not increase everywhere. In the new system (53) different
dynamic effects are possible, such as a non-uniqueness of stationary states, auto-oscillations,
etc. The “inertial manifold” effect is well-known: solutions of (53) approach some relatively
low-dimensional manifold on which all the non-trivial dynamics takes place [27, 25, 26].

It is natural to expect that the inertial manifold of the system (53) is located somewhere
close to the slow manifold of the initial dissipative system (1). This hypothesis has the following
basis. Suppose that the vector field Jex(x, t) is sufficiently small. Let’s introduce, for example,
a small parameter ε > 0, and consider εJex(x, t) instead of Jex(x, t). Let’s assume that for the
system (1) a separation of motions into “slow” and “fast” takes place. In this case, there exists
such interval of positive ε that εJex(x, t) is comparable to J only in a small neighborhood of the
given slow motion manifold of the system (1). Outside this neighborhood, εJex(x, t) is negligibly
small in comparison with J and only negligibly influences the motion (for this statement to be
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Figure 9: Two-dimensional invariant grid as a screen for visualizing different functions defined in the
concentrations space. The coordinate axes are entropic distances (see the text for the explanations) along
the first and the second slowest directions on the grid. The corresponding 1D invariant grid is denoted
by bold line, the equilibrium is denoted by square.

true, it is important that the system (1) is dissipative and every solution comes in finite time to
a small neighborhood of the given slow manifold).

Precisely this perspective on the system (53) allows to exploit slow invariant manifolds
constructed for the dissipative system (1) as the ansatz and the zero-order approximation in a
construction of the inertial manifold of the open system (53). In the zero-order approximation,
the right part of the equation (53) is simply projected onto the tangent space of the slow
manifold.

The choice of the projector is determined by the motion separation which was described
above: fast motion is taken from the dissipative system (1). A projector which is suitable for
all dissipative systems with given entropy function is unique. It is constructed in the following
way. Let a point x ∈ U be defined and some vector space T , on which one needs to construct
a projection (T is the tangent space to the slow manifold at the point x). We introduce the
entropic scalar product 〈|〉x:

〈a | b〉x = −(a, D2
xS(b)). (54)

Let us consider T0 that is a subspace of T and which is annulled by the differential S at the
point x.

T0 = {a ∈ T |DxS(a) = 0} (55)

If T0 = T , then the thermodynamic projector is the orthogonal projector on T with respect
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to the entropic scalar product 〈|〉x. Suppose that T0 6= T . Let eg ∈ T , eg ⊥ T0 with respect to
the entropic scalar product 〈|〉x, and DxS(eg) = 1. These conditions define vector eg uniquely.

The projector onto T is defined by the formula

P (J) = P0(J) + egDxS(J) (56)

where P0 is the orthogonal projector onto T0 with respect to the entropic scalar product 〈|〉x. For
example, if T a finite-dimensional space, then the projector (56) is constructed in the following
way. Let e1, .., en be a basis in T , and for definiteness, DxS(e1) 6= 0.
1) Let us construct a system of vectors

bi = ei+1 − λie1, (i = 1, .., n− 1), (57)

where λi = DxS(ei+1)/DxS(e1), and hence DxS(bi) = 0. Thus, {bi}n−1
1 is a basis in T0.

2) Let us orthogonalize {bi}n−1
1 with respect to the entropic scalar product 〈|〉x (1). We thus

derived an orthonormal with respect to 〈|〉x basis {gi}n−1
1 in T0.

3) We find eg ∈ T from the conditions:

〈eg | gi〉x = 0, (i = 1, .., n− 1), DxS(eg) = 1. (58)

and, finally we get

P (J) =
n−1∑

i=1

gi〈gi | J〉x + egDxS(J). (59)

If DxS(T ) = 0, then the projector P is simply the orthogonal projector with respect to the
〈|〉x scalar product. This is possible if x is the global maximum of entropy point (equilibrium).
Then

P (J) =
n∑

i=1

gi〈gi|J〉x, 〈gi|gj〉 = δij . (60)

10.2 First-order approximation

Thermodynamic projector (56) defines a ”slow and fast motions” duality: if T is the tangent
space of the slow motion manifold then T = imP , and kerP is the plane of fast motions. Let us
denote by Px the projector at a point x of a given slow manifold.

The vector field Jex(x, t) can be decomposed in two components:

Jex(x, t) = PxJex(x, t) + (1− Px)Jex(x, t). (61)

Let us denote Jex s = PxJex, Jex f = (1−Px)Jex. The slow component Jex s gives a correction
to the motion along the slow manifold. This is a zero-order approximation. The ”fast” compo-
nent shifts the slow manifold in the fast motions plane. This shift changes PxJex accordingly.
Consideration of this effect gives a first-order approximation. In order to find it, let us rewrite
the invariance equation taking Jex into account:

{
(1− Px)(J(x + δx) + εJex(x, t)) = 0
Pxδx = 0

(62)

The first iteration of the Newton method subject to incomplete linearization gives:
{

(1− Px)(DxJ(δx) + εJex(x, t)) = 0
Pxδx = 0.

(63)
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(1− Px)DxJ(1− Px)J(δx) = −εJex(x, t). (64)

Thus, we have derived a linear equation in the space kerP . The operator (1−P )DxJ(1−P )
is defined in this space.

Utilization of the self-adjoint linearization instead of the traditional linearization DxJ op-
erator considerably simplifies solving and studying equation (64). It is necessary to take into
account here that the projector P is a sum of the orthogonal projector with respect to the 〈|〉x
scalar product and a projector of rank one.

Assume that the first-order approximation equation (64) has been solved and the following
function has been found:

δ1x(x, εJex f ) = −[(1− Px)DxJ(1− Px)]−1εJex f , (65)

where DxJ is either the differential of J or symmetrized differential of J (20).
Let x be a point on the initial slow manifold. At the point x + δx(x, εJex f ) the right-hand

side of equation (53) in the first-order approximation is given by

J(x) + εJex(x, t) + DxJ(δx(x, εJex f )). (66)

Due to the first-order approximation (66), the motion of a point projection onto the manifold
is given by the following equation

dx

dt
= Px(J(x) + εJex(x, t) + DxJ(δx(x, εJex f (x, t)))). (67)

Note that, in equation (67), the vector field J(x) enters only in the form of projection,
PxJ(x). For the invariant slow manifold it holds PxJ(x) = J(x), but actually we always deal
with approximately invariant manifolds, hence, it is necessarily to use the projection PxJ instead
of J in (67).

Remark. The notion ”projection of a point onto the manifold” needs to be specified. For every
point x of the slow invariant manifold M there are defined both the thermodynamic projector
Px (56) and the fast motions plane kerPx. Let us define a projector Π of some neighborhood of
M onto M in the following way:

Π(z) = x, if Px(z − x) = 0. (68)

Qualitatively, it means that z, after all fast motions took place, comes into a small neighbor-
hood of x. The operation (56) is defined uniquely in some small neighborhood of the manifold
M .

A derivation of slow motions equations requires not only an assumption that εJex is small
but it must be slow as well: d

dt(εJex) must be small too.
One can get the further approximations for slow motions of the system (53), taking into

account the time derivatives of Jex. This is an alternative to the usage of the projection operators
methods [28].

11 Conclusion

In this paper we presented a method for reducing complexity in complex chemical reaction
networks using a consistent approach of constructing invariant manifold for the system of ki-
netic equations. The method is applicable to the class of dissipative systems (with Lyapounov
function) and can be extended to the case of open systems as well.
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An attractive feature of the approach is its clear geometrical interpretation. The geometrical
approach becomes more and more popular in applied model reduction: one constructs a slow
approximate invariant manifold, and dynamical equations on this manifold instead of an ap-
proximation of solutions to the initial equations. After that, the equations on the slow manifold
can be studied separately, as well as the fast motion to this manifold (the initial layer problem
[29]).

The notion of invariant grid may be useful beyond the chemical kinetics. This discrete
invariant object can serve as a representation of approximate slow invariant manifold, and as a
screen (a map) for vizualization of different functions and properties. The problem of the grid
correction is fully decomposed into the problems of the grid’s nodes correction which makes it
open to effective parallel implementations.

The next step should be the implementation of the method of invariant grids for investigation
of high-dimensional systems “kinetics+transport”. The asymptotic analysis of the methods of
analytic continuation the manifold from the grid should lead to further development of these
methods and modifications of the Carleman formula.
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