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August 31, 2005

Abstract

We have studied dependence of distances between nodes in various networks and degrees of such
vertices. We have observed that the mean distance between two nodes of degrees ki and kj equals to
〈lij〉 = A − B log(kikj). The relation holds for the following systems: Erdős-Rényi random graphs,
scale-free Barabási-Albert models, science collaboration networks, biological networks, Internet Au-
tonomous Systems and public transport networks. A simple heuristic theory for this scaling law is pre-
sented. Corrections due to the network clustering coefficient and node degree-degree correlations are
taken into account.
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In [1, 2] an analytical model for average path lengths in random uncorrelated networks was considered
and it was shown that the shortest path length between nodes i and j possessing degrees ki and kj can be
described as

lij(ki, kj) =
− ln kikj + ln

(〈k2〉 − 〈k〉) + ln N − γ

ln (〈k2〉/〈k〉 − 1)
+

1
2
, (1)

where γ = 0.5772 is the Euler constant, whereas 〈k〉 and 〈k2〉 correspond to the first and the second moments
of node degree distribution P (k). It follows that the mean distance between two nodes is lineary dependent
on the logarithm of their degree product

〈lij〉 = A−B log(kikj). (2)

Below we show that the relation (2) can also be obtained from a simple model of branching trees explor-
ing the space of a random network [3, 4] (see Fig. 1). Let us consider a path from a randomly chosen node
i to a randomly chosen node j in such a network. Following a random direction of a randomly chosen edge
one approaches a node j with the probability pj = kj/(2E), where 2E = N〈k〉 is a double number of links.
It means that in average one needs Mj = 1/pj = 2E/kj of random trials to arrive at the node j. Now let us
consider a branching process represented by the tree Ti (see Fig. 1) that starts at the node i where an average
branching factor is κ (all loops are neglected). If the distance between the node i and the surface of the tree
equals to x then in average there are Ni = kiκ

x−1 nodes at such a surface and there is the same number of
links ending at these nodes. It follows that in average the tree Ti touches the node j when Ni = Mj i.e.
when

kikjκ
x−1 = N〈k〉. (3)
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Figure 1: Tree formed by a random process, starting from the node i and approaching the node j.

Since the mean distance from the node i to the node j is 〈lij〉 = x thus we get the scaling relation (2) with

A = 1 +
log(N〈k〉)

log κ
and B =

1
log κ

. (4)

The result (4) is in agreement with the paper [5] where the concept of generating functions for random graphs
with arbitrary degree distributions has been used.

One has to take into account that in the above considerations we have assumed that there are no degree-
degree correlations, we have neglected all loops and we have treated the branching level x as a continuum
variable to fulfill the relation (3). Assuming that the branching factor κ can be expressed as 〈k2〉/〈k〉−1 [6],
one can see that the differences between the results (1) and (4)are small, at least for the case when N →∞
and κ is finite.

Fig. 2 present mean distances 〈lij〉 between pairs of nodes i and j as a function of a product of their
degrees kikj for the following systems: Erdős-Rényi random graphs, Barabási-Albert evolving networks,
biological networks [7, 8, 9], social networks [10, 11], Internet Autonomous Systems [12] and selected net-
works for public transport in Polish cities [14, 15]. The relation (2) is very well observed over several decades
of data points, although among the systems mentioned there are both scale-free and single scale networks,
with either negligible or very high clustering coefficient, assortative [16], disassortative or uncorrelated.

Although the scaling (2) works well for distances averaged over all pairs of nodes specified by a given
product kikj , there can be large differences if one changes ki while keeping kikj constant. The Fig. 3
presents the dependence of average path length 〈lij〉 on ki, for a fixed product kikj in the case of several
networks from different classes. One can see that although the Astro network is assortative (short-range

2



100 101 102 103 104 105 106

1

2

3

4

5

6

100 101 102 103 104

1

2

3

4

5

6

7

8

100 101 102 103 104 105 106 107

1,0

1,5

2,0

2,5

3,0

3,5

4,0

101 102 103 104 105 106

1

2

3

4

5

101 102

3

4

5

6

100 101 102
0

5

10

15

20

25

 Astro
 Cond-mat

(d) Co-authorship

 

 

 Yeast
 Ythan
 Silwood

<l
ij>  

 

 1997
 1998
 1999
 2001

<l
ij>  

 

ki kj

 N =   1000
 N = 10000

(b) Barabasi - Albert

(f) Public transport(e) Autonomous systems

(c) Biological

 

 N =   1000
 N = 10000

<l
ij>

 

 

 

(a) Erdos - Renyi

 Gorzów Wlkp.
 ód
 Zielona Góra

 

 

ki kj

Figure 2: Mean distance 〈lij〉 between pairs of nodes i and j as a function of a product of their degrees kikj . (a)
Erdős-Rényi random graphs: 〈k〉 = 8 and N = 1000 (circles) N = 10000 (squares), (b)Barabási-Albert networks:
〈k〉 = 8 and N = 1000 (circles) N = 10000 (squares), (c) Biological networks: Silwood (circles), Yeast (triangles),
Ythan (squares), (d) Co-authorship networks: Astro (triangles), circles (circles), (e) Internet Autonomous Systems:
Year 1997 (triangles), Year 1998 (squares) Year 1999 (diamonds), Year 2001 (circles), (f) Public transport networks
in Polish cities: Gorzów Wlkp. (triangles), Łódź (squares), Zielona Góra (circles) In (a), (b), (d) and (e) data are
logarithmically binned with the power of 2, in case of (c) with the power of 1.25 and in case of (f) data are not binned.
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attraction), pairs of nodes with similar degrees are in average further away than different degree pairs (long-
range repulsion). For the disassortative network AS [16] the behavior is opposite. For uncorrelated networks
(Erdős-Rényi, Barabási-Albert), the average path length is constant given the product kikj fixed [4].

In [3] we compare (4) to results from real networks and numerical simulations. In fact our approximate
approach (4) fits very well to random Erdős–Rényi graphs and BA models but the corresponding coefficients
A and B for real networks are different from results of our simple theory. The formulas (4) can be improved
by taking into account effects of loops and node degree-degree correlations.
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Figure 3: Dependence of average path length on ki, for fixed kikj product. The lines connecting the symbols are
there for clarity. The bars show point weight, meaning relative numbers of pairs ij. The horizontal lines are weighted
averages over ki and represent average path lengths for the given product kikj . Note: the very small shifts on ki axis
between data for different kikj are artificially introduced to make the weight bars not overlap.

The influence of loops of the length three can be estimated as follows [3]. Let us assume that in the
branching process forming the tree Ti two nodes from the nearest neighborhood of the node i are directly
linked (the dashed line at Fig.1). Such a situation can occur at any point of the branching tree Ti and corre-
sponding links are useless for further network exploration by the tree Ti. It follows the effective contribution
from both connected nodes to the mean branching factor of the tree Ti is decreased. Assuming that clustering
coefficients of every node are the same, the corrected factor for the branching process equals to κc = κ− cκ
where c is the network clustering coefficient. This equation is not valid for the branching process around the
node i where κ′i = κ− c(ki − 1). A similar situation arises around the node j. Replacing ki and kj with 〈k〉
in κ′i and κ′j one gets
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kikj [κ(1− c′)]2[κ(1− c)]x−3 = N〈k〉, (5)

where c′ = c(〈k〉 − 1)/κ. It follows that instead of (4) we have

A′ = 3 +
log(N〈k〉)− 2 log[κ(1− c′)]

log[κ(1− c)]
, B′ =

1
log[κ(1− c)]

. (6)

Now, let us consider the presence of degree correlations [4]. Such correlations mean that average degrees
k

(nn)
i of nodes in the neighborhood of a node i depend on the degree ki. Let us assume that this relation can

be written as
κi ≡ k

(nn)
i − 1 = Dkφ−1

i (7)

If φ is larger than one then the network is assortative, i.e. high degree nodes are mostly connected to other
high degree nodes and similarly low degree nodes are connected to other low degree nodes. Such a situation
occurs for example in networks describing scientific collaboration [16]. If φ is smaller than one, then the
network is disassortative and high degree nodes are mostly connected with low degree nodes what is typical
for the Internet Autonomous Systems [16]. If we neglect higher order correlations then Eq.3 should be
replaced by

kikjκiκjκ
x−3 = N〈k〉 (8)

Taking into account Eq. 7 we can replace parameters A and B given by the Eq. 4 with

Aφ = A + 2− 2B log D and Bφ = φB (9)

In conclusions we have observed a universal path length scaling for different classes of real networks and
models. The mean distance between nodes of degrees ki and kj is a linear function of log(kikj). The scaling
holds over many decades and does not depend on network degree distributions, clustering coefficients or
degree-degree correlations. We have showed that a simple model of random tree exploring the network
explains such a scaling behavior. In an extended version of the model clustering effects and first order
degree-degree correlations have been introduced to improve theoretical predictions for real world systems.
In our opinion a better agreement between theoretical results and experimental data may be obtained taking
into account higher order correlations.
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