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Abstract. We consider the problem of identifying the rules conforming the local map of a
cellular automaton; we explore the capabilities of a closure-based algorithm for this task. The
algorithm has been previously proven to identify an optimal Horn-like formula true for the data,
in a very precise mathematical sense. A key property of the algorithm is its ability to handle a
sequential structure on the data and lift it to the Horn-like rules, thus making it apt to compare
the rules it obtains with the ones that originated the data. The outcomes of the experimentation
are described.
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1 Introduction

Closure systems form a very basic mathematical concept, related to many applications. In
the field of Formal Concept Analysis, closure systems have been used widely to represent
knowledge and to infer rules from data; and some extensions of this work, such as the no-
tion of confidence-based association rules, became recently a cornerstone of the field of Data
Mining. In the recent years, the authors have developed appropriate notions of closure sys-
tems for the analysis of structured data, notably in the form of sequential itemsets. Up to
now, such systems, and similar ones, have been used to model various sorts of data found in
diverse application domains; most notably, web-based and user interaction data, and other
technical information. We have also constructed, under the DELIS Integrated Project of the
Complex Systems Initiative, an implementation in the form of a research toolkit, the ISSA
system, that includes algorithms for the analysis of sequential closure systems, one of which
is our generalization of deterministic association rules to sequential data. Here we describe
the application of this sort of analysis to cellular automata.

Cellular automata are computational systems based on sets of simple rules, introduced
back in the 1940’s. They operate on a space divided into cells, organized into a regular struc-
ture (usually, low-dimensional rectangular or hexagonal grids or tori) with a clear, uniform
notion of neighborhood of each cell. Cells may change state among a (usually small) number
of states, according to the so-called local map, the set of rules that govern the evolution of
the system along discrete time steps. Each rule in the local map specifies the change of state
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(or absence of change) of a cell on the basis of the configuration of states of cells in the
neighborhood of the cell itself.

For instance, in an one-dimensional grid, the state of a cell at a given time will depend on
the states of a number of cells in the previous moment: the cell itself, the k cells to its right,
and the k cells to its left. These 2k + 1 cells constitute the neighborhood. These 1D cellular
automata are frequently employed to create “textures” on a 2D space or image, by choosing
one row of pixels (usually the topmost or the leftmost one) and drawing successive rows of
pixels according to the evolution of the cellular automaton; some famous geometries and many
interesting evolutions can be obtained in this way, including models of physical phenomena,
such as heat-flow and turbulence, as well as computer-generated 2D textures, some of which
reproduce extremely well human perceptions of real textures. Let us just mention as a simple
example the Pascal triangle of (the parity of the value of) binomial coefficients, showed in
figure 1. It is readily verified that this picture is obtained as the evolution of a very simple
cellular automaton whose cells can be in two states (ON and OFF, say), and where the local
map specifies that a cell is ON exactly if, in the previous time step, exactly one of the two
immediate neighbors was ON. The start configuration has exactly one cell ON.

Fig. 1. Pascal’s triangle of binomial coefficients obtained with a cellular automaton

Using the AND boolean function instead of the parity for combining the values of the
two neighbors gives Wolfram’s well-known AND automaton; slightly more involved rules are
able to create extremely sophisticated behavior, including self-reproduction. Even insisting
on limited 2D grids with just two states per cell and a neighborhood relation that considers,
for each cell, the eight immediate cells surrounding it, the very simple and famous rules of
Conway’s LIFE already give rise to a fascinating system of which a major fact has been proved:
it can simulate arbitrary computations and has full Turing computational power. And, with
a similar neighborhood and the apparently small extension of cells with 3 states, the amazing
evolutions of Brian’s Brain are well worth admiration. The Modern Cellular Automata web
page provides plenty of material to read, learn, or just enjoy with the visualization of cellular
automata at work.

Here, we focus our attention on the problem of learning the set of hidden rules that run the
evolution of a cellular automaton. Starting from the sequence of evolutions through the time
and considering that the set of rules that generated such evolution is not known, we would
like to discover an approximation of those rules. There are some previous works along this
sort of analysis. Several of them attempt at modeling textures generated by a sweeping 1D
automaton, by identifying “coherent structures” along the spatiotemporal distributions pro-
vided by the evolving system, constructing filtering systems for detecting specific phenomena
in these evolutions (see [1] and the references there).

We rather take a somewhat different standpoint that the problem of synthesizing the
unknown local map rules from the behavior of the system can be seen as a learning problem



that can be addressed with the techniques of knowledge discovery. Previous works (some of
them very recent, which shows the timeliness of our study) include a few cases of statistical
analysis (such as fitting hidden Markov models via expectation-maximization [2] or applying a
Minimum Description Length approach to approximate a stochastic form of cellular automata
with probabilistic local maps [3]), some proposals based on genetic algorithms (such as [4]
and [5]) and, closer to our case, the use of Data Mining techniques for rule induction [6]. In
this paper, we will study the sequence of evolutions of a cellular automaton by means of a
recent variant of association rules that is particularly well-tailored to the study of evolving
systems, namely, those obtained from a notion of closure operator on sequentially structured
data proposed recently by the present authors [7].

Specifically, we proved there that a novel closure system defined in [8], appropriately
employed, can extract from sequential data a family of implicational rules that can be math-
ematically characterized in terms of Horn logic for a propositionalization of the sequential
setting, as the empirical Horn approximation of the data, that is, the set of Horn rules that
minimally describe the given set of evolutions. Our question now is to what extent these rules
can uncover the hidden function that governs the evolution of a cellular automaton. Given
that the ISSA system alluded to above implements the corresponding algorithmics so that
we are indeed able to operate on real data through these conceptual mechanisms, we are in a
position to gather some experimental evidence of the strengths and weaknesses of this data
analysis method for the task of reconstructing rules of cellular automata.

The setting of our work is as follows: given is a (large enough) cellular automata, con-
structed by ourselves so that the rules that govern it are known; the local evolution of a small
neighborhood is extracted for each cell, and the data obtained in this form is fed into our
ISSA system. Properly handled, the outcome is a set of rules. Then we compare these rules
to the ones that actually were used to construct the cellular automaton. Success is defined
when the two sets of rules are logically equivalent; but there is absolutely no guarantee of
such success, since ISSA was conceived for the analysis of extremely different data.

2 Horn rules, closure systems, and sequences

Assume a standard propositional logic language with a finite set of propositional variables.
A literal is either a propositional variable, called a positive literal, or its negation, called a
negative literal. A clause is a disjunction of literals. A clause is Horn if and only if it contains
at most one positive literal. A Horn formula is a disjunction of Horn clauses. A model is a
complete truth assignment, i.e. a mapping from the variables to {0, 1}. A set of models is
Horn if there is a Horn formula which axiomatizes it, in the sense that it is satisfied precisely
by the models in the set.

Then, the minimal Horn set of models including a given set is known as the empirical
Horn approximation. A Horn formula axiomatizing it can be constructed as the conjunction
of all the Horn formulas that are true of all the models of the original given set.

A Horn formula defines a closure system on the variables. The closure of a set of variables is
formed by all those variables that are consequences of those in the set through the implications
indicated in the Horn formula. Dually, from a closure system, there are a number of ways
of obtaining implications that actually have been proved to correspond to a Horn formula
axiomatizing the empirical Horn approximation.



2.1 Identifying Horn rules from a set of sequences

In this section we revisit the results presented in [7]. There, a notion of deterministic asso-
ciation rules is defined from the Galois connection framework of [8]. The set of all the rules
obtained from this process turns out to define exactly the natural extension of the notion of
empirical Horn approximation to a set of sequences.

More specifically, we are given an input set of sequences S = {s1, . . . , sn}, where each se-
quence in this set S is defined to be an ordered list of sets of variables si = 〈(V1)(V2) . . . (Vm)〉;
with this notation we mean that the set of variables Vi occurs before the set Vj for i < j.

This set S can be transformed into a lattice of closed sets of sequences (see [8, 7]); and
from there, the work in [7] derives a proper notion of generator for each closed set. The idea is
that each generator will correspond to the antecedent of a rule, and its closure to the implied
the consequent. Based on this formalization, it is possible to derive the notion of association
rules that deterministically hold for all the sequences si ∈ S. These association rules have the
form S′ → s, where S′ is a set of sequences (i.e. the generators), and s is a single sequence
being the consequent.

The main property of these rules is that they hold in all the input sequences si, that is, for
each si ∈ S containing all the sequences S′, it holds that s ⊆ si as well. It can be proven that
these proposed rules can be formally justified by a purely logical characterization, namely, a
natural notion of empirical Horn approximation for ordered data. The algorithmic procedure
to come up with such Horn implications is discussed in [7].

3 Horn rules in cellular automata

Whereas the natural application of Horn rules for sequential data is in the data mining realm
of the analysis of ordered transactional data, here we tackle the somewhat more challenging
problem of using it for the analysis of a very different form of information: the evolutions
of cellular automata. Below we discuss in some more depth the reasons why our method
could encounter difficulties in the analysis we develop. We use the ISSA implementation of
the method of analysis described in the previous section. This implementation offers the
additional possibility of discarding those Horn rules whose frequency of apparition in the
data is below a user-tunable threshold. Several values for this threshold have been used in
the experiments.

3.1 Details of the setting

Our results in this paper are still rather preliminary. We have taken the following initial
working assumptions:

– we limit ourselves to two-state 1D automata where the state of each cell depends only on
the states of the two neighbors in the previous generation, which is a simplification that
still leaves in the picture well-known complex systems such as Wolfram’s AND automaton
and also the parity automaton that is able to trace the self-similarity structure of the
Pascal triangle;

– we assume the initial generation to be a random initialization (which is always the same
for each size to guarantee reproducibility);



– each step is encoded by the previous and current states of the left neighbor (l or L), of the
right neighbor (r or R) and of the cell itself (c or C), so that each piece of data that the
algorithms receive have a form similar to [(l,c,R),(l,C,r)], meaning that at some evolution
of the system, at one particular spot, the cell goes from state False (c) to True (C), and at
the same time the left neighbor was and remains in state False (l), and the right neighbor
changes from True (R) to False (r).

Under these circumstances, we analyze the data repeatedly adjusting a number of para-
meters:

– the number of cells,
– the boolean function that updates the state,
– the number of generations, and
– the threshold of significancy, the internal parameter of ISSA mentioned above, whose oper-

ation indicates the system that a configuration which appears with an empirical probability
below the threshold should be disregarded.

3.2 Results

There are a number of reasons why ISSA must be expected to have difficulties in finding the
successful rules. First, it is not informed that the cell data of the second 3-tuple depends on
the left and right data on the first, nor that all the other states depend on information that
is not available to it. Second, although actually the next piece of data it receives corresponds
to the right neighbor configuration and pieces of data are correlated, the algorithm is not
informed of this fact.

Third, and more seriously, ISSA works in a purely propositional form so that the rules it
is able to output are restricted to Horn clauses over partial orderings labeled by the literals
l, c, r, L, C, R. Thus, in principle, ISSA does not have explicitly enough expressive power to
say that the state of the cell becomes, say, the parity of the states of the neighbors; as we see
in a moment, ISSA provided us with the surprise of finding by itself a way of expressing the
necessary correlations.

Fourth, and finally, given that the initial configuration is random, there is no guarantee
that all the potential instances of the rule employed (that is, all possible combinations of
states of the left and right neighbor) appear in the evolution of the system with a frequency
above the significancy threshold.

Of all these difficulties, it turned out that the analysis power of ISSA did not seem to be
affected by the first two; and that it gave us a way of encoding, in a form developed by the
program itself, the rules of the automaton, under the appropriate values of the parameters.
The fourth one, though, was the most relevant one: if the significancy threshold is set too high,
the description of the rules easily misses cases that were not frequent enough in the specific
evolution under analysis, whereas when it is lowered too much, we start finding correlations
that do not happen often enough to make sure that counterexamples are found, and thus we
get as output rules that are, essentially, statistical noise.

As for the effect of the other parameters, they are as expected: more cells give better
results (that is, better chances of success with respect to the random initialization), whereas
more generations immediately lead the system astray into repeated failures. We found similar
results for all the boolean functions (modulo symmetries due to permutation of left and right
or due to negation).



As examples of how ISSA describes the rules behind the automaton, we indicate its results
on a large automaton working under a disjunctive rule (that is, the state of a cell is the OR
of the two states of the neighbors in the previous generation):

– if ’l c’ then ’r c’, meaning that if the cell is False and in the previous generation its left
neighbor is False, then in the previous generation the right neighbor was False as well

– dually, if ’r c’ then ’l c’
– if ’l C’ then ’R C’, meaning that if the cell is True and in the previous generation its left

neighbor is False, then in the previous generation the right neighbor was True
– dually, if ’r C’ then ’L C’

Similarly, for the AND function, we get rules such as: if ’L c’ then ’r c’, meaning that if in
the previous generation the left neighbor was True, and the cell is False, then in the previous
generation the right neighbor was False as well.

4 Conclusions

Under appropriate parameter settings, ISSA is able to extract reasonable rules from simple
1D cellular automata evolutions, even though it was originally designed for searching for very
different correlations in very different datasets. Forthcoming work would consist in experi-
menting with more complex cellular automata (larger neighborhoods, 2D systems) just enough
to glean intuitions, and then try and extend some of the ISSA features into enough first-order
logic to transcend the propositional limitation, which is now by far the most restrictive facet.

It must be mentioned as well that these experiments have given us progress not only
about cellular automata, but also in understanding the deep consequences of our proposals
for the analysis of sequential data based on closure systems. Some of the details of the ISSA
implementation were actually motivated by the experimentation we ran on cellular automata
data.
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