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Abstract. We present a negative result for the Universality of Sandpiles
in dimension two. Universality is taken in the sense of Banks -which
consists into embed a logical circuit in the cellular space. We prove that
in this context it is not possible to cross information, giving by this way
a strong argument to say that Sandpiles are not Universal in dimension
two; at least for the usual neighborhoods. Nevertheless, if a neighborhood
of radius two is used, the Universality is possible, which is proved.
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1 Introduction

Universality of dynamical systems is understood as the ability of “simulating”
a Turing Machine. There is not agreement in the community on the meaning
of “simulation”, but many researchers agree that it must be strong enough to
imply the existence of undecidable problems related with the dynamics of the
system. The first universal Cellular Automaton (CA) was the one proposed
by von Neumann [1], when the first formal definition of CAs was given. He
defined Cellular Automata and showed how a universal and self reproducing
Turing Machine can be emulated through it. He proved at the same time the
computing ability of CAs and the existence of automatic systems with the ability
of self reproduction, which was his actual goal.

Intended as the ability of computing, Universality was looked for in simple
systems. Banks optimized the result of von Neumann defining a Universal CA
in dimension two to only two states and the same neighborhood [2]. The smaller
neighborhood for dimension two (of size three) was studied by Gajardo et al [3],
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where Universality of a three state CA is proved. Another particularly simple
example of universal CA is the famous Game of Life [4]. But the simplest one is
the elementary CA with rule 110, proved by Cook [5]. Other dynamical systems
was studied from this point of view, see for example [6, 7].

In these days, Universality of a dynamical system is viewed as an index which
talks about the predictability of the system, where predictability is measured
under computer science scope. More precisely, the computational complexity
of predicting whether a given pattern will or will not appear for a given initial
configuration is studied. If the system is universal, this problem is intractable.
This means that in order to know the behavior of the system there is not any
method better than observing the system it self.

In order to simulate a Turing Machine with a CA -as the Sandpile,- the most
used method consists in embedding an infinite logical circuit in the initial con-
figuration in such a way that the logical circuit is computed when the system
runs. The logical circuit is able to compute the evolution of the Turing Ma-
chine over some initial word. In this way, the problem of deciding whether some
given pattern will or will not appear in the CA evolution when it starts over a
given finitely described initial configuration is undecidable. This method was
introduced by Banks. Embedding a logical circuit in a two dimensional CA
is worked out by defining configurations that emulate wires which transport
boolean values, logical gates, wire bifurcations and wire crossovers.

Sandpiles were defined by Bak et al in 1987 [8] as an example of a dynamical
system presenting both power law distribution of avalanches size and a property
which he named self organized critically. This property establishes that the
system always evolves to a set of states (an attractor) which is critical in the
sense that avalanches are frequent. Bak observed this for real piles of sand,
and introduced a simplified discrete version with the same property, known as
Sandpile and defined as follows.

Definition [2D-Sandpile] Let N C Z? be a finite set called neighborhood.
The elements of Z2 will be called cells. The neighborhood of a cell i will be the
set {i+j|j € N}. A finite number of tokens, x;(0) > 0, is assigned to each cell.
For t > 0 the system evolves under the following rule applied synchronously to
each cell.

If x;(t) exceeds |N|, then the cell “fires” and all its neighbors increase
its number of tokens by the number of times that |N| divides x;(t),
while the number of tokens of i decreases by |N| times this number.

Goles et al [9, 10, 11] studied Sandpiles from this approach. They shown that
the system is Universal for an arbitrary graph of degree at most three. Moore
et al [12] generalized this result to the sandpile over a three dimensional square



grid. Banks’s method cannot be applied for dimension one, and Moore asserted
that logical circuits cannot be computed with a Sandpile in dimension one by
using computational complexity arguments. Moore also conjectured that the
same is true for dimension two, due to the apparent impossibility of the system
of crossing information. In [13] we define formally what a wire crossover is and
we prove that it cannot exist in a two dimensional Sandpile. In the following
we describe the main steps of the proof.

The Crossover and the Firing Graph

A device as a logical gate or a Crossover is defined by a configuration over a
finite portion of Z2. In order to study the Crossover one may consider, without
loss of generality, that it is defined over a finite n X n square, i. e., it is an
assignment of tokens to each cell of a n X n square.

A configuration is said to be quiescent if and only if each cell has strictly less
than |N| tokens. When a token is added to a cell of a quiescent configuration,
the Sandpile evolves to a new quiescent configuration, in this case we say that
an avalanche was produced.

A Crossover is defined as a configuration such that: 1) if a token is added to a
given cell on its West border, an avalanche is produced, a token falls on its East
border and no token falls on its South side. 2) the analogous happens when we
add a token on a particular site on its North border.

The Crossover satisfies our intuition about crossing information in the sense that
a token appears in the East side if and only if a token is added on a given cell of
the West side, and a the analogous happens for the North to South direction.

An important property of configurations defined over finite regions is that if one
token is added to the cells of the border, then each cell fires at most one time
-if a token is added in the middle of the square it is possible that several cells
fire several times. This allows us to introduce the following concept.

Definition 1 (Firing Graph) Let us consider a quiescent configuration
c:{1,.,n}?> — {0,..,3} and a cell (i,j) on the boundary of c. We define its
Firing Graph (see Figure 1) as the directed graph G = (V, E) where:

V = the set of cells in {1,2,..,n} x {1,2,..,n} that fire if a token is added to the

cell (i,7) in ¢, and
E is defined by (u,v) € E < u and v are neighbors and u fires before v.

Some direct properties of G are the following.
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Figure 1: A configuration and its Firing Graph.

- It is connected.

- It has no cycles.

- Only the vertex (7, j) is a source of G (a vertex with in-degree equal to 0).

- If all the neighbors of u are in V' then so is w.

- If the in-degree of w is k then u has at least |N| — k tokens in the initial
configuration (i.e., c(u) > |[N| — k).

The main results

Theorem 1 There does not exist a wire crossover for the Sandpile in Z2 with ei-
ther a planar neighborhood or with the Moore neighborhood: {(i,j)| max{|i|, |j|} =

1}

The idea of the proof consists in to show that it is possible to suppose that the
Firing Graphs associated to the North-South and West-East avalanches G,,s and
G e respectively are vertex disjoint. This immediately shows the impossibility
of the crossover over a planar grid. For the Moore neighborhood we observe that
if a vertex of G5 do not fire during the West-East avalanche, then it has more
predecessors in G, than neighbors in G,.. But this property makes impossible
the connexity of both graphs, carring to a contradiction.

This theorem discards the Banks method for proving the universality of this sys-
tem. But it do not prove decidability of problems associated with 2D-Sandpiles.
On the other hand, if we consider a neighborhood of radius two, the Sandpile
becomes universal as the following theorem establishes.

Theorem 2 The Sandpile over Z2 with the von Neumann neighborhood of ra-
dius k > 2
(N={0} x {—Fk,..,—1,1,.,k}U{=k,.,—1,1,..,k} x {0}) is Universal.

The proof consists in to define the basic devices that are used to construct logical
circuits. Figure 2 shows the devices for this automaton.
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Figure 2: The devices that show the Universality of the Sandpile on a von
Neumann neighborhood of radius 2. The wire is a path of cells with seven
tokens at distance two. The signal is a cell with eight tokens. When the signal
propagates, the wire is distorted.

Open questions

In this work we suppose that a crossover is emulated by a finite configuration
which needs to be stable, and that signals are perturbations that propagates
over a stable background.

It may be possible to conceive signals propagating over an unstable and peri-
odic background. In this context we could define the different devices as finite
patterns which do not interact with the periodical environment in the following
way. A set of finite patterns: {d; : A; — S}, is a set of devices if and only if
there exists a periodic configuration p : Z2 — S such that for every 3, the con-
figuration g; defined by g¢;(z) = d;(z) if € A; and p(z) in other case, satisfies
that T%(g:)|z2\ 4, = T%(p)|z2\ 4, for every k € N.

On the other hand, the impossibility of crossing information is an obstacle To
apply the Banks method, but it is not known whether it is an obstacle for
Universality it self. We think that it is in fact an impediment, but a formal
proof of this may require mathematical tools that are not yet developed.
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