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ABSTRACT 
 
This paper addresses the problem of generating 

networks that are robust against random failures (i.e., 
against the random removal of nodes). We construct an 
agent-based model in which agents represent the nodes of 
the network that connect to one another aiming to 
maximize their connectivity. Each agent can build a fixed 
number of links. However, information about the existing 
network is costly, so the agents must optimize under budget 
constraints, i.e., only having information about a limited 
number of existing nodes. Numerical simulation shows that 
this scheme generates robust networks under a wide range 
of conditions. A key observation is that the pattern of 
information access, determined by the scheme used for 
pricing information about the existing network, is pivotal 
for the desired system-level property.  
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1. INTRODUCTION 
The various networks forming what we generally call ‘ the 
Internet’  tend to share an interesting statistical property. 
The networks’  degree distribution follows a power law. 
Such networks are often referred to as ‘scale-free 
networks’ , as they don’t have a characteristic scale (they 
are self-similar, independent of the scale). In the case of 
Internet, this is true at various levels. It doesn’ t matter if 
one looks at routers and their connections, at inter-domain 
links, or the documents and links of the World Wide Web; 
the network is scale-free. (Albert and Barabási, 2002) 
(Faloutsos et al., 1999) 

It is likely that this scale-free property of Internet’s 
networks made an important practical contribution to the 
Internet’s success. (Albert and Barabási, 2002) Namely, 
power law networks are robust against the random removal 

of the nodes (i.e., the failure of the given node). From this 
point of view, the goodness of the network depends on its 
connectivity, measured by the number of nodes in its 
largest connected component. In power law networks, the 
expected connectivity remains high even after a series of 
random failures. Clearly, the power law degree distribution 
implies that a uniformly selected random node will be 
likely to have only a few links. Thus, its removal cuts off 
only a few nodes from the largest component. (See Figure 
1.) 

The downside of the power law degree distribution is 
that it makes the network vulnerable to deliberate, planned 
attacks. Obviously, if an attacker gradually removes the 
few extremely connected nodes, the network soon 
disintegrates. Nonetheless, robustness makes power law 
distribution an often-sought property of engineered 
networks. 

 

 

Figure 1: A network* with power  law degree 
distr ibution. A few highly connected ‘hubs’ , and 
many ‘ connectors’  that are only linked to one of the 
hubs character ize such ‘scale-free networks’ . 



 
This paper addresses the problem of generating 

networks that are robust against random failures (i.e., 
against the random removal of nodes), subject to certain 
practical constraints:   

 
• Network generation is incremental.  
Nodes become available at different moments in time. 
Therefore, the generation algorithm must be able to 
link new nodes to the existing network, preserving its 
robustness. This ensures the extensibility of the 
network. For the sake of simplicity it is assumed that at 
most one node is created at any given moment. 
• Information about the existing network is costly. 
When determining a new node’s links, the generation 
algorithm must assess the existing network. In large 
real-world networks, it is unrealistic to assume that 
exact, up-to-date information is readily available about 
the degree of a given node. Rather, this information 
must be collected via computationally intensive 
processes.  

 
We investigate this problem via numerical simulation 

of an agent-based model. Arriving nodes are represented as 
agents that must select a fixed number of nodes (the same 
for all agents) to link to. It is assumed that the agents want 
to maximize the number of nodes reachable via their links. 
They attempt to achieve this by linking to the nodes with 
the highest degree. Once an agent created its links, it 
becomes passive. It can only receive further links if it is 
selected by subsequent agents. Initially the agents have no 
knowledge about the existing network. They must buy 
information about the degree of older nodes from a central 
authority. However, agents have budget constraints, so they 
can only inspect a limited number of existing nodes. 
Therefore, they will link to the best-connected nodes 
among the inspected ones. The price of the information 
about the number of links of a given node is independent of 
the node in question, but may depend on the size of the 
network according to a pricing scheme. 

As the agents have no previous knowledge about the 
network, their requests to the central authority cannot 
specify the older node they are interested in. At most, they 
can list the nodes they already have knowledge about. In 
response to such a list, the central authority returns a 
random node not contained by the list, together with its 
degree. 

The paper is structured as follows. The next section 
presents the detailed model and the investigated pricing 
schemes. Section 3 summarizes the results gained by 
numerical simulation. This is followed by the discussion of 
related and future works. Finally, Section 5 concludes the 
paper.  
 
 
 
 

2. THE MODEL 
 
2. 1 The Base Model 

Let’s identify the agents (nodes) by natural numbers 
(i∈
�

), the number denoting the time step (iteration) at 
which the given node joins the network. Let At=[1, t] 
denote the set of agents forming the network at time step t.  
Similarly, linkt ⊆ At × At denotes the directed links of the 
network generated so far. (In the following, index t will be 
omitted, whenever the meaning can be unambiguously 
determined from the context.) The outward edges of agent i 
are given by outi= Image(link(i)). Similarly, ini stands for 
the number of links pointing to the ith node. 

It is assumed that outi=E for all agents, where E is a 
positive integer and a parameter of the model. The network 
generation process starts with E fully connected nodes. 
(For the purposes of indexing it is assumed that these 
agents arrived at time steps 1, 2, …, and E.)  

When subsequent agent j arrives, it buys information 
about the maximum number of existing nodes allowed by 
its budget constraint bj∈ ���  (another set of parameters to 
the model). The price of one such piece of information is 
determined by the used pricing scheme, PS:

�
→ � � . The 

value PS(i) determines the price that an agent has to pay to 
receive information about a node’s connectivity in a 
network composed of i agents. Therefore, the number of 
nodes agent j buys information about is 

 

 ( )( ))1(/,max,1min −−= jPSbEjd jj   (1) 

 
Thus, agent j receives information about the 

connectivity of dj nodes randomly selected by the central 
authority (without replacement). Let’s denote this set by 
Cj⊆ At. Agent j then selects the E most connected nodes, 
SE,  from Cj and creates an outgoing link to each of them.  
 

{ }{ }EoutinoutinCiCaS aaiijjE <+>+∈∈= ,,  (2) 

 
If the selection of SE is not unambiguous (i.e., there are 

several inspected nodes with the same number of links), 
uniform random selection is applied. 

 
2.2 Budget Constraints and Pr icing Schemes 

We consider two classes of budget constraint definitions. 
In the homogenous case, all agents have the same budget, 
i.e., bi=B for all i. On the other hand, in the heterogeneous 
case bi’s are distributed uniformly in the interval [1, B]. (In 
both cases, B∈

�
 is a parameter of the model.) 

We also consider three pricing schemes: one in which 
price is independent of, one in which cost grows and 
another in which it decreases with the size of the network. 
The decreasing pricing scheme can be motivated by the 
possibility of a positive ‘economies of scale’ . That is, in a 
growing network, it may become cost-effective for the 
central authority to maintain a database of answers to 



previous questions. The exact choices for the PS function 
are the following: 

 
PS1:  PS(i) = C,    (3) 
PS2: PS(i) = C*B  / i, and  (4) 
PS3: PS(i) = i  / C,   (5) 

 
where C∈

�
 is a model parameter. 
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Figure 2: The network and its degree distr ibution 
after  about 2000 iterations with homogenous budget 
constraints for  the three studied pr icing schemes. 
(E=1, B=100, C=1.) 

 
3. RESULTS 
 
3.1 Robust Networks 

In this section we summarize the results of our experiments 
with the various budget constraints and pricing scheme 
combinations. These results were obtained via numerical 
simulations† that were performed using the RePast agent-
based simulation framework. (Cederman and Gulyás, 2001) 
(RePast, 2003) Our key finding is that the model generates 
robust networks under a wide range of conditions. Various 

combinations of the above pricing schemes and budget 
constraints yield robust networks.  

Figure 2 and Figure 3 show examples from our 
explorations with different initial configurations. They 
depict the networks and their degree distribution after the 
arrival of approximately 2000 agents (nodes) for the three 
pricing schemes investigated. On the horizontal axis of the 
degree distribution figures the number of edges (ini + outi) 
is measured, while the vertical axis depicts the number of 
nodes (agents) having the given degree.  
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Figure 3: The network and its degree distr ibution 
after  about 2000 iterations with heterogeneous 
budget constraints for  the three studied pr icing 
schemes. (E=1, B=100, C=1.) 

It is clear from the figures that all three pricing schemes 
lead to networks where nodes with a low degree are over-
represented. However, it is also clear that this bias is 
stronger in case of PS1 and PS2. It is also worth noting that 
the networks generated under homogeneous budget 
constraints are qualitatively similar to those yielded by the 
heterogeneity of the agents’  financial means. The only 
exception here is PS2, the decreasing pricing scheme, 
where a homogenous constraint leads to a ‘star topology’ .  
In such a network all nodes but the initial ones are 
connected to a single core.  This extreme bias for low 



degree nodes makes the network very robust against 
random failures, but it is often undesirable for other 
practical reasons. The reason for the emergence of the star 
topology is simple. In this setup each agent can buy 
information about the entire network, so it is always the 
most connected node that is selected. On the other hand, it 
is easy to see that the node receiving the first inward link 
will have an advantage that others can never make up for. 

 

  

  

Figure 4: The network view and the degree 
distr ibution of an Erd � s-Rényi network (top row), 
and a Watts-Strogatz network (bottom row). In 
both cases, the network consists of 2000 nodes and 
the parameters are chosen to ensure that the 
average degree per  node is eight. (In case of the ER 
network we used p=0.0021, while in case of the WS 
network the parameters were k=2 and p=0.001.) 

Figure 2 and Figure 3 made it clear that our model 
produces networks that are biased towards low degree 
nodes. It is not clear, however, how these networks differ 
from those generated by other, better known and more 
thoroughly studied network models. To investigate this 
issue, we have compared our networks to those created by 
the Erd� s-Rényi (random density), and Watts-Strogatz 
(‘small-world’) network models. (Erd� s and Rényi, 1959) 
(Watts and Strogatz, 1998) Figure 4 shows the views used 
earlier applied to examples from these experiments. In the 
case of both models, the parameters were chosen to ensure 
that the basic network statistics are comparable to those 
produced by our model. For the networks presented here, 
the number of nodes was fixed at 2000 in all cases, and the 
average number of links was set to 8. 

Figure 5 shows the degree distributions of the networks 
produced by our model. Comparing it to Figure 4 makes 
the difference obvious, especially in case of pricing 
schemes PS1 and PS2. It is clear that the model introduced 
in this paper produces networks whose degree distribution 

is significantly more biased towards low degree nodes than 
those produced by the two most commonly used network 
generation models, namely those of Erd� s and Rényi 
(1959) and Watts and Strogatz (1998). As the over-
representation of low degree nodes implies that a random 
selection will be likely to return a node with a low number 
of links, such networks tend to be more robust against 
random failures of their nodes. 
 Homogenous Budget 
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Figure 5: The degree distr ibution after  about 2000 
iterations for  the three pr icing schemes with both 
homogenous and heterogeneous budget constraints. 
(E=8, B=100, C=1.) 

 
3.2 Special Topologies 

In addition to the generation of robust networks, the model 
also yields special topologies under certain parameter 
combinations. We discussed the ‘star topology’  in the 
previous section. However, the model is also capable of 
generating another special topology, namely ‘scale-free 
networks’ . 

The often sought-for topology that is called a scale-free 
network is characterized by a degree distribution that 
follows a power law. (Newman, 2003) That is, if pk stands 
for the frequency of nodes with degree k then  

 
pk = k-α    (6) 

 



where α∈ �  is a constant. Typically, power law 
distributions are depicted on a log-log graph (a logarithmic 
scale is applied to both axes), where they appear as a 
straight (usually downward sloping) line. Taking the 
logarithm of both sides of Equation (6), one gets: 
 

log pk = -α ⋅ log k + β  (7) 
 

 
a) (R2=0.997) 

 
b) (R2=0.988) 

Figure 6: Power law degree distr ibutions with PS2. 
The graphs apply a logar ithmic scale on both axes. 
The continuous lines show the results of linear  
regression. The network on the left hand side (a) 
was generated using heterogeneous, while the one 
on the r ight (b) using homogeneous budget 
constraints. Both networks contain 2000 nodes. (The 
exact model settings were: a) E=1, B=100, C=100, 
and b) E=2, B=100, C=100.) 

 
This relationship is often used to test whether empirical 

or computer generated distributions follow a power law. 
The method is to apply linear regression to the log-log 
transformation of the distribution, and check the goodness-
of-fit (R2). This value is, by definition, between 0 and 1, 
and the closer it gets to 1, the better the fit is. That is, the 
more closely the distribution follows a power law. 

The model discussed in this paper generates networks 
with power law degree distributions under several 
circumstances. PS2, the particular formulation of the 
increasing pricing scheme, yields di’s as a hyperbolic 
function of the number of nodes:   

� �

�
�

�

≥−

<−
−=

BCiE

BCi
i

BC
d i

1,

1,
1   (8) 

This leads to scale-free networks under both 
homogenous and heterogeneous budget constraints, as 
shown on Figure 6, if the system size is not significantly 
greater than BC. 

On the other hand, the decreasing pricing scheme (PS1) 
under heterogeneous budget constraints is also capable of 
generating power law distributions. When the agents’  
information access is distributed uniformly between 
knowing the full network and being able to inspect a single 
node only, the resulting network will have a distribution 
that is close to a power law (see Figure 7a).  Unfortunately, 
these networks have a little too high bias for nodes with the 

lowest possible degree (i.e., E). Closer inspection reveals 
that this is due to nodes that never receive links after 
joining the network. Indeed, as shown on Figure 7b, the in-
degree distribution, one that is concerned with inward 
edges only, shows a perfect power law for the largest 
connected component (containing all the nodes, but the 
ones with no inward links). 

 
a) (R2=0.748) 

 
b) (R2=0.997) 

Figure 7: Power  law degree distr ibution with PS1. 
The graphs apply a logar ithmic scale on both axes. 
The continuous lines show the results of linear  
regression. Both graphs depict the same 2000 node 
network that was generated under  heterogeneous 
budget constraints, with E=2, B=200, and C=1. The 
one on the left hand side (a) shows the distr ibution 
of ini+outi, while the one on the r ight (b) the 
distr ibution of in-degrees, i.e., that of ini. 

 
4. RELATED AND FUTURE WORK 

In recent years scale-free (power law) networks attracted an 
exceptional amount of attention in the literature. (Newman, 
2003) This was mainly motivated by the realization that 
many real-world networks show this property, including 
artificially generated ones like the Internet. Since this 
property apparently contributes to the robustness of these 
networks, theoretical interest has arisen for models and 
methods for the generation of scale-free networks.  
 

4.1 Related Work 
Despite the high-level of interest, today’s models of scale-
free networks are mainly variants of the preferential 
attachment (PA) model of Albert and Barabási (2002). 
Similarly to our model, the PA model also applies an 
incremental network generation scheme. Nodes join the 
network one at a time and create a fixed (E) number of 
links to the existing nodes. However, the selection of nodes 
to link to, in the PA case, is based on the current degree 
distribution of the network. More specifically, the 
probability for a node to be selected is proportional to the 
number of links it has. This violates the second practical 
constraint laid down in Section 1 of this paper. Namely, the 
PA model assumes that the current degree distribution of 
the network is available to all newcomers at no cost.   

Therefore, the second practical constraint that assumes 
that information about the network is costly, sets our model 
apart from the work of Albert and Barabási, and from other 
variants. We believe that this is a rather important 



difference. The availability of timely information on each 
node assumes a global point of view and a top-down 
model. In contrast, the model presented in this paper 
applies a bottom-up approach, where the network is 
generated using a limited amount of information only. To 
our knowledge, this is the first bottom-up model capable of 
generating robust and scale-free networks.  
 

4.2 Future Work 
The results reported in this paper show that a bottom-up 
optimization process that is constrained by local budget 
limitations is capable of generating robust networks, 
including ones with a scale-free degree distribution. 
However, the particular model presented here is by no 
means ultimate, nor the work is finished. A number of 
variants could and should be created that may well result in 
more efficient or more realistic algorithms that produce 
more realistic and more robust networks. The pricing 
schemes studied in this paper are somewhat arbitrary, a 
number of others have promising potential. Also, it would 
be worthwhile to apply a more formal measure of 
robustness to the generated networks, in order to be able to 
more accurately compare the results of various pricing 
schemes, and to find the best scheme possible.  

One model variant we especially intend to investigate 
introduces additional economic constraints for the agents. 
In this model not only information is costly, but so is 
creating a link. Therefore, agents face the common 
‘explore or exploit’  decision, and need to trade off links for 
information. 
 

5. CONCLUSION 
In this paper we addressed the problem of generating 
robust networks that have good chances to survive random 
failures (i.e., the random removal of nodes). We created an 
agent-based model to incrementally generate such 
networks, and explored it by numerical simulation. The key 
concept of this model is that the network is formed as a 
result of the individual optimizing actions of agents (nodes) 
that are subject to economic constraints regarding the 
agents’  information access. The main finding of the 
simulation experiments is that the model generates robust 
networks (i.e., ones that are biased towards weekly 
connected nodes) under a wide variety of parameter 
settings. Moreover, it is also capable of generating special 
topologies, like a ‘star topology’ , or a scale-free network. 

It is worth noting that the model’s economic metaphors 
(i.e., pricing scheme and budget constraint) are, but a way 
to define various patterns of information access. The 
results of the model imply that variations in information 
access pattern can lead to very different network 
topologies. On a more abstract level, this observation 
suggests that control over the information access of a high 
number of independent actors could turn into a powerful 
means to control the configuration that emerges at the 
system level. In other words, conscious control of the 

patterns of agent-level information access may prove to be 
valuable as a tool for designed complex systems. 
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