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Toward a multi-scale approach for spatial modelling
and simulation of complex systems

Thi Minh Luan Nguyen , Christophe Lecerf , Ivan Lavallée

Abstract— Complex systems are composed of many het-
erogeneous elements organized in a hierarchical way, whose
mutual interactions make emergent collective behaviors to
appear at the highest levels of observation. In some kind
of complex systems, especially in biology as shown by the
integrative physiology theory [6], space and geometry have
a significant role in the simulation results. In this paper
we expose a formalized method for modelling and simula-
tion of complex system, going from structural modelling to
dynamic simulation while integrating geometrical informa-
tion in behavior study. Our solution relies on three kind of
concepts and techniques: hierarchical graphs for modelling
the system structure and organization, Zeigler’s formalisms
for the specification of agents [18] and a space aware Multi
Agent System for agent-based simulation. It is shown how
complex system simulation benefits from the combination of
agent-based simulation and DEVS.

Keywords— complex system, hierarchical graph, agent-
based simulation, DEVS, geometry, multilevel and multi-
scale analysis, integration.

I. I NTRODUCTION

Although there is not a widely accepted definition of
complex systems, it is commonly recognized that they are
formed of many heterogeneous elements organized in a hi-
erarchical way whose mutual interactions make emergent
collective behaviors to appear at the highest levels of ob-
servation.

Moreover in biology, as shown by the integrative physi-
ology theory [6], space and time appear both in the speed
of signal propagation (humoral, electrical or chemical),
and in the changes of spatial relationships between ele-
ments (embryology). This aspect is often neglected but,
although oversimplifying is acceptable in the first approx-
imation, space has a significant meaning in biology. We
believe that the future belongs to models that can integrate
and use geometrical data. We propose here a method and a
set of formalisms for studying complex systems that goes
from structure to behaviors, taking into account space and
geometry.

A complex system is composed of a set of components,
each of them being itself a set of sub-components, in which
various interactions between different levels of organiza-
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tion take place. Their basic properties are presented in [4],
we mention here the most important ones:
- A hierarchy in the structural organization may be de-
scribed.
- Feedback circuits exist in the functional organization of
the system, and in a hierarchy between these circuits as
well.
- The system exhibits some emergent properties.
- The dynamics is typically non-linear.

One of the most important tasks in studying complex
systems is the representation of their structure. Using the
modelling techniques summarized by Jennings in [13] (de-
composition, abstraction and organisation), modelling a
complex system becomes more tractable and a hierarchical
graph (detailed in the next section) can be used to repre-
sent the structure and the communication inside these sys-
tems better than types of models such as equation-based
or cellular automata models. Indeed, equation-based mod-
els give a (mathematically) formalized, synthetic compre-
hension of the studied phenomenon, but they are diffi-
cult to improve because of the absence of modularity, and
only offer the vision at the macroscopic level behavior be-
cause they use aggregate parameters. Cellular automata
is a framework to explore the dynamics of complex sys-
tems whose components are distributed spatially. Time
and space are represented in a discrete way. But neither
heterogeneity of the complex system components, nor con-
tinuous variations can be easily studied with the cellular
automata formalism.

Multi-agent systems are a better candidate for modelling
the structure of complex systems. This approach aims to
represent a complex system with a set of interacting au-
tonomous entities, the agents. This technique has an im-
portant role to play since we wish to study the system be-
havior at a macroscopic level and we know that is the re-
sult of interactions at microscopic level. The hierarchy as
well as the geometry are well supported there. On the con-
trary to equation-based models, multi-agent models focus
on the constituent entities of the system rather than aggre-
gate variables representing the average variation of enti-
ties. As a consequence, observations are related to popu-
lation rather than on individual entities but, unfortunately,
the modularity of multi-agent method hides a lack of for-
malism.



2

II. A FORMALIZED METHOD

We have developped our study of complex systems on
an interdisciplinary approach, using both mathematical,
biological and computer sciences concepts. In short, we
propose a method for studying system that goes from
structure to behaviors, as symbolized in fig 1. The first step
is, from the real system, to describe the system structural
and functional organization using a hierarchical graph.
Then, the behavior of each node (class of components) will
be described by Zeigler formalism [18]. Lastly, a space
aware multi-agent system will be used as an exploration
environment to observe the system dynamics.

Fig. 1. From sructural modelling to behavior simulation

A. Hierarchical graph

Graph is a structure that is used in the modelling of very
diverse situations and, expressed as graphs, many usual
problems could be brought back to traditional problems
of the graph theory: shortest path, cycle detection, con-
nected components, etc. From a modelling point of view,
the graph appears as a coupling intermediate between the
physical system and its associated mathematical model. A
hierarchical graph offers the ability to represent and view
multiple levels in the structure and in the functional orga-
nization of the system.

A hierarchical graph (see [9] for a detailed definition)
has two types of nodes: atomic and complex.

- The atomic node is the leave of the hierarchy and does
not have any internal state.
- On the contrary, the complex nodes have an internal
state, which is another hierarchical graph.

A complex node contains a hierarchical graph which
may contain other complex nodes in a recurrent scheme.
In other words, any complex node in the hierarchical graph
may be a component of another complex node of a higher
level. Using hierarchical graphs for modelling (i) the struc-
ture and (ii) the organization of the system enables multi-
scale analysis and viewpoints on both the structure and the
organization. Classical graph tools such as cycle detection
appear to be useful for the analysis of the system. In the
end, a unique complex node represents the whole complex
system, assumed that each of its components is possibly
a complex node: the entire system is just the one in the
highest level in the hierarchy.

B. Zeigler formalisms

This set of formalisms was chosen thanks to its capacity
to integrate heterogeneous models, its coupling possibili-
ties and its hierarchical decomposition feature.

Ziegler’s set of formalisms (DEVS, DESS, DTSS,
DEV&DESS, [18]), allows the system dynamics specifi-
cation in a modular and hierarchical way that is based on
the definition of two types of models: atomic models and
coupled models. Atomic models are used to specify ele-
mentary input/output behaviors. Coupled models are de-
fined by specifying how basic models (atomic models or
coupled models at the lower level) interconnect. A cou-
pled model can then be considered as the basic model
of a higher level coupled model. In parallel, Zeigler has
also developed the concept of abstract simulator. An ab-
stract simulator represents an algorithmic description of
implicit instructions for generating DEVS models behav-
iors. Moreover, the separation between modelling and
simulation does not compel us to redefine simulators for
newly defined models. In addition, recent work shows that
DEVS can "encapsulate" equation-based model ([18], [8]).
This formalism is thus well adapted to the specification of
the multi-agents models when the constituted models can
be expressed in DEVS. Note that Zeigler formalisms deal
only with the behavior of the studied systems, the geomet-
rical information cannot be taken into account.

DEVS is a formalism introduced by Zeigler in 1976.
This formalism is based on an abstract mathematical ob-
ject called system, which can be approximated with an au-
tomaton. Basically, a system is described by a time base,
input, state, output and function for determining the next
state and output for a given state. Two founding types,
atomic and coupled, are described.

B.1 Atomic model

The atomic model is the basic element of DEVS (see fig
2), it has the following structure:

A =< X,Y, S, δint, δext, λ, ta >

• X : input set which is the value of input events;
• Y : set of output value;
• S : set of state;
• δint : internal transition functions. It is used to describe
state transition due to internal events;
• δext : transition functions due to external events;
• λ : output function which generate external events at the
output;
• ta : time advance function;

At any time, the system is in stateS. In the absence
of external event, system remains on current state during
the time given by the time advance functionta. On the
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Fig. 2. Internal structure of atomic models ([15])

contrary, it receives external eventX by its input port, and
the external transition functionδext will then specify how
system changes due to this effect. Then, an eventY which
is generated by output functionλ is sent to output port.
Based on current state, value of external event and the one
of time advance function, the next stateS is computed.
From the outside, this model looks like a black box.

However, a biological system does not contain only such
a simple component. In fact, it is composed of many com-
plex components, which are described with sets of sub-
components organized in many levels. Zeigler introduced
the coupled model type to fit these requirements.

B.2 Coupled model

A coupled model is composed by a set of components
(which are atomic or coupled models, see fig 3) and the
coupling of these components. It is defined by a set of
input, output ports, a set of constituted components, and
coupling among these components. Coupled models al-
low hierarchical modelling and from a higher level a cou-
pled model can be expressed as an atomic model [18]. The
hierarchical aspects of biological system can therefore be
naturally modelled with DEVS.

Fig. 3. Coupled models

Coupled model has the following structure:
C =< X,Y,N,Md, EIC, EOC, IC, Select >

• X : set of input ports and values;
• Y : set of output ports and values;
• N : subcomponents list;
• Md : for eachd ⊂ N , Md is a component described in
form of atomic model;
• EIC : external input coupling connect external input to
component input;

• EOC : external output coupling connect component
output to external output;
• IC : internal coupling connect component output to
component input;
• Select : the tie breaking function to arbitrate the occur-
rence of simultaneous events;

Let us consider a coupling component, which consists
of a set of atomic componentsMd whered ⊂ N . At
time t, an atomic componentd is in stateSd sinceed (time
passed since the last change state ofd). The time dur-
ing which each componentd must remain in stateSd if no
external event occurred istad(Sd). As a result, a compo-
nentd will stay at Sd for σd = tad(Sd) − ed. An inter-
nal eventδint is scheduled for the componentd at t + σd.
Suppose thatta is the time scheduled for the first inter-
nal event thenta is the smallest value of alltad(Sd), that
meansta = Min{(tad(Sd))/d ⊂ N}. The priority list
Select allows us to choose among various components
having the sameσd. The atomic component chooses ex-
ecutes its output function and sends the result to all it’s in-
fluenced neighbours. Then, this component starts the inter-
nal transition functionδint, and changes state. We can ex-
plore the effects of an arriving external event on an atomic
model in the same way. These behavioral components are
inter-connected to exchange information through their in-
put/output ports (also called detectors and effectors). Due
to the recursion sheme, such a component can be consid-
ered in turn like a basic element in a larger model.

Furthermore, Zeigler formalisms do not only model dis-
crete event system, but also deal with continuous and hy-
brid system thanks to DEV&DESS. This is an extension
of DEVS that includes DEVS, DESS and DTSS. Conse-
quently, it is possible to specify some system components
by Differential Equations and the others by Discrete Event
or Discrete Time systems, the different parts being in in-
teraction to constitute the whole system dynamics.

In biological systems, not only do the dynamic pro-
cesses vary in time, but also does the topology (see [5]).
Clearly, a perturbation of the topology of biological system
will affect its evolution both in its (re-)organization and
its dynamics. These two aspects are indissociably linked,
so that the dynamics may be considered as a consequence
of the topological, geometrical and dynamical coupling of
the processes involved. Unfortunately, the geometical in-
formation cannot be represented in Zeigler’s formalisms.

C. Multi-agents systems and simulation

Multi-agent systems (MAS), developed within the
framework of distributed artificial intelligence, represent
a promising tool to model the dynamics of space aware
systems. MAS allow us to represent hierarchy and ge-
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ometrical informations, but then lack a formal specifica-
tion, making mathematical demonstrations impossible. In-
deed, there are numerous formal specifications for MAS,
for example Object-Z [12], Petri nets ([2], [16]), the col-
ored Petri nets [3], etc. These formalisms are used to de-
scribe architectures, behaviors, etc of MAS and agents, but
the hierarchical concept is not supported by any of them.
However, as hierarchy is one of the most important of in-
tegrative physiology fundamental concepts [6], we had to
combine Zeigler formalisms ans MAS in order to circum-
vent both the lack of formalism in MAS and the lack of
geometrical representation in DEVS.

Agents are implemented to have internal data represen-
tation (memory or state). They possess also means for
modifying their internal data representation (perception)
and means for modifying their environment (behavior).
Different types of agent and their concrete implementation
can be found in ([14], [1]). For our study purpose, we used
exclusively situated reactive agents. A situated agent lives
in an environment where the space is explicitly described.

A multi-agent system is made up of a set of agents
evolving in a common environment. Situated MAS are
generally made of elementary memoryless agents with
a defined position in time and space. Reactive situated
agents perform their actions as a consequence of the per-
ception of signals coming either from other agents or from
the environment, and are sensitive to the spatial relation-
ships that determine constraints and abilities for actions as
well as privileged cooperation relationships. The environ-
ment in which agents are situated can reproduce a physical
space.

C.1 MAS decomposition

In the outline of Duboz [8], let us make a formal de-
scription of a MAS with DEVS. For this purpose, we con-
sider our model according to the four dimensions identi-
fied by Yves Demazeau in his methodology "vowels" [7]:
"Agents", "Environment", "Interactions" and "Organiza-
tion"

C.2 Organization

An organization is considered as a configuration that de-
scribes how its members act on each other to achieve the
goal. In this context, the DEVS coupled models allow to
integrate various agents in order to form composed agent
(called group of agents). The whole task is then divided in
a set of secondary tasks, which are distributed to the group
members of the MAS. The MAS hierarchical organization
is naturally described by the definition of the atomic and
composed agents. The MAS recursion scheme allows us
to represent the hierarchical nature of the functional orga-

nization of any biological system according to its hierar-
chical graph model.

C.3 Agent

C.3.a Atomic agent. First, we use a DEVS model to
describe atomic agents. Based on this elementary agent,
higher-level agents called composed agents are built.

DEV S = {X, Y, S, δext, δint, λ,}

DEV S model for an atomic agent

X : sensors set

Y : effectors set

S : agent possible states set

C.3.b Composed agent. We adopt a recursive definition
of composed agent based on atomic agent and composed
agent of a lower level.

composed agent→ composed agent | atomic agent

The DEVS coupled model for composed agent

N = 〈X, Y,D, {Md}, {Id}, {Zd}〉
where X is the set of input events; Y is the set of output

events; D is an index for the components of the coupled
agent,{Md}: set of constituted agent and∀d ∈ D,Md is a
basic agent (that is, an atomic or composed agent),Id is the
set of influences of agent d (that is, the agents that can be
influenced by outputs of agent d), and∀j ∈ Id, Zdj is the d
to j translation function. We can see that composed agents
are defined as a set of basic components (atomic or cou-
pled) interconnected through the agent’s interfaces. The
translation function is in charge of converting the outputs
of an agent into inputs for the others whereN describe a
composed agent.

C.4 Interaction

The basic interactions between agents are realized by
exchanging messages with their environment via sensors
and effectors.

Perception is represented in DEVS by the arrival of ex-
ternal events, which cause state changes of at least one
component. We consider the perception of an agent as the
change of its internal state due to an external event (exter-
nal stimulus).

Action refers to pro-action and reaction. Regarding
agent A as a coupled DEVS, the set of all external tran-
sition functions that do not receive events from coupled
model input ports, plus all internal transition functions,
define the autonomous behavior of this agent (pro-action).
All transition functions driven by external events define the
reactional behaviour of the agent.
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C.5 Environment

Within the framework of integrative physiology [6], the
operation of biological systems strongly depends on the
geometrical distribution of the constituent entities, and the
environment of MAS, i.e. the structure in which agents
evolve, will take into account this information. Generally,
the environment may be [10]:
• an interaction medium
• a space in which agents can move around;
• a place where resources are available.

For our study purpose, "environment" corresponds to a
space in which the agents have an explicit position. It is
considered as a surface divided into cells (see fig 4). En-
vironment is viewed as a collection ofn (n >= 1) cells
and these cells have a definite size (in a two dimensions
environment, a cell is defined by its height and its width,
as consequence the environment sizet = (n× height)×
(n × width). These cells form a matrix whose size is de-
termined by grid parameters. Each cell can contain one or
more elements. The cells not hosting any entity have value
0. The value of the other cells corresponds to the density
of the elements that they contain.

Fig. 4. Environment matrix

Environment constitutes an essential part of situated
MAS but only a few works were devoted to their mod-
elling [10]. We believe that it is important to conceive
a MAS with a geometrical space representation because
an explicit definition of the spatial structure of agent en-
vironment allows the definition of distance and adjacency
among situated agents. Our solution provides a model that
can take into account not only the system hierarchical na-
ture but also the spatial relationship between agents, and
even the changes in the system geometry.

III. A PPLICATION

In order to illustrate the potential of our approach for
complex system simulation, we have made an application
in the biological neural network field, a case study being
the hippocampus.

The hippocampus is part of the cerebrum, and it’s one
of the area of the brain that deals with memory. The hip-
pocampus plays an essential role in many normal physio-
logical functions, such as information processing, learning
and memory formation, as well as in several physiopatho-
logical conditions, such as epilepsy and Alzheimer’s dis-
ease.

We have developed a simple example simulating the
hippocampus tissue, using a space aware MAS (a 2D ma-
trix for a hippocampal slice) and the Hodgkin Huxley
model [11] for neuron-agents implemented through the
following DEV&DESS model:

HH = {X, Y, S, ta, δint, Cint, λ, δext, f}
The neuron behavior is considered as a hybrid process,

the internal evolution is continue, emission and reception
of action are discrete. The system has two output: a dis-
crete output "action potential" and a continue output "po-
tential". The continue state variable potentialV is used
to take into account internal potential evolution. The neu-
ron will produce an "action potential" valuedVAP when
V ≥ Vθ. V is then reset to resting potentialVrest.

S = Sdiscr ∪ Scont

Sdiscr : {state|state = {active, passive}}
Scont : {V |V ∈ R}

δext(V, x, t) = V +
dV

dt
+ f(wx)

δint(state, V )
if state = active thenstate = passive
else state = active

V = V rest

λ(state) :

if state = active then make an impulsion
otherwise nothing

ta(state, V ) :

if state = passive thenta(state, V ) = +∞ if V < Vθ

ta(state, V ) = 0 if V ≥ Vθ

otherwise ta(state, V ) = tref

Cint(V, x, t)
=true if V0 ≥ θ
=false otherwise

With Huxley-Hodgkin model,f is described by:
f = V ′ = (gNam

3h(VNa − V ) + gKn4(VK − V )
+gL(Vrest − V ) + Iinj(t))/Cm

Results of the simulations are available in the form of
videos at http://oss.ephe.sorbonne.fr/∼ntmluan/index.htm.
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IV. CONCLUSION

With our method, the integration of well-known ap-
proaches (hierarchical graphs, DEVS and agent based sim-
ulation) gives a complete process for studying the dynam-
ics of complex systems made up of interacting parts, what-
ever the field of the considered system. Once defined and
build, running such a model relies on instantiating agents
population, letting the agents interact in the space aware
environment, thus leading to a simulation while monitor-
ing what happens.

In our proposed method, the system modelling process
is based on the decomposition of a given real system into
various inter-connected elements using hierarchical graphs
to represent the system structural organization. Each ele-
ment is represented by a node, which can be described by a
subgraph on a different hierarchical level, and the connec-
tion is represented by an edge, forming a multi-scale graph
all together. From the behavioral point of view, a hierar-
chical DEVS formalism is used to describe the behavior of
components that are implemented as agents in a situated
MAS. At the lowest level, an atomic DEVS component
corresponding to an atomic node describes the behavior of
an agent in the situated MAS. At the higher level, a cou-
pled DEVS describes a system as a network of coupled
components whose connections denote how components
influence each other, according to the graph of interactions
that represents the organization. Moreover, an explicit def-
inition of the spatial structure of agents environment al-
lows the definition of distance and adjacency among situ-
ated agents. Thus, our proposed solution provides a model
that can take into account not only the system hierarchi-
cal nature but also the spatial and geometrical relationship
between agents that we believe has a significant meaning.

With Ziegler’s formalisms, agent-based models can be
combined with equation-based models because, within an
individual agent, behavioral decisions may be done by
evaluating theses equations [17].

We have presented in this paper a general modelling
and simulation method based on (i) hierarchical graphs en-
abling multiscale analysis, (ii) DEV&DESS bringing a hi-
erarchical formalism for agent specification, and (iii) a sit-
uated MAS reflecting the system geometry. The attractive-
ness of this method lies on its ability to be used in various
domains, and thus to reduce the model building cost.
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