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Abstract: We present a model in which abstract concepts of a language acquire
meaning as the result of competition between heterogeneous interacting agents in a com-
munity. We argue that bounded rationality requires individuals to use a reduced number
of abstract concepts to represent the rich reality of the world. The meanings of these
concepts emerge as a trade-off between two objectives: (i) agents want to use concepts
that are best adopted to their idiosyncratic preferences and characteristic distribution
of choice alternatives, (ii) agents seek to share concepts to benefit from communication.
Agents play a non-cooperative game, whose Nash equilibrium determines the collective
meanings of concepts in the population, constituting together the community’s language.
Analysis of the possible Nash equilibria and the evolutionary game dynamics shed light
on interesting theoretical questions such as the origins of meaning, the coherence of lan-
guage, the language-culture relationship, and Whorf’s hypothesis on linguistic relativism.
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1 Introduction

Human language is a unique trait that clearly sets us apart from animals. Part of
the human language system is biological, i.e., hard wired in us by millions of years of
evolution. Speech organs, for instance, clearly belong to this category. Other parts of
the language system are the result of more or less conscious cognitive processes such as
learning, or deliberate social interactions. The creation of new words by a community
is the result of complex interactions between its members. The subject of this paper is
language in this latter sense, i.e., language as a conscious/social process.

Roughly speaking, language consists of words and rules. Words are linguistic signals
referring to concepts, the collection of which constitutes the so-called mental dictionary
or mental lexicon. We use the term “word” to denote a listeme: any string of linguistic
elements (e.g., morphemes, words, or composite expressions) that is associated with a
particular meaning. (In this general sense idioms, for instance, are also listemes.) This
paper focuses on the emergence of the mental dictionary, i.e., it seeks to explain how
words acquire meaning.
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Our central thesis is that meanings emerge in language through an economic process,
in the sense of competition between agents. We study intelligent maximizing agents
with well-defined preferences facing a series of decisions. Agents have an overwhelm-
ing amount of information (physical perceptions) concerning their decision alternatives.
However, with restricted cognitive resources and limited communication bandwidth,
agents have to use a reduced number of abstract concepts (words) to represent the rich
reality of the world. In this environment, agents’ “choices” (of the meanings) of concepts
is driven by the objectives of keeping representation error minimal and communication
effective. The former means using concepts that provide the “best” description of the
world in the sense of leading to optimal decisions given the agents’ preferences. Since
preferences may differ across agents, optimal concepts will differ too. However, as agents
want to communicate with each other (e.g., to gather information from each other or to
cooperate) they also need to share their representations (concepts). Trading off these two
objectives (representation and communication) agents essentially play a non-cooperative
game (Language Game), whose Nash equilibrium is a set of partially shared meanings
that we interpret as “language”. We are interested in the conditions under which such
an equilibrium exists, as well as the level of coherence in the resulting words/concepts.
We analyze the properties of the Language Game’s evolutionary dynamics, and discuss
the multiplicity and stability of its equilibria. Our ultimate goal is to understand the
emerging mapping between agents’ perceptions and the (abstract) concepts (words) of
language. In particular, an important question we investigate is how individual prefer-
ences influence agents’ mental representations of the world.

The analytic results show that the Language Game always has at least one Nash
equilibrium, although it may not be unique. In the resulting language(s), concepts have
partial coherence across agents, the strength of which is an increasing function of the
exogenous benefit from communication. However, although the average coherence of
concepts across agents increases monotonically with the strength of communication, the
coherence of concepts can differ significantly. Analysis of the Language Game’s evolu-
tionary dynamics shows that it always has at least one fixed point that is also a Nash
equilibrium. This equilibrium is also dynamically stable against small collective devia-
tions (an attractor). However, not all attractors of the Language Game’s dynamics are
Nash equilibria and not all Nash equilibria are dynamically accessible. The number of
potential equilibria increases with the number of agents. Which concepts emerge in equi-
librium is sensitive to initial conditions, i.e., language exhibits strong path-dependence.
These patterns have interesting implications for the interpretation of natural languages,
their differences and relative stability across cultures and the psychology of mental rep-
resentations.

2 Relevant Literature

There are two literature streams that formally model the language formation process
and, in particular, the endogenous emergence of meaning in certain signals. In the
“cheap-talk” literature of rational game theory [1, 2, 3], agents are properly defined
in terms of preferences and interact strategically in a specific game with incomplete
information. The purpose of language construction is to better coordinate on an efficient
outcome of this game. It is shown that under certain conditions (non-costly) signals
become associated with specific meanings and the use of the so-constructed language
helps coordination. In models of evolutionary biology [4, 5, 6, 7] agents are boundedly
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rational and use different heuristics. The association of specific signals to given meanings
emerge through imitation or reproduction. It is shown that a shared mental lexicon
(mapping between signals and objects of reality) can dynamically emerge if heuristics
leading to successful communication have a higher chance to survive.

Our framework differs from these literature streams in several ways. First, in contrast
with existing models, in our case, the social process of language construction involves
explicit conflict of interest between agents. We assume that language has a strong influ-
ence on decision making (Rubinstein [8], Chapter 4). In fact, optimal decision making -
in the sense of optimal choice between alternatives - is the driving force behind language
formation. Language is used to describe choice alternatives with a limited number of
concepts. As a result, agents with different preferences may not want to attribute the
same meanings to the concepts. Yet, if they want to communicate with other members
they have to largely agree on the meanings. These, potentially opposing objectives result
in a competitive game, that we call Language Game. A related issue is that traditional
evolutionary approaches assume that the language construction process is “unconscious”,
in the sense that agents’ heuristics in associating specific signals to given objects sur-
vive through imitation or reproduction. In other words, in these models agents do not
actively promote certain meanings to be used. In reality however, communities do con-
struct their language in every day’s life and their members do so consciously. They add
words to the mental lexicon and modify the meanings of existing ones. Consistently
with this picture, in our framework, agents are strategic in influencing the formation of
a common language.

Second, we seek to build a general model of language, in the sense of language
being context-independent. In other words, we are interested in the emergence of con-
cepts/words that are used across a large number of different contexts. In existing evolu-
tionary approaches, concepts do not really emerge endogenously. Rather, concepts and
signals are given and the issue is to reach agreement over the mental lexicon provid-
ing the mapping between them [9, 10]. In other words, these models do not explicitly
address which concepts should be named by signals (words) and why concepts may be
similar or different across agents and/or communities. As Rubinstein [8] points out in
his reflections on language, even in cheap-talk games, the relevant concepts are already
defined by the underlying game. As such, the messages are limited to certain well-defined
objects. Rubinstein argues [8]: “A persuasive explanation of the emergence of linguistic
concepts requires a much more general setting” (p. 34.). Our goal is precisely to model
such a general (context-independent) setting.

Two recent papers are closest to our work in addressing the endogenous emergence of
meanings with conflict of interest between agents. Battigalli and Maggi [11] construct a
model of language to build a theory of contract incompleteness. A contract uses language
to partition the set of events and associate it to the contracting parties’ obligations. A
more “precise” - hence more costly - language results in more complete contracts. The
paper explains various forms and degree of contract incompleteness by the cost of the
language used. In a different formulation, Cremer et al. [12] develop a model where
parts (departments) in an organization use different partitions of the space of signals to
develop an internal code adapted to each department’s objectives (see also, Wernerfelt
[13]). Conflict between departments may arise when internal codes differ. The focus of
the paper is the organizational structures that emerge as a result of such conflict or the
need to make conflict disappear.

Our work has several points of departure from these papers. Instead of contracts and
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organizational structures, our focus is the process of language formation itself and the
features of the resulting equilibrium languages. In this respect, in our framework, the
meanings of concepts are not discrete in a language community. As in reality, people do
not completely agree or completely disagree with each other on the meaning of a word
and this does not (completely) prevent communication. Words may have somewhat
different meanings for different people even if there is rough agreement between them.
Existing approaches do not allow for this eventuality. In contrast, our model captures
this continuous aspect of meaning in the mental dictionary at the outset and - as will
become clear later - even in equilibrium. In fact, an interesting question we ask is: to
what extent is there agreement between agents on the meaning of words in a language?

Our model structure also differs fundamentally from the above papers’. In particular,
we do not define words as a partition of the state space, but rather as weighted averages
of the states. As will become clear later, this allows us to make a distinction between
language and culture, that existing models have a hard time to incorporate.

Finally, our model is closely related to psychology, which is concerned by the mental
representation of concepts and language’s link to decision making in general. Psycholo-
gists broadly see mental representations as a result of a clustering procedure that gives
birth to hierarchies of categories with more abstract concepts belonging to higher level
categories [14, 15]. Objects and concepts are shown to belong to categories to various
degrees, ranked by how “typical” members they are of the given category. More re-
cent research in categorization acknowledges that such categorical structures are “ad
hoc” and are closely linked to decision making in that they are defined by the decision
maker’s goal [16, 17]. Our framework is consistent with this view, in the sense that “cat-
egories” emerge endogenously in a language equilibrium, partially guided by decision
making. Specifically, concepts are assumed to be weighted averages of the elementary
(microscopic) signals that agents perceive about the world (we assume that these percep-
tions are identical across agents). Naturally, the optimal weighting scheme will reflect
similarities and contrasts between the signals that we can associate with the “objective”
structure of the world. However, the weights will also reflect the agent’s preference
structure, which we assume to be idiosyncratic, i.e. heterogenous across agents. In sum,
our framework explicitly describes how mental representations are influenced by three
fundamental “inputs” for language: (i) the correlation structure of the physical world,
(ii) agents’ (decision makers’) individual preferences and (iii) the rate of communica-
tion. In this way, it also sheds light on numerous debates in psycholinguistics, such as
the well-known Whorf hypothesis on linguistic relativism or the relationship between
culture and language.

3 The Language Game

We define “language” as the Nash equilibrium of the Language Game. In the Language
Game, agents choose a finite set of concepts (words) trading off two objectives: (i) to
best “represent” their vast perceptions (available data) about the world and (ii) to share
the concepts across each other, i.e., to associate - to the extent possible - the same
meaning to any given word.

So defined, the Language Game has three important characteristics. First of all, lan-
guage should provide an accurate representation of the complex world. The underlying
assumption is that agents regularly face decisions, that is, choices between alternatives.
Efficient decision making requires that choice alternatives be evaluated as accurately
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as possible. The structure of language providing the necessary “mental representation”
stems from two principal sources. Language needs to reflect the objective structure of
the natural world, and at the same time, the subjective structure of the agents’ prefer-
ences. For example, a hiker may prefer to use different symbols to draw the map of a
region than a botanist, not because they perceive nature differently, but because they
would like to distinguish different objects: while the hiker only needs to tell apart forest
from clearing, the botanist needs to represent the dominant types of plants. Conversely,
the botanist may be less interested in the details of the terrain’s morphology. Their
preferences are different.Traditionally, cognitive sciences tend to focus on how percep-
tions of reality influence the development of languages. In contrast, in this paper, we
are primarily concerned with the effect of agents’ heterogenous preferences.

The second characteristic is that the complex perceptions of agents are to be repre-
sented by a finite set of optimally chosen concepts. This is motivated by our assumptions
that agents are boundedly rational and their communication bandwidth is limited. Both
of these drive agents (in an evolutionary sense) towards a well-organized and compressed
representation of the world. Bounded rationality, which can manifest itself in the form
of limited memory space, time constraints on learning the correct use of concepts, or
rapidly increasing processing cost as a function of model complexity, cannot let the num-
ber of concepts (words) to rise too high. Similarly, biology limits human communication
bandwidth to a relatively low rate of words per second. Thus, efficient communication
also requires the compression of information along a small number of highly significant
concepts. Therefore, the typical size and organization of the human mental lexicon arises
from the balance between two competing goals: to increase representational accuracy
and decrease model complexity (see Chater and Vitnyi [18] for a short introduction on
the importance of model simplicity). In order to simplify our model we will assume that
the number of concepts in the language is fixed, and will only concentrate on the optimal
choice of these concepts.

Finally, the third characteristic of a Language Game is that agents need to align
their concepts if they want to profit from communication. The underlying, natural
assumption is that the more concepts are similar (words have similar meanings), the more
they are useful to transfer information about the state of the world (choice alternatives,
etc.) between agents. We will assume that society imposes an exogenous “pressure” to
communicate, which will contribute to agents’ utility according to the actual alignment
of their concepts. Notice, that if agents are different in terms of preferences, then
the different aspects of language (accurate mental representation and communication)
put agents in conflict with one another. A priori, each agent would prefer to use a
different language for efficient decision making. Since agents also want to benefit from
communication, it is in their interest to deform the collectively shared meanings in such
a way that these better reflect their own preferred view of the world. Language, defined
as the collection of concepts, emerges as an equilibrium of the Language Game.

3.1 Mental representation with a finite number of concepts

We consider I agents, each restricted to use a number K of concepts only. Agents
divide the world into a number X of decision contexts in which they evaluate decision
alternatives according to their personal preferences. We assume that alternatives are
characterized by their objective (physical) attributes a = {a1, . . . , aD}, that are common
knowledge. In other words, agents are homogenous in terms of their perceptions about
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the world. Agent i’s objective payoff from choosing alternative a in context x is denoted
by π

(x)
i (a). In the following, we assume for simplicity that the objective payoff is a linear

function of the attributes
π

(x)
i (a) = ω

(x)
i · a, (1)

in which the vector of coefficients ω
(x)
i will be called the agent’s preference vector in

context x. The collection of vectors {ω(x)
i }X

x=1 defines the agent’s objective (biological or
otherwise acquired) preferences in all possible decision contexts. These parameters are
assumed to be fixed in the model. In other words, each agent’s preference structure is
described by a very large number XD of fixed parameters. As opposed to a, the para-
meters {ω(x)

i }X
x=1 are agent specific, i.e., we consider agent heterogeneity in preferences.

If they knew their preference vectors, the agents would be able to calculate the
objective payoffs of their decision alternatives in the assumed linear world, and make
the best possible decisions whenever they face a decision problem. However, although
the preference vectors ω

(x)
i are well defined in theory, we have good reason to suppose

that the numbers they represent are not directly available for the agents. On the one
hand, the agents need a good deal of experimentation (learning) to find out how a given
attribute impacts their payoffs. As an example think about food allergy, which may be
an innate condition in the patient, but requires a painful “learning process” through bad
choices of food alternatives to recognize and diagnose. When the number of attributes
and contexts is large, there is a problem with the sparsity of the “training samples” (cf.,
the “powerty of stimulus” argument in linguistics [18]). On the other hand, a perfect
knowledge of ω

(x)
i would require a detailed understanding of the effect of all physical

attributes on the payoffs: a total number of XD parameters in the linear model. We
can assume that this is beyond the agent’s mental capacity, or the required cognitive
complexity is too costly for the agent.

What remains for the agent to reduce the cost of complexity and to have a model
which better generalizes from sparse data is to try to invent a simplifying scheme, a so
called mental representation. The mental representation is an approximate mapping from
microscopic attributes to payoffs. Given a decision alternative a and using the mental
representation, the agent arrives at an approximate payoff, π̃

(x)
i (a), which is not equal but

close to the exact payoff π
(x)
i (a). We assume that there exists some learning mechanism,

which improves the agent’s mental representation by collecting experience on previous
choices and their success rate. Eventually, as a result of learning, the approximate payoffs
get as close to the objective ones as allowed by the structural constraints of the mental
representation. The mental representation gets optimized within its limits.

In the following we suppose that the agent’s mental representation has a fixed ar-
chitecture with a number of free parameters to optimize for. In particular, we assume a
two-level hierarchical organization, in which the processing of the input a is done in two
steps: (i) evaluating the alternative along concepts, and (ii) weighting the concept scores
to arrive at the associated payoff. The structure of this mental representation is depicted
on Fig. 1. It defines three layers: the input layer, where the microscopic attributes of
decision alternatives are perceived, the middle layer composed of abstract concepts, and
the output layer representing the context- and agent-specific payoffs associated with
alternatives.

The hierarchical structure depicted in Fig. 1 formally resembles a linear, two-level
(concept vectors, mental weights) neural network. Note, however, that it is not a mi-
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Figure 1: Evaluating decision alternatives under bounded rationality using a finite number of
concepts. (a) Structure of reality reflecting idiosyncratic preferences, (b) structure of the mental
model (both assumed linear).

croscopic neural network model of a cognitive function, but a phenomenological (macro-
scopic) model of a generic decision making strategy under bounded rationality. This
structure is based on research in psychology, asserting that the human mind is a “fea-
ture detector” that can only perceive the aspect of reality which it has a concept for
[19].

Each concept µ in the middle layer is a real valued function a → ciµ(a) (the agent in-
dex i represents that the meaning of concepts may vary from agent to agent). We assume
that the number of concepts, i.e., the size of the (mental) dictionary, is the same fixed
number K for all agents with K << D. Thus, the first step implies dimension reduction,
a mapping RD → RK . The second step involves calculating the approximate payoff in a
given decision context as a function of the concept scores, π̃

(x)
i = p

(x)
i (ci1, ci2, . . . , ciK),

where p
(x)
i is an appropriate function RK → R called the mental model of agent i in con-

text x. Each agent possesses a number X of such mental models, one for each decision
context.

At the lowest level on Figure 1, agents are homogeneous and have identical percep-
tion of reality. In the highest layer they are heterogeneous and have individual payoff
functions based on their individual preferences. The middle layer with abstract concepts
shows partial coherence, whose measure, as we will see, is determined by the strength
of social interactions. In other words, agents more or less agree in the meanings of the
concepts, but there is no perfect consensus. This is the layer we intend to monitor across
society for observing the emergence and evolution of a shared language.

In general, both the concept functions ciµ and the mental models p
(x)
i can be nonlinear

functions. However, in order to keep the model simple, in the following, we will assume
that all these functions are linear. This “linear mind” assumption and the former “linear
reality” assumption are crude approximations but ensure some analytical results and
thus useful insight. Accordingly, we assume that concepts are linear mappings defined
by concept vectors {γiµ}K

µ=1, i.e.,

ciµ(a) = γiµ · a, (2)

and that the mental models are linear, too,

π̃
(x)
i (a) =

K∑

µ=1

v
(x)
iµ ciµ, (3)
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where the coefficients v
(x)
iµ will be called mental weights. Putting the two steps together,

the approximate payoff is bilinear in the γ and v parameters

π̃
(x)
i (a) =

K∑

µ=1

v
(x)
iµ γiµ · a. (4)

We emphasize that, as opposed to v
(x)
iµ , the concepts are context-independent (there is

no superscript (x) for ciµ), i.e., they have the same “meaning” in all decision contexts
for a given agent.

Why is this cognitive architecture preferred? In this scheme the complexity, i.e., the
number of variables defining an agent is (X + D)K, which can be much less than the
total number of parameters describing the world, XD. However, there is a price to pay
for this “bounded rationality”: due to the reduction of dimensionality, K << D, the
approximate payoff π̃

(x)
i deviates from the objective payoff π

(x)
i . In fact we can think

of K as the optimal number of concepts which arises endogenously in the trade-off of
precision vs. model (representation) complexity. Nevertheless, as the exact value of K is
not essential to our analysis, we simplify the model by assuming that K is exogenously
fixed.

In our model, standard grammatical categories like nouns and adjectives are con-
founded. Each decision alternative receives a score on a concept, which can be associated
with a noun or an adjective alike. For example, a stool will receive a high score on the
“chair-ness” concept. This feature is consistent with empirical work on people’s mental
representations [14, 16, 15], which shows that, while people have a tendency to cluster
things in distinct categories, membership in a category is not rigid but can be repre-
sented with a so-called “graded structure” where a member is measured on how typical
it is for that category. (This is also the fundamental concept behind “fuzzy logic”.)

Finally, a three-layer structure with one concept layer is clearly a simplified model of
language, which could be better described with many layers, each representing a different
level of abstraction. However, we can easily replace the lowest (physical) layer by a layer
of concepts that are (for all practical purposes) completely agreed upon by agents. For
example, there is strong agreement between people on the meanings of concepts/words
like “chair”, “table”, “fork”. There is much less agreement however, on the meanings
of abstract words like “truth”, or “God”. We are interested in understanding how the
meanings of such abstract concepts emerge.

Let us illustrate the model with a further example. Consider a headhunter seeking
candidates (alternatives) for job openings (contexts). The headhunter possesses a large
amount of raw data about the candidates in the form of CVs, test results, photos,
recommendation letters, certificates, interview recordings, etc. (physical attributes, a),
and would like to use these to direct the right candidate to the right job. In theory, each
job is associated with a complicated function (objective payoff), mapping candidates
(described by a) to payoff of the candidate for the given job (π(x)(a)). Without going
into the intimate details of this complex relationship, the headhunter can “summarize”
the candidate profiles along a small number of suitably chosen concepts such as “level of
education”, “expertise”, “communication skills”, “physical appearance”, etc, which she
can (easily) extract from the attributes. Moreover, she classifies openings into typical
job categories (say, musician, scientist, executive, etc.) for which she already possesses
a weighting scheme (mental weights) along the concepts used. The question is how to
find the most efficient set of abstract concepts to minimize her efforts but maximize her
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matchmaking efficiency. Obviously, headhunters should optimize their concepts for the
general genre of cliental they work for. Those specialized in hunting movie actors will
apply rather different concepts (language) than those recruiting corporate executives.

3.2 Representation error

Each agents’ goal is to find the best possible set of concepts and mental weights that
minimize the error of the mental representation under the constraint that only a finite
number K of concepts can be used. The natural measure of agent i’s representation
error is the variance of the payoff deviation over all decision contexts,

EREP
i =

X∑

x=1

〈[
π

(x)
i (a)− π̃

(x)
i (a)

]2
〉

ix

. (5)

Such a quadratic error function equally penalizes positive and negative deviations of the
predicted (approximate) payoffs from the objective (exact) ones.

In Eq. (5), 〈f(a)〉ix =
∫

f(a) ρ
(x)
i (a) da denotes average over the occurrences of

alternatives, which is characterized by the probability density ρ
(x)
i (a). In a realistic setup

the distribution of alternatives can be context and agent dependent. Some alternatives
may occur with different probabilities (maybe with zero probability) for some agents
and/or in some decision contexts. In the following we omit context dependence, but
keep a possible agent dependence, and assume ρ

(x)
i (a) = ρi(a) for all x. This simplifies

the forthcoming analysis without losing essential features. We assume that the attributes
are centered and their correlation structure is represented by the context-independent
covariance matrix Ai,

〈ad〉ix = 0, 〈adad′〉ix = [Ai]dd′ ∀x. (6)

Using Eq. (6) it is easy to see that the representation error becomes

EREP
i =

X∑

x=1

(
ω

(x)
i −

K∑

ν=1

v
(x)
iν γiν

)
·Ai

(
ω

(x)
i −

K∑

ν=1

v
(x)
iν γiν

)
. (7)

The agent’s goal is to minimize his/her error EREP
i by optimally choosing the concept

vectors γiν and mental weights v
(x)
iν . Recall that ω

(x)
i and Ai are assumed fixed in the

model.
As formulated so far, concept vectors and mental weights are both dynamic variables.

However, it is reasonable to think about concepts as “slow” variables, changing notice-
ably on the scale of decades or centuries, partly because they are shared across agents.
In contrast, the mental weights are agent-specific and adapt to the existing concepts
in months or years. Certainly, learning to use correctly a concept is much faster than
inventing a new, collectively successful concept. Thus, in the following, we optimize the
mental weights, assuming that they accommodate to the slow variables very shortly, and
only keep concept vectors as dynamic variables.

Given the γ vectors the optimal value of v
(x)
iµ follows from the solution to the equation

∂EREP
i /∂v

(x)
iµ = 0. From this condition, and assuming that the K×K symmetric matrix

Giνµ = γiν ·Aiγiµ (8)
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is invertible (note that the concepts are not necessarily orthogonal), the optimal mental
weights turn out to be:

v
(x)
iµ =

K∑

ν=1

[G−1
i ]µνγiν ·Aiω

(x)
i . (9)

Writing this back to Eq. (7) we can write the error now as a function of the γ’s only:

EREP
i =

X∑

x=1

ω
(x)
i ·Aiω

(x)
i −

X∑

x=1

K∑

µ,ν=1

(
ω

(x)
i ·Aiγiµ

)
[G−1

i ]µν

(
ω

(x)
i ·Aiγiν

)
. (10)

The first term is an uninteresting constant which can be neglected. We introduce a
representation utility UREP

i as the negative of the second term. This can be cast in a
more compact form:

UREP
i (Γi) = Tr

(
ΓT

i AT
i BiAiΓiG

−1
i

)
, (11)

where Tr is the trace of the matrix, Γi ≡ [γi1|γi2| . . . |γiK ] is the agent’s language matrix
formed from the concept vectors as columns, and

[Bi]dd′ =
∑

x

ω
(x)
id ω

(x)
id′ (12)

is the agent’s preference matrix. The representation utility UREP
i is a function of the

agent’s language matrix Γi.
The representation utility is maximal if the concept vectors are chosen optimally.

However, even before trying to solve this optimization problem it is immediately clear
that the solution cannot be unique. Indeed, due to the linearity of the model the rep-
resentation utility is invariant for a redefinition of the concept vectors in any (possibly
nonorthogonal) ways, provided that the new vectors span the same K dimensional sub-
space.

Lemma 1 Let R be an arbitrary real, nonsingular, K×K matrix. For the transforma-
tion Γ̃ = ΓR the representation utility is invariant:

UREP(Γ̃) = UREP(Γ). (13)

Proof: Since R is not singular, R−1 exists. The metric tensor transforms as

G̃x = RT GxR, (14)

and its inverse becomes
G̃
−1

x = R−1G−1
x (RT )−1. (15)

Using this and the cyclic property of the trace,

UREP = Tr
[
Γ̃

T
AT BAΓ̃G̃

−1
]

= Tr
[
RTΓT AT BAΓRR−1G−1(RT )−1

]

= Tr
[
ΓT AT BAΓG−1

]
, (16)

as claimed. ¤
In natural languages concepts are not always fully independent, but there is a ten-

dency to describe reality along more or less uncorrelated dimensions (synonyms are
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exceptions and we do not consider this possibility here). For example, identifying posi-
tions in 2D space we can use concepts like “left–right” and “front–rear” or alternatively
“North–South” and “East–West”, but we hardly use correlated pairs like “North-South”
and “North-West–South-East”, although this would be theoretically possible. (In this
example, the word-pairs like “left–right” are understood as a single concept for a coor-
dinate axis.) The likely reasons are the mental difficulty to process correlated variables
and/or the increased sensitivity for noise of the mental model when concepts trying to
span the relevant subspace are strongly correlated. It seems that real mental models
involve a (nonlinear) cost term related to the correlation of concepts, and this cost term
brings about an effective “repulsion” for concepts.

Having the liberty of Lemma 1 to choose a basis freely in the optimal subspace we
can mimic this effect by requiring that the concept vectors be exactly uncorrelated. The
correlation of concept µ with concept ν is defined as 〈cµcν〉x = 〈(γµ · a)(γν · a)〉x =
γµ ·Aγν , thus the agent’s language is uncorrelated if

Gi = ΓT
i AiΓi = 1. (17)

This condition can be used as a constraint in the optimization problem. This constraint
reduces the degeneracy of the optimum stated by Lemma 1, but not fully, as will be
discussed in the sequel. Given the constraint we have G−1

i = 1, and the representation
utility simplifies to

UREP
i (Γi) = Tr[ΓT

i AT
i W iΓi]. (18)

where we have introduced for later convenience the generically non-symmetric matrix

W i ≡ BiAi, (19)

the so-called world matrix. W i represents in a concise form agent i’s overall relationship
to the world. It encompasses the agent’s perception of structure in the occurrences of
decision alternatives (Ai) and his/her subjective preferences (Bi).

3.3 Communication between agents

So far, we have only talked about how using a finite number of concepts affects decision
making. Agents have a second important objective, namely to communicate. We assume
that communication between pairs of agents occurs on the level of concepts. In other
words, agents cannot communicate the values of the large number of physical attributes
associated with an alternative, but can only provide the corresponding – relatively small
number of – concept scores. The basic idea is that communication cannot operate on the
level of attributes due to limited bandwidth, nor on the level of payoffs due to substantial
heterogeneity in preferences, which is anticipated by the agents. For example, it is not
possible to describe all details of a flower to a person trying to purchase flowers on the
phone, but it is not too informative to say “I like it” or “it is beautiful” either unless
agents have very similar preferences (tastes).

It is obvious that if agents i and j use a somewhat different definition (different
meaning) for concept µ, then their communication involving this concept introduces
some misunderstanding. We can assume that misunderstanding, in general, implies
disutility for the agents, whose amount depends on how different the two concept vectors
γiµ and γjµ are. The lowest order (bilinear) measure of the misunderstanding error is
related to the overlap of concept vectors. Thus γiµ · γjµ can be used as a reasonable

11



measure of the average communication benefit for the agents. When the two concepts
are exactly identical, γiµ = γjµ, communication utility is maximal. We write i’s benefit
from communication with agent j as

UCOM
ij =

∑
µ

Cijµ γiµ · γjµ, (20)

with Cijµ denoting the importance of concept µ in the communication of agents i and
j. In the following, we restrict our attention to the simple case Cij µ = c/(I − 1) for
all agent pairs identically, where I − 1 is the number of agents to communicate with,
and c is the exogenous rate of communication in the community. The denominator is
introduced to obtain a meaningful limit when I →∞.

The contribution of all communications to agent i’s utility is

UCOM
i = c

1
I − 1

I∑

j 6=i

Tr(ΓT
i Γj). (21)

As is formulated above, communication benefit is a symmetric function, UCOM
ij = UCOM

ji .
Indeed, it is reasonable to postulate that the benefit of communication is distributed
symmetrically between the two agents involved. Communication is typically a role game
in which the roles of being a sender (speaker) or a receiver (hearer) interchanges from
time to time. Both sender and receiver can benefit in a single communication act:
depending on the content of the message the sender can generate profit by influencing
the receiver, or the receiver can have benefit by getting information from the sender. On
the long run, benefit accumulates on both sides.

Collecting the representation and communications terms together the overall utility
for language of agent i is Ui = UREP

i + UCOM
i , which takes the form

Ui = Tr
(
ΓT

i AT
i BiAiΓi

)
+ c

1
I − 1

I∑

j 6=i

Tr
(
ΓT

i Γj

)
, (22)

with the nonlinear constraint
ΓT

i AiΓi = 1. (23)

As defined by Eqs. (22) and (23), we have a coupled and constrained maximization
problem for the individual language matrices Γi, i = 1, . . . , I.

Again, even without solving the problem, it is clear that the maximizing solution
will not be unique. Let us introduce the shorthand notations Γall ≡ (Γ1,Γ2, . . . ,ΓI)
(all concept vectors in the problem) and Γ−i ≡ Γall\Γi (all concept vectors but those
of agent i) for later convenience. Clearly Γall = (Γi,Γ−i) for any i. As the following
lemma asserts, a collective orthogonal rotation in the subspaces spanned by the concept
vectors leaves all Ui invariant:

Lemma 2 An identical collective rotation of the concept vectors for all agents

∀ i Γ′i = ΓiO, OOT = 1, (24)

leaves Ui and the constraints invariant,

Ui(Γi,Γ−i) = Ui(Γ′i,Γ
′
−i), Γ

′T
i AiΓ′i = 1. (25)
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Proof: It follows from Lemma 1 that UREP is invariant, so it remains to prove that
UCOM is also invariant. This boils down to show that

∑
µ γiµ · γjµ = Tr(ΓT

i Γj) is
invariant. Indeed, we have

Tr(Γ′Ti Γ′j) = Tr(OTΓT
i ΓjO) = Tr(ΓT

i Γj), (26)

where we have used the cyclic property of the trace and that O is orthogonal.
As for the constraint, we have

Γ
′T
i AiΓ′i = OTΓT

i AiΓiO = OOT = 1, (27)

where Eq. (23) and the orthogonality of O was used. ¤
The only possibility to get rid of this rotational degeneracy, and fix the concept

vectors unambiguously is to add some nonlinearity to the model. We can introduce
a further cost term (complexity or structural cost) associated with the distribution of
coefficients connecting the concepts to the physical attributes. A standard choice is

Q(Γi) = −ε
∑

µ

q(γiµ), q(γ) =
D∑

d=1

γ4
d , (28)

but any similar nonlinear function could do just as well. In Eq. (28) ε is positive and
infinitesimally small, thus it does not deform the subspace itself. Such a cost eliminates
the artificial degeneracy arising from the linearity of our model and can be used to select
from otherwise degenerate configurations. A possible interpretation is that it is easier to
evaluate a concept, which only depends on a small number of relevant attributes, than
one, which has more or less equivalent “loadings” on many. In neurophysiological terms
a smaller number of synapses are required to approximate this representation. The weak
links can be cut without committing large error, thus instead of working with a fully
connected (semantic) network, a sparse network can be used as a good approximation.
The specific form of Q in Eq. (28) is the standard “quartimax” rotation criterium, widely
applied in the theory of PCA and factor analysis [20]. In fact, most of our results can
be presented without considering such a nonlinear term – the exceptions will be pointed
out in due course.

3.4 Measuring the coherence of meanings

When agents’ preferences and probability densities for alternatives differ they will end
up using concepts with different meanings. However, as the importance (benefit) of
communication increases (c increases), there is a pressure on agents to share coherent
meanings. The coherence will only be perfect at c = ∞. For a quantitative measure of
coherence we introduce two definitions.

Definition 1 (Average meaning and coherence of concepts) The average mean-
ing of concept µ is the population average of the individual concept vectors

γ̄µ =
1
I

I∑

j=1

γjµ. (29)

The measure of its coherence is the length, |γ̄µ|.
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When coherence is perfect, i.e., all agents have identical concept vectors for concept µ
the coherence (order-) parameter has unit length |γ̄µ| = 1. In the opposite limit |γ̄µ| = 0
we can speak about complete disorder.

It is also useful to define a scalar parameter, which measures the overall coherence
of the language as a whole.

Definition 2 (Coherence of language) The overall coherence L of a language is de-
fined to be

L(Γall) =


 1

I2

I∑

i

I∑

j>i

Tr
(
ΓT

i Γj

)



1/2

. (30)

Note that in the limit of large populations, I →∞, L can be written as a quadratic
function of the concept coherences,

L(Γall) =


1

2

K∑

µ=1

γ̄2
µ




1/2

+O
(

1
I

)
, (31)

and, thus, measures naturally the coherence of all the concept vectors in the language.
As it was discussed above, UREP

i + UCOM
i is invariant for a collective rotation of

the concept vectors, and the infinitesimal nonlinear term Q was introduced to lift this
degeneracy. It is important to note that the γ̄µ vectors are not invariant for such
collective rotations, but L as defined in Eq. (30) is.

Lemma 3 An identical collective rotation of the concept vectors for all agents

∀ i Γ′i = ΓiO, OOT = 1, (32)

leaves L invariant,
L(Γall) = L(Γ′all). (33)

Proof: As seen in the proof of Lemma 2, each term in Eq. (30) is invariant in itself. ¤
The fact that collective rotations leave the agents’ utilities and the overall coherence

of language invariant asks for an interpretation of the invariant subspace spanned by
the concept vectors. It is tempting to interpret this subspace as “culture” [21, 22].
Effectively, this interpretation says that we can call two agents culturally identical if
one can predict exactly the behavior of the other in all possible decision problems. This
doesn’t mean that agents would make identical decisions, since their preferences may
be different (heterogeneity). However, if their concept subspaces are identical, they can
understand/predict each other accurately. In contrast, if the subspaces are misaligned,
there is always some prediction error (misunderstanding or cultural incommensurability)
between the agents. This is a useful working definition of “culture” because it allows – as
in the real world – for the existence of different “languages” within the same culture, i.e.,
different basis vectors spanning the same subspace. The individual concepts are different
across these languages but alternatives can be described identically in each. One could
consider a stricter definition of culture, which requires the identity of preferences as well.
With this stricter definition however, the left and right political parties in a country
would belong to different cultures, which is a somewhat uncomfortable interpretation.
The definition of culture has to allow for different preferences.
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4 Equilibrium Languages

4.1 Single agent or identical agents

Let us first investigate the properties of our model Eq. (22-23) in the case when there is
no communication between agents, i.e., c = 0. This is the problem of isolated agents who
develop a mental representation of their world on their own. It also corresponds to the
case when agents are identical. A solution which maximizes Ui under the constraint is
trivially a Nash equilibrium of the Language Game. This limit can serve as a benchmark
in the analysis of the more interesting case when multiple, heterogeneous agents interact.

Proposition 1 Without social interactions the optimal (equilibrium) language solves a
Principal Component Analysis (PCA) problem. The optimal concepts span the most
significant subspace of the world matrix W i = BiAi, and within this subspace minimize
the nonlinear cost function Q (if present).

Proof: Let us consider first the case Q = 0. In the lack of interactions the utility of
agent i reads

Ui(Γi) = Tr
(
ΓT

i AT
i W iΓi

)− Tr
(
ΓT

i Ai ΓiΛ
)
. (34)

where the second term is the constraint added with Lagrange multipliers. The K ×K
symmetric matrix Λ is a compact form of the Lagrange multipliers for all the K(K+1)/2
components of the constraint. The maximization problem for Γi in Eq. (34) is a Principal
Component Analysis (PCA) problem [23]. Indeed, varying with respect to ΓT we obtain
the condition of extremum

AT
i W iΓi = Ai ΓiΛ. (35)

Assuming that the symmetric covariance matrix Ai = AT
i is nonsingular and thus

invertible, Eq. (35) is equivalent to

W iΓi = ΓiΛ. (36)

This latter states that the K-dimensional subspace spanned by the concept vectors (lan-
guage matrix) is an invariant subspace of the world matrix W i. The only K-dimensional
invariant subspaces are the ones spanned by K of the eigenvectors of W i. The remaining
question is how to choose the eigenvectors to maximize the utility.

Let λ1 ≥ . . . ≥ λn ≥ . . . ≥ λD ≥ 0 denote the eigenvalues of the world matrix in
decreasing order, and wn, n = 1, . . . , D, the associated eigenvectors, W iwn = λnwn.
The above ordering is possible, since the eigenvalues of W i are all real and non-negative.
(The fact that both Ai and Bi are symmetric, positive definite is enough to prove this.)
If the subspace is spanned by the eigenvectors wn1 , wn2 , . . . ,wnK , i.e., the language
matrix Γ is constructed from these vectors as columns, the utility in Eq. (18) becomes

UREP
i = Tr

(
ΓT

i AT
i W iΓi

)
= Tr (Λ) =

K∑

µ=1

λnµ , (37)

where we have used Eq. (36). This is maximal if nµ = µ, i.e., if the eigenvectors chosen
in the language matrix are the ones with the K largest eigenvalues. Thus the utility
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maximizing language arises as the PCA problem of the world matrix. Having the optimal
concepts determined, the mental weights of the representation adapt according to Eq.
(9).

Assuming that W i is full rank, all the eigenvalues are positive, and for K < D
the optimal utility Uopt

i is strictly below the theoretical maximum TrW i =
∑D

µ=1 λiµ.
The representation error due to the reduction of dimensionality is the weight of omitted
eigenvectors

EREP
i =

D∑

µ=K+1

λiµ. (38)

The particular solution we have found is not the only solution which maximizes UREP
i

and complies with the constraints. As shown by Lemma 2, any rigid rotation within the
subspace spanned by these eigenvectors produces another degenerate solution. (Note
that since K < D, any configuration that only differs from the reference configuration
by a relabeling of the basis vectors or by sign flips of some of the vectors can also be
attained by a suitable rigid rotation.) This infinite degeneracy is, however, lifted by the
nonlinear cost term Q, when it is added. When Q is infinitesimally small, the solution
remains in the “most significant subspace”, but the basis vectors get determined, at least
up to discrete transformations such as sign flips and relabeling. For finite Q even the
subspace gets deformed, nevertheless the nonlinearity helps fixing the optimal concepts
in an unambiguous manner. ¤

The PCA-based optimal mental representation discussed above may be reached by
practically any (myopic) utility maximizing learning dynamics. Note that without agent-
agent interactions this is a (constrained) optimization problem on a fixed landscape
which is quadratic (without the Q term) and thus smooth. There is no danger that the
dynamics get stuck in suboptimal local maxima [24].

4.2 Nash equilibria for multiple agents

Let us investigate now agent interactions, and set c > 0 and I > 1. Communication
between agents will deform their individual mental representations away from the PCA
solution. The first question we ask is whether this coupled and constrained system has
any Nash equilibrium. The proof of existence will boil down to the following fundamental
observation:

Proposition 2 The Language Game is a potential game. There exists a multi-agent
potential V : RIKD → R such that for any two strategy configurations (Γi,Γ−i) and
(Γ′i,Γ−i) we have

Ui(Γ′i,Γ−i)− Ui(Γi,Γ−i) = V (Γ′i,Γ−i)− V (Γi,Γ−i). (39)

Proof: The proof goes by an explicit construction of the potential

V (Γall) =
I∑

i=1

[
UREP

i (Γi)−Q(Γi)
]
+

I∑

i=1

I∑

j>i

UCOM
ij (Γi,Γj) (40)

=
I∑

i=1

[
Tr

(
ΓT

i W i Γi

)−Q(Γi)
]
+

c

I − 1

I∑

i=1

I∑

j>i

Tr
(
ΓT

i Γj

)
,
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Figure 2: An example: best response (BR) curves for D = 2, X = 1, K = 1 and two agents i

and j. The preference vectors are ωi = [1, 0], ωj = [0, 1.2] and the agents’ concept vectors are
parameterized by the polar angles 0 ≤ αi, αj ≤ π, resp., γi = [cos αi, sin αi], γj = [cos αj , sin αj ].
(a) Two NEs for c = 2.0; (b) Three NEs for c = 5.0. The one in the middle is a special saddle
point of V , and thus unaccessible dynamically.

where we assume that the nonlinear cost term Q is also present in the utility. Obviously
the single agent terms are identical on the left and right side of Eq. (39). As for the
two-agent terms (COM), the equality holds provided that the interaction is symmetric,
i.e., UCOM

ij = UCOM
ji , which is satisfied by the form in Eq. (21). ¤

A potential can always be constructed if a game is based on symmetric pair interac-
tions [25]. These games are sometimes also called partnership games [26]. Note that it
follows from the general expression Eq. (39) that the differential forms

∂Ui

∂Γi
=

∂V

∂Γi
,

∂2Ui

∂Γi∂Γj
=

∂2V

∂Γi∂Γj
(41)

also hold for any i and j. This becomes useful in the sequel. Now it is easy to prove
that:

Proposition 3 The Language Game always has at least one Nash equilibrium.

Proof: The constraints in Eq. (23) make the multi-agent potential V have compact sup-
port, and as such it necessarily takes its global maximum at a point Γ∗all = (Γ∗1, . . . ,Γ

∗
I).

(Again, without Q the global maximum would be infinitely degenerate, but Q resolves
this degeneracy.) It is easy to see, however, that Γ∗all is a Nash equilibrium. Indeed, no
agent has an incentive to deviate from this by choosing Γi 6= Γ∗i , since

Ui(Γi,Γ∗−i)− Ui(Γ∗i ,Γ
∗
−i) = V ({Γi,Γ∗−i})− V ({Γ∗i ,Γ∗−i}) ≤ 0, (42)

where the first equality is assured by Proposition 2, and the second inequality by the
fact that (Γ∗i ,Γ

∗
−i) is a global maximum of V . ¤

In general, the Nash equilibrium (NE) is not unique. It is typical to have configu-
rations, which are NEs, although they do not maximize the potential V . It is obvious,
however, by Eq. (41) that they should necessarily correspond to local extrema of V . This
condition is of course not sufficient. Not all local extrema of V are NEs. An example
showing the appearance of more than one NEs is shown in Fig. (2) for a simple case:
D = 2, X = 1, K = 1 and two agents, I = 2. Nash equilibria, which correspond to
saddle points of V cannot be accessed dynamically (see later).
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Figure 3: Average number of dynamically accessible Nash equilibria (REGA-Nash equilibria)
and stable fixed points (not necessarily NE) of the adjustment dynamics (REGA equilibria) as a
function of the relative intelligence K/D and the number of agents I. Subplots (a,c) refer to small
communication rate, c = 0.5; (b,d) to large communication rate, c = 18.5. In the simulations
the agent preferences are assumed to be iid Gaussian random vectors, and the structure of
alternatives is set Ai = 1.

Similar examples can be constructed in higher dimensions and for more agents. The
stability of these NEs with respect to the game dynamics will be investigated in Section
5. Some of these NEs turn out to be unstable and thus inaccessible under reasonable
evolutionary dynamics. (The possible existence of dynamically inaccessible NEs is a well-
known fact of evolutionary game theory. The Folk theorem of evolutionary game theory
asserts that under a wide class of dynamics all attractors are NEs, but the converse do
not hold. See Cressman [27] and Hofbauer and Sigmund [28] for a formal discussion.)
However, even after the omission of these, the non-uniqueness of language equilibria
prevails. Thus, our model predicts a strong path-dependence in language evolution, in
which the timing and ordering of the appearance of new contexts can play a significant
role, and which can be a source of cultural heterogeneity.

The number of dynamically accessible Nash equilibria (to be called REGA-Nash
equilibria in the sequel) is a function of the basic model parameters such as the number
of agents, the number of concepts, the communication strength, the (heterogeneous)
world matrices the agents possess, etc. Figure 3(a-b) illustrates the case when the world
matrices are randomly distributed in the population. Random agent properties imply
that the number of equilibria is a random variable too. Figure 3(a-b) plots the average
number of equilibria determined by a series of simulations. Although there remain
considerable fluctuations in the points, especially for small c, the overall picture is rather
clear. The number of Nash equilibria can be rather large and typically increases rapidly
with the number of agents. This creates a severe coordination problem. An exception
for this rule is the region of large c and large K/D. This is the limit when agents are
highly intelligent and benefit a lot from communication. In this region we have found
that it is typical to have only one or two Nash equilibria, even when the number of
agents is rather large. Note that a large communication benefit in itself is not enough
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Figure 4: Coherence of language L and individual concepts |γ̄µ| as a function of the communi-
cation strength c for D = X = 8, K = 3, I = 4, and randomly generated, then fixed preferences.
L1, L2 and L3 are three different language equilibria appearing for these parameters. Inset shows
the coherence of concepts for language L1.

to reduce the number of NEs, since this only implies that concept vectors of different
agents be highly parallel without explicitly defining what they should be. In the case
of K << D (low intelligence), the number of Nash equilibria seems to proliferate even
when agent utility is dominated by the communication benefit. Our simulation results,
although very limited in scope, may indicate a qualitative change in the behavior of the
model (“a phase transition”) on the phase plain intelligence vs communication rate –
the investigation of which is left for a future study.

Many of the equilibria we have found only exist in a certain range of c, and disappear
(become unstable) at some critical values. Figure 4(a) demonstrates this by showing the
overall language coherence L = L(c) in equilibrium. All curves in the figure denote a
different Nash equilibrium. As is seen from Fig. 4(a), the coherence in each equilib-
rium increases monotonically as a function of c. This is intuitive, since we expect that
more communication, i.e., a higher value for the external communication rate, c implies
enhanced coherence of the language utilized. In fact we can prove the following:

Proposition 4 In (each possible) equilibrium the overall coherence L = L(c) of the
language is a monotonically increasing function of the communication rate, c.

Proof: Let us rewrite the interaction part of the potential with the help of L2. Applying
Eq. (30) we get

c

I

I∑

i=1

I∑

j>i

Tr
(
ΓT

i Γj

)
= cI L2. (43)

With this the potential has the formal structure

V (Γall) = V0(Γall) + cI L2(Γall), (44)

where V0 represents all single-agent terms, and the c term collects all communication
terms. At a dynamically accessible NE, Γ∗all, the potential V necessarily takes its local
maximum. As c changes the equilibrium configuration adapts analytically (except for
bifurcation points, which are beyond our consideration). The two terms in V compete:
for small c it is the maximum of V0 which determines Γ∗all, whereas for large c it is
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the second term. As c increases the balance of importance swings towards the second
term, and hence Γ∗all gets closer and closer to the individual maximizing configuration of
this term, meaning that L2∗ monotonically increases. The rigorous formulation of this
argument is delegated, in form of a lemma, to the Appendix. ¤

Proposition 4 ensures that language as a whole becomes more coherent when the rate
of communication increases, at least until the equilibrium (which is followed analytically
as a function of c) exists. However, as Fig. 4 illustrates the landscape structure of V
can be such that local maxima arise and disappear by varying c. Thus, certain language
equilibria may lose stability and disappear in a bifurcation process for some critical value
of c. This occurs to L2 and L3 in the example presented in Fig. 4.

Although we have found that language as a whole becomes more coherent for in-
creasing communication rate, it is not obviously true for every single concept in the
language. The system is coupled in an intimate way, and the concepts themselves get
determined by the nonlinear term Q. Even though we could not prove this rigorously,
in all our simulations we have found that for all µ, γ̄µ increases monotonically with c
(see the inset of Fig. 4 for an illustration).

5 Social Dynamics

So far, we have only discussed the Nash equilibria of the Language Game. However, we
can view language as a dynamic, evolutionary problem in which agents perpetually adapt
their mental representations to the changing environment and to each other. Adapta-
tion occurs through a trial-and-error procedure in which the test configuration the agent
considers necessarily deviates from his actual (reference) representation. Since the para-
meter space is enormous, a large (random) change very likely makes the representation
worse, and thus will be rejected eventually. It is reasonable to assume a search heuristic,
which concentrates on small (local) deformations and a set of obvious discrete transfor-
mations, while ad hoc, larger scale deformations of the representation are only tested
very rarely. Evolutionary dynamics acts as an equilibrium selection method, which can
solve the coordination problem related to multiple equilibria found above.

5.1 REGA dynamics

In the following, we assume a myopic adjustment dynamics in which agents slowly deform
their concepts in order to optimize them in a local sense to the natural (perceptual) and
social environment, maintaining the assumed constraints. A possible continuous time
evolution in this spirit is along the steepest ascent of the utility (gradient adjustment
dynamics), which reads

δΓi

δt
= constP i

∂Ui

∂Γi
, (45)

where P i is an adequate projector, which projects the bare gradient ∂Ui/∂Γi (meant by
components) into the tangent space allowed by the constraint Eq. (23). It is customary
to call P i∂Ui/∂Γi the projected gradient, which assures that Γi(t) continues to respect
the constraints for all t.

The gradient dynamics is a local search heuristic, which continuously deforms the
concept vectors. However, as dictated by the nature of the problem, it seems reasonable
to complement this continuous dynamics with a very specific discrete part, namely sign
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flips, γiµ → −γiµ, and relabeling transformations, γi µ → γi Rµ, where R is a permu-
tation operator for concepts. Sign flips correspond to using, for instance, “fastness”
instead of “slowness”, or a (directed) South-North axis instead of a North-South axis.
Relabeling, in turn, permutes the associations, which relate concepts to signals used in
communication. Configurations attainable by such discrete transformations are readily
available for the (boundedly rational) agent, and are assumed to be tested perpetually
with some finite probability during gradient adjustment. The flipped or permuted con-
figuration is accepted and replaces the reference configuration, if it increases the agent’s
utility, whereas it is discarded and the continuous part of the dynamics continues with
the reference configuration, if not.

The basic idea is that, as concepts slowly deform due to continuous adjustment, the
agent may realize that a proper sign flip or relabeling can vastly improve his/her com-
munication efficiency while leaving his representation error intact. The above discrete
processes, which will be referred to collectively as rematching transformations (rematch-
ing concepts and their linguistic signals used in communication), help to avoid spurious
configurations/fixed points, which could be amended trivially by adequately permut-
ing (relabeling) the player’s concepts. We will refer to the above dynamics (continuous
and discrete parts together) as the “rematching enabled gradient adjustment” (REGA)
dynamics. Note that during a REGA iteration step the K-dimensional language sub-
space only changes slightly. Although rematching transformations make seemingly large
configuration changes, they keep the subspace invariant. As such, these rematching
transformations can still be considered “myopic” adjustments because they occur within
the K-dimensional subspace defined by the concept vectors.

5.2 Fixed points and stability

Let us consider now the potential fixed points of the REGA dynamics.

Proposition 5 From all initial conditions the REGA dynamics of the Language Game
converges to a fixed point.

Proof: The multi-agent potential V acts as a Lyapunov function for REGA, in the sense
that V increases in all iteration steps. This is trivial for the continuous (gradient) part,
and also holds for the discrete (rematching) part by Eq. (39). As such the t →∞ limit
of the dynamics is necessarily a fixed point. ¤

Fixed points of the REGA dynamics can be sorted according to their stability proper-
ties. In particular, we define REGA equilibria, as the stable fixed points of the dynamics:

Definition 3 (REGA Equilibrium) A certain choice of concept vectors by agents in
the society will be called a REGA equilibrium if this configuration is (1) a fixed point
of the REGA dynamics, (2) it is asymptotically stable against infinitesimal individual
and collective deviations, and (3) stable against individual and collective rematching
transformations.

Proposition 6 There exists at least one REGA equilibrium of the Language Game.

Proof: We are going to prove that the global maximum Γ∗all of the multi-agent potential
V defined in Eq. (40) satisfies the definition of the REGA equilibrium.

By definition a REGA equilibrium is a fixed points of the REGA dynamics, i.e., a
point where the projected gradient P i∂Ui/∂Γi vanishes for all i. However, by Eq. (41)
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this condition is equivalent to the first order condition for local maximum of V . The
global maximum Γ∗all of V , which necessarily exists since the support of V is compact,
is a point which satisfies this. This is a fixed point of the REGA dynamics. The global
potential V may have several local extrema, which are all fixed points of the REGA
dynamics. Some of these may be asymptotically stable some may be unstable with
respect to infinitesimal deviations. Only the stable fixed points are attainable by the
evolutionary dynamics, and only these will be called REGA equilibria.

In order to prove the local stability of Γ∗all against infinitesimally small, not nec-
essarily unilateral but supposedly collective deviations, we have to show that the as-
sociated bordered Hessian is negative semi-definite at that point [29]. The bordered
Hessian is a supermatrix, composed from the second derivatives of the individual utili-
ties ∂2Ui/∂Γi∂Γj as a submatrix (the ordinary Hessian), and submatrices formed by the
first derivatives of the constraints. However, as follows from Eq. (41), the Hessian piece
is the same as the Hessian of the global potential. It follows that the bordered Hessian
in question is identical to the bordered Hessian of the potential at Γ∗all. Since Γ∗all is the
(global) maximum of the potential (satisfying all constraints) its bordered Hessian in
necessarily negative semi-definite, proving the assertion.

Lastly, we have to prove that no player can improve his utility by any rematching
of his concepts. Let Γ̃

∗
all denote a configuration obtained by arbitrary, independent

rematching of the concepts. Since Γ∗all is the global maximum rematching cannot improve
the global potential

V (Γ̃
∗
all) ≤ V (Γ∗all). (46)

On the other hand, as rematching leaves invariant the representation error UREP
i (Γ̃

∗
i ) =

UREP
i (Γ∗i ) and the complexity cost Qi(Γ̃

∗
i ) = Qi(Γ∗i ) we can write

Ui(Γ̃
∗
i ,Γ

∗
−i)− Ui(Γ∗i ,Γ

∗
−i) = UCOM

i (Γ̃
∗
i ,Γ

∗
−i)− UCOM

i (Γ∗i ,Γ
∗
−i) =

V (Γ̃
∗
all)− V (Γ∗all) ≤ 0 (47)

where for the last inequality we have used Eq. (46). ¤
The REGA equilibrium concept differs from the Nash equilibrium concept in two re-

spects. First, a huge amount of otherwise possible global strategy options are excluded
from the ones “tested” due to bounded rationality, and second, the equilibrium is re-
quired to be stable against collective local deviations too, and not just against unilateral
deviations. The rationale behind excluding most of the parameter space from the acces-
sible strategies is its practical infinity with respect to the capacities of the human mind,
K/D → 0. Search for better response is necessarily heuristic, focusing essentially on
local improvements. The emergence of drastically new successful concepts is necessarily
a non-systematic, trial and error mechanism, which has much lower probability.

Note also that none of the two equilibrium concepts implies the other. There are Nash
equilibria which are fixed points of the dynamics, but not REGA equilibria because they
are unstable against collective deviations – examples are shown in Fig. 2(b). Such points
are necessarily saddle points, which cannot be attained dynamically from generic initial
conditions. Being exactly on the stable manifold of a saddle point has zero probability,
and even if this were the case initially, any noise in the dynamics would finally drive the
system away from such a fixed point.

Corollary 1 A Nash equilibrium of the Language Game that is not a REGA equilibrium
at the same time (Nash-only equilibrium), is dynamically inaccessible and thus, cannot
be interpreted as language.
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Figure 5: Equilibria and their interpretation as language.

As such, we should focus on REGA equilibria. As demonstrated by the simulation
results of Fig. 3(c,d) their number can be rather high. These can additionally satisfy the
requirements for a Nash equilibrium too, but this is not necessary. REGA equilibria,
which are not Nash equilibria (REGA-only) are unstable against large-scale (global)
unilateral deviations. For such fixed points there are agents who would have better
response than the actual. However, as assumed above, locating a better response globally
is a low-probability event due to the large barrier separating the two configurations.
Consequently, the system can stay in such a “metastable” equilibrium for a very long
time.

Definition 4 (Weak form of language) A (metastable) REGA-only equilibrium of
the Language Game is called a “Weak form of language” (W-language).

Finally, equilibria which are both REGA and Nash (REGA-Nash equilibria) have
superior stability properties and play a distinguished role. The following definition
formally describes such an equilibrium and a proposition states their existence in the
Language Game.

Definition 5 (Strong form of language) A REGA-Nash equilibrium of the Language
Game is called a “Strong form of language” (S-language).

Proposition 7 The Language Game has at least one REGA-Nash equilibrium (S-language).

Proof: In the proof of Proposition 3 we have seen that Γ∗all, the global maximum of the
multi-agent potential V , is a Nash equilibrium, and at Proposition 6 that it is a REGA
equilibrium. Consequently, Γ∗all satisfies the requirements of the proposition. ¤

The different kinds of equilibria, their relationship, and interpretation as language
is depicted in Fig. 5. As our simulation results indicate there can be a large number
of REGA-Nash equilibria, especially when the population is very heterogeneous and
communication has little significance (c small). See Fig. 3 for a quantitative analysis.
For less heterogeneity and larger communication strength we have found that almost all
REGA equilibria are indeed REGA-Nash equilibria.

The stability properties of the different kinds of equilibria are summarized in Fig.
6. The possible perturbations are categorized according to their scale (local vs. global)
indicating the size of the deviation tested, and according to the number of agents they in-
volve (single agent vs. multiple agents). By definition, Nash equilibria are stable against
single agent perturbations irrespective whether they are small (local) or large (global).
Also, our definition of the REGA equilibrium implies stability with respect to any kind
of (single or multiple agent) small (i.e., local) perturbations. As we see REGA-Nash
equilibria are the most stable, only their multi-agent global stability remains undeter-
mined.
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Figure 6: Stability properties of equilibria.

6 Discussion and Conclusion

We have presented a model based on the assumption that agents make choices between
alternatives by first describing them on a finite set of concepts. In turn, agents will
have an incentive to promote concepts that better fit their preferences. This feature
of our model resonates to an old problem in linguistics and philosophy called linguistic
relativism, which essentially states that the language we speak will influence (or even
determine) our thoughts and judgements. As Whorf [30] writes: “We dissect nature along
lines laid down by our native language.” (See also Wittgenstein [31].) The debate is not
whether linguistic relativism is true or false but rather to what extent it is true. Quoting
Paul Kay, Ross [32] advances a moderate view: “[Although it may be correct that the
languages people speak mold their thought] It is unlikely that the various languages of
the world are so different that the ways their speakers think is incommensurable”.

Our framework helps predict when linguistic relativism may be important. In our
model, language is determined by two key inputs: the structure of the physical world
(captured in A) and agents’ subjective preferences (captured in B). As we mentioned
however, the three-layer structure of Figure 1 represents the formation of concepts at
only one level of abstraction. If we were to study the formation of more abstract con-
cepts, then the bottom layer (the a-s) would be concepts themselves that emerged from
a previous Language Game. This structure suggests sequential development of more
abstract layers in language: simple concepts describing the physical environment emerge
first and provide the basis for the evolution of more abstract concepts in a series of
subsequent Language Games. The consequence is that linguistic relativism will depend
on the concepts’ level of abstraction or complexity. When concepts name simple objects
that we all perceive identically (because of our biological design), the objective structure
of reality will have a major influence on them, and this layer of the equilibrium language
is likely to be similar across isolated societies. At higher levels of abstraction, the a-s
of our model are concepts themselves and as such are less likely to be identical across
isolated groups of people as the path-dependence of the previous Language Game has
already introduced idiosyncratic structure in them. As we move away from the actual
perceptual basis for concepts, heterogenous preferences and the path-dependent nature
of language evolution may lead to very different concepts across isolated groups of peo-
ple. For example, while we have no problem naming furnitures across highly different
cultures and make the translation easily between their languages in this domain, our no-
tions of abstract things such as “God” or “ethics” are hard to translate across different
cultures.

The well-known Gavagai problem nicely illustrates this point: a foreigner landing on
an isolated island tries to infer the meaning of the word “gavagai” shouted by a local
pointing to a rabbit crossing the path. While, a priori he has no reason to associate the
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meaning of “gavagai” with rabbit (it could also be “dinner” or “white” among others)
this is the most intuitive meaning. This is because the structure in the data is strong
and our differences in terms of payoffs of alternatives are relatively small when it comes
to describing the material world around us. Clearly, if the local were to say “gavagai”
when pointing to a weird statue representing a creature combining human and animal
features, the translation would be extremely hard, if at all possible.

Data in two domains, colors and numbers, also seems to be consistent with the above
pattern. Color is a relatively concrete domain that is directly linked to perceptions,
i.e., it has low level of abstraction. It turns out that natural languages differ wildly
in the (number of) basic colors that they name. Yet, research shows (see, e.g., Ross
[32]) that this does not lead to linguistic relativism: people remember and use colors
to the same degree of sophistication across cultures. The situation seems to be the
opposite when it comes to numbers, which represent a domain with an arguably higher
level of abstraction. In a recent study by Peter Gordon of Columbia University [33],
it is shown that people using languages that do not have words for numbers higher
than 2 have problems comparing and remembering quantities. Linguistic relativism
definitely applies in this - more abstract - domain. In sum, empirical patterns suggest
that linguistic relativism is likely to be strong in abstract domains of language, while it
is weak in domains that are closer to our perceptions, such as concepts describing our
physical environment. Our model provides an explanation for why this may happen.

The model is also consistent with psychology’s view on how concepts are structured
in our mind, namely categorization theory and graded structures [16]. It is intuitive that
language should reflect the structure of the world. This results from humans’ innate
capacity to categorize things based on similarity, resulting in categories with well defined
hierarchies called graded structures. It is also known however, that categories are ‘ad
hoc’ in the sense that similarities are evaluated in relation to goals. As such, objects may
potentially belong to any category but with a different weight. In our model, concepts
are built from reality in the same way: all components of a may contribute to any of the
concepts but their weights will differ wildly depending on people’s preferences (goals).

An interesting new insight from our model is the interpretation of the relationship
between language and culture. We interpret language as the collection of concepts while
culture is the subspace defined by the concepts. Different sets of concepts can define the
same subspace, but concepts defining different subspaces cannot be mapped into each
other without a large error. This structure suggests that cultural difference doesn’t come
from disagreement between groups of people or differences in preferences, but rather from
the fact that cultures dissect the world along different dimensions. In other words, the
concepts used by one culture cannot be mapped accurately into the concepts of the other
(there is no, or little possibility for translation) resulting in poor communication across
cultures. As mentioned earlier this is only likely for communication in abstract domains
(e.g. ethics or esthetics). Furthermore, the model is also consistent with the fact that
for any given culture, there might be dozens of languages with notable differences in
their concepts. Similarly, the model also accounts for the fact, that individuals may
slightly disagree on the meanings of the words within the same language. Despite these
differences, communication is possible because choice alternatives can be identically
described with multiple sets of concepts covering the same sub-space. In other words,
accurate translation and, as a result efficient communication is possible across these
languages.

Finally, our study of language’s dynamic evolution also provides insights with regard
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to empirical observations on the evolution of societies. Archeologists suspect that the
so-called cultural explosion dating back to some 50 thousand years is somehow linked to
the evolution of language (see, e.g., Mithen [34]). At about this date, human evolution
seems to become much faster and proper cultures with abstract concepts (e.g. cults or
religions) appear in the data. This pattern is consistent with our model. Our analysis
of the Language Game’s dynamics shows that concepts gradually emerge over time.
Once an equilibrium is reached, it represents a consensus across the members of society,
which is instantly available for the next generation. This consensus provides a layer
for the development of more abstract concepts. While the speed of evolution before
language was probably determined by the speed of biological evolution (as evidenced by
the gradual increase in brain size, for example), after the cultural explosion, the speed of
evolution is primarily determined by the speed of the dynamic social process governing
the emergence of concepts. This speed may well exceed that of biological evolution.

As our goal was to develop a rather general theory of language, we had to introduce
many technical simplifications. We considered a linear language system with well-defined
constraints and we haven’t explicitly modelled different levels of abstraction. In our
analysis, we have only considered pure strategy equilibria, a strictly fixed number of
concepts and we used one particular adjustment dynamics. In various extensions we
have tried to explore the importance of some of these assumptions, while we argued
for the strong validity of others. For example, we have ruled out mixed strategies as
they cannot be interpreted for language. We have also explored other dynamics and
found that our convergence results hold for other potential improving dynamics too as
is generally believed (see Ermoliev and Flam [35], Hofbauer and Sigmund [26]). On
a more general level, we have entirely ignored syntax from our analysis based on the
broadly accepted argument that grammar is an “innate” capacity of humans, a result
of biological evolution [36]. It is hard to imagine however, that the social evolution of
concepts happens independently from grammar. We leave this and other interesting
questions related to language for future research. However, we believe that to the extent
language formation/usage is a social process, economics is likely to have an important
role in explaining the related phenomena.

Appendix: Proof of Proposition 4

The proof boils down to the following Lemma:

Lemma 4 Let x = {x1, x2, . . . , xn} denote variables satisfying some constraints gj(x) =
0, j = 1, . . . ,m. Let f(x, c) = a(x) + c b(x), with a, b continuously differentiable and
c ∈ R a parameter, be a function that takes its local maximum at a point x∗ = x∗(c) =
argmaxxf(x, c). Introducing b∗ = b(x∗(c)), we have

db∗

dc
≥ 0. (48)

Proof: Let us introduce a set of lagrange multipliers λ = {λj}m
j=1 to treat the con-

straints, and define the Lagrangian function

L(λ,x) = a(x) + c b(x) +
m∑

j

λjgj(x). (49)
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Using the chain rule we can write

db∗

dc
=

∂b

∂x∗
· ∂x∗

∂c
. (50)

and the task is to calculate the vector ∂x∗/∂c. A straightforward way is to proceed
by a series expansion around a point c0 → x∗0, λ

∗
0. When c is perturbed c = c0 + ε,

the local maximum and the value of the Lagrange multipliers shift too, x∗ = x∗0 + ε α,
λ∗ = λ∗0 + εβ. In order to determine α ≡ ∂x∗/∂c and β, we introduce general deviation
variables η and ξ as

x = x∗0 + εα + η

λ = λ∗0 + εβ + ξ (51)

and require that at the solution of the constrained optimization problem η and ξ should
vanish; this will provide the necessary equations for α and β.

The Lagrangian can be expanded in a Taylor series in η and ξ. It is enough to
consider terms O(η) and O(ξ) which should vanish. Moreover, these terms can be
further expanded in ε. The coefficient of the O(η) term reads


 ∂a

∂x
+ c0

∂b

∂x
+

∑

j

λ∗0j

∂gj

∂x


 + ε

[ ∂b

∂x
+ Gxβ + Lxxα

]
+O(ε2) (52)

where [Gx]ji = ∂gj/∂xi is the matrix of the first order derivatives of the constraints
and [L]ii′ = ∂2L/∂xi∂xi′ is the Hessian matrix at the point c0. The first square bracket
vanishes as this is the first order condition at c0. The second square bracket implies

∂b

∂x
+ Gxβ + Lxxα = 0. (53)

Similarly, the coefficient of the O(ξ) term can be expanded in ε, and we obtain

Gxβ = 0. (54)

Equations (53) and (54) gives

(
β
α

)
= −

(
0 Gx

GT
x Lxx

)−1 (
0

∂b/∂x

)
(55)

where the hipermatrix is usually called the “bordered Hessian”. This is necessarily
negative semi-definite since we are at a local maximum. This allows us to express
∂b∗/∂c as a quadratic form

∂b∗

∂c
= −

(
0

∂b/∂x

)T (
0 Gx

GT
x Lxx

)−1 (
0

∂b/∂x

)
≥ 0 (56)

which is thus necessarily non-negative. ¤
Proposition 4 follows as a direct corollary.
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