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Abstract: 
One of the major obstacles found when trying to construct artefacts derived from principles 
observed in living beings is the lack of actual dynamic hardware with autonomous capabilities.  
Even if programmable devices offer the possibility of modifying the functionality implemented 
in the device, they rely on external hardware and software elements to provide its physical 
configuration. In this paper we shall present a new family of electronic devices, called POEtic, 
whose architecture has been derived from the basic properties that can be extracted from the 
three major organisation principles present in living beings: phylogenesis, ontogenesis and 
epigenesis. We shall demonstrate that the capabilities present in these new programmable 
devices make them an ideal candidate for the real-time emulation of large-scale biologically 
inspired spiking neural networks models. 
 
1. Introduction 
 
Even if there is a huge variability in the external features and functions associated with the 
living beings we can observe on the earth, their organisation is driven by principles that can be 
grouped around three main axes: 
 
Phylogenesis: Also called evolution, it includes all the mechanisms that, driven by the pressure 
posed by nature, permit to determine the genetic information for a population of individuals that 
best fits to a given environment. 
Ontogenesis: Ontogenetic mechanisms permit the development of a single individual driven by 
the information contained in its genome. Apart from developmental capabilities, self-replication 
and self-repair (what for most living beings means healing abilities) constitute clear examples of 
ontogenetic processes. 
Epigenesis: It includes all the mechanisms that permit a single individual to efficiently interact 
with its direct environment. Epigenetic mechanisms include those plasticity-oriented processes 
that, driven by a sensor-actuator loop, permit an organism to modify its internal structure or its 
behaviour in order to adapt to the specific conditions present in a given environment at any time. 
Examples of biological subsystems showing epigenetic principles can be found in the central 
nervous system of mammals and in the immune system. 
 
Taking inspiration from these organisation principles, the main goal of the POEtic project was 
the development of a flexible hardware substrate showing the basic features that permit living 
beings to show evolutionary, developmental or learning capabilities. The hardware substrate, in 
the form of a new electronic device, should permit the construction of electronic tissues able to 
solve tasks where these bio-inspired features represent a clear advantage over classical 
techniques. 
 
The paper is organised as follows: In the next section we shall present the overall organisation 
of the POEtic tissue, describing the details of its main constituent parts. Then we shall introduce 
the features of a new learning model for spiking neural networks models that, when used in 
large-scale networks, shows interesting feature extraction capabilities. Once physically 
implemented into the POEtic devices, it will be demonstrated that these provide an efficient 
prototyping instrument for neuroscience research. The paper will finish presenting the 
conclusions and our current work. 
 
 
2. Overall organisation of the POEtic tissue 
 
The POEtic tissue is organised as a homogeneous bi-dimensional array of POEtic chips, each 



one of them being able to implement a given number of cells as required by the application to 
be handled. The organisation of a single POEtic chip is presented in figure 1. 
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Figure 1. Organisation of a POEtic chip 
 
From a structural point of view the organisation of a POEtic chip is divided in three main 
sections: the environment subsystem, the organic subsystem and the system interface. The 
environment subsystem is in charge of managing the interactions with the environment, and also 
of implementing the phylogenetic mechanisms of the tissue. The organic subsystem manages 
the physical realisation of the epigenetic and ontogenetic processes to be exhibited by the tissue. 
Finally, the system interface takes care of the efficient communication between these two 
subsystems. It also provides the mechanisms that permit the tissue to exhibit scalable properties. 
 
The overall organisation of the resulting tissue is depicted in figure 2. 
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Figure 2. Overall organisation of the POEtic tissue 
 
The squares in figure 2 represent POEtic chips, so that the sample tissue represented in the 
figure is constituted by 9 POEtic chips (the squares labelled as P) organised as a 3x3 matrix. As 
it can be deduced from the figure, the local communication between chips is separated in two 
different sections. The bidirectional lines labelled as I represent those connections associated 
with the system interface, while the bidirectional lines labelled as O indicate the connections 
established between the organic subsystems included in every chip. As it will be explained later 
the connections corresponding to the system interface provide the scalability features required 



by the POEtic tissue, meaning that it can be constituted by as many chips as required by the 
actual application to be tackled. The connectivity between the organic subsystems is established 
at the routing plane level, and they allow for an effective communication mechanism between 
cells that are physically implemented in different chips. 
 
Even if the POEtic tissue may be constructed from an arbitrary number of POEtic chips, each of 
them with their own functional subsystems, the system interface and the choice of the system 
bus makes it possible to handle the final tissue as a single POEtic chip. The only difference 
between a single chip and a tissue is the actual size of the organic subsystem, which in the later 
case is an aggregation of all the organic subsystems present in the tissue. 
 
2.1. The environment subsystem 
 
Figure 3 shows the internal organisation of the environment subsystem. 
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Figure 3. Internal organisation of the environment subsystem 
 
As it can be deduced from figure 3 the architecture of the environment subsystem is structured 
around a specific microprocessor core. It is a 32-bit custom RISC processor, with dedicated 
instructions for developing evolutionary algorithms. A pseudo-random number generator is 
included in the ALU of the processor. The organisation of the environment subsystem is 
organised around the AHB (Advanced High-performance Bus) bus corresponding to the AMBA 
specification [1]. Simple peripherals are placed in a separate bus section, called APB (Advanced 
Peripheral Bus) that interfaces with the AHB bus through a bridge. 
 
All the subsystems included in the POEtic tissue can be managed by the environment subsystem 
through a careful design of its memory map, whose structure is presented in table 1. The 
numbers provided in table 1 are specified in hexadecimal format. Even if the organic subsystem 
of the POEtic tissue is mapped in only one memory section, in fact this section maps the organic 
subsystems of all the chips that are present in the tissue for a given application. 
 
The first 25 words of the program data section are reserved for the interrupt vectors of the 
microprocessor. Table 2 summarises the organisation of this interrupt vector table. The content 
of each of these memory positions is a JUMP instruction that points to the start address of the 
corresponding interrupt service routine. 
 
The priority of the interrupt sources is directly related to the value of its associated interrupt 
vector, being thus the internal interrupt 0 the interrupt source with the highest priority. 



 
Section Start address End address 
Program 0x0000_0000 0x3FFF_FFFF 
Data 0x4000_0000 0x7FFF_FFFF 
Multiplier 0xC000_0000 0xC000_0003 
Communications unit 0xD000_0000 0xD000_0150 
Timers 0xE000_0000 0xE000_0007 
Clock manager 0xE000_0008 0xE000_000F 
Organic subsystem 0xF000_0000 0xFFFF_FFFF 

 
Table 1. Memory map organisation of the POEtic tissue 

 
 

Interrupt source Interrupt vector 
Main program 0x0000_0000 
Timer 0 0x0000_0001 
Timer 1 0x0000_0002 
Multiplier 0x0000_0003 
Clock manager 0x0000_0004 
UART 0 TX 0x0000_0008 
UART 0 RX 0x0000_0009 
UART 1 TX 0x0000_000A 
UART 1 RX 0x0000_000B 
I2C 0x0000_000B 
SPI 0x0000_000C 
Parallel port 0x0000_000D 
External interrupt 1 0x0000_0010 
External interrupt 0 0x0000_0018 

 
Table 2. Organisation of the interrupt vector table of the microprocessor 

 
The communications unit included in the environment subsystem permits to implement an 8-bit 
bi-directional port, two UARTs, one SPI interface and one I2C interface. The functionality of 
these interfaces can be programmed by the user to match the requirements of a given application. 
 
The clock manager unit has been added to the environment subsystem of the POEtic tissue in 
order to facilitate the hardware debugging procedures for the functionality implemented in the 
organic subsystem. This unit permits to generate a clock signal for the organic subsystem whose 
frequency is divided with respect to that associated to the system clock. Furthermore, if desired, 
this unit permits also to stop the clock signal provided to the organic subsystem after a specified 
number of clock cycles (from 1 to 65535). This feature allows for advancing the state of the 
organic subsystem edge-by-edge and then observing it (note that the environment subsystem has 
access through the system interface to the configuration and state of the organic subsystem). 
 
From an architectural point of view the organisation of the external memory unit of the 
environment subsystem is divided in three main parts: the boot ROM, the program ROM and 
the data RAM. 
 
The presence of a boot ROM section permits the user to load upon a power up sequence a 
program that may be transferred to the microprocessor using any one of the peripherals included 
in the communications unit. This means that the physical architecture of the memory unit of the 
microprocessor has two possible configurations, as depicted in figure 4. 
 



The organisation depicted in figure 4(a) corresponds to a situation where the program to be 
executed by the microprocessor is fixed and already stored in a ROM. In this case after the 
power up sequence the microprocessor starts executing directly from this memory section. 
Figure 4(b) shows an organisation corresponding to a case where there is just a boot loader 
program stored in a boot ROM that takes care of capturing through one of the peripherals 
included in the communications unit the actual program to be executed by the microprocessor. 
This program is stored in the program ROM section that is physically implemented by means of 
a Flash or a SRAM unit. In order to permit the microprocessor to physically write the program 
Rom section during this boot sequence the memory map is slightly changed, so that the program 
ROM section is mapped in the memory area starting at address 0x6000_0000. 
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Figure 4. Physical architecture of the external memory unit of the environment subsystem 
 
 
2.2. The organic subsystem 
 
The organic subsystem is made up of 2 layers, as depicted in figure 5: a two-dimensional array 
of basic elements, called molecules, and a two-dimensional array of routing units. Each 
molecule is connected to its four neighbours in a regular structure. Mainly containing a 16-bit 
look-up table (LUT) and a flip-flop (DFF), it has the capability of accessing the routing layer 
that is used for inter-cellular communication. This second layer implements a dynamic routing 
algorithm allowing the creation of data paths between cells at runtime. 
 

 
 

Figure 5. Organisation of the organic subsystem 
 
A molecule is the smallest programmable element of the POEtic tissue. It is mainly composed 



of a flip-flop (DFF), and a 16-bit look-up table (LUT) (figure 5). Eight modes of operation are 
supplied to ease the development of applications that need cellular systems and/or growth and 
self-repair. The LUT is composed of a 16-bit shift register that can be split in two, used as a 
shift register, or as a normal look-up table. 
 
A molecule has eight different operational modes, to speed up some operations, and to use the 
routing plane. The functional modes provided for the molecules are the following: 
 

• In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four inputs. 
• In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a result 

depending on three inputs. The first result can go through the flip-flop, and is the first 
output. The second one can be used as a second output, and is directly sent to the south 
neighbor (can serve as a carry in parallel operations). 

• In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift register. This 
mode could be used to compare a serial input data with a data stored in the 8-bit shift 
register. 

• In Shift Memory mode, the 16 bits are used as a shift register, in order to store data, for 
example a genome. One input controls the shift, and another one is the input of the shift 
memory. 

• In Input mode, the molecule is a cellular input, connected to the inter-cellular routing 
plane. One input is used to enable the communication. When inactive, the molecule can 
accept a new connection, but won’t initiate a connection. When active, a routing process 
will be launched at least until this input connects to its source. A second input selects 
the routing mode of the entire POEtic tissue. 

• In Output mode, the molecule is a cellular output, connected to the inter-cellular 
routing plane. One input is used to enable the communication. As in Input mode, when 
inactive the molecule can accept a new connection, but won’t initiate a connection. 
When active, a routing process will be launched at least until this output connects to one 
target. Another input supplies the value sent to the routing plane, as so to another cell. 

• In Trigger mode, the 16-bit shift register should contain "000...01" for a 16-bit address 
system. It is used by the routing plane to synchronize the address decoding during the 
routing process. One input is a circuit enable, that can disable every DFF in the tissue, 
and another one can reset the routing plane, and so start a new routing. 

• In Configure mode, the molecule can partially configure its neighborhood. One input is 
the configuration control signal, and another one is the configuration shifting to the 
neighbors. 

 
Long distance inter-molecular communication is possible by the way of switch boxes. Each 
switch box consists of eight input lines (two from each cardinal direction) and eight 
corresponding output lines, and is implemented with eight inputs multiplexers. Two outputs are 
sent into each of the four neighbors of the molecule, as shown in figure 6. 
 
Each output line can be connected to one of the six input lines from the other cardinal directions 
(no u-turns allowed) or to one of two possible outputs of the molecules (the output or the 
inverted output). 
 
A molecule is defined by 75 configuration bits. They are configured by loading them in parallel, 
from the micro-controller. A partial reconfiguration is also possible, a molecule being able to 
shift configuration bits of its neighbourhood. Actually, when shifting, 76 bits are used, as the 
value of the flip-flop has to be in the configuration chain, in order to be able to retrieve its value. 
 
The configuration system of the molecules can be seen as a shift register of 76 bits split into 5 
blocks: the LUT, the selection of the LUT’s input, the switch box, the mode of operation, and an 
extra block for all other configuration bits. Each block contains, as shown in figure 7, together 



with its configuration, one bit indicating, in case of a reconfiguration coming from a neighbour, 
if the block has to be bypassed. This bit can only be loaded from the micro-processor, and 
remains stable during the entire lifetime of the organism. 
 

  
 

Figure 6. Nine molecules, connected through their switchboxes, and detailed view of a switchbox 
 
 

 
 

Figure 7. Organisation of the configuration bits for partial reconfiguration  
 
The special configure mode allows a molecule to partially reconfigure its neighbourhood. It 
sends bits coming from another molecule to the configuration of one of its neighbours. By 
chaining the configurations of neighbouring molecules, it is possible to modify multiple 
molecules at the same time, allowing, for example, the synaptic weights in a neuron to be 
changed. 
 
Three configuration bits are used to define the possible origin of a partial reconfiguration: two 
bits for selecting the origin, and one bit that enables the partial configuration. In case of a 
neighbor tries to partially reconfigure the molecule, if this config_partial_enable bit is set to ’1’, 
then the molecule is partially reconfigured, and it tries to partially reconfigure its neighbors, by 
chaining the output of the configuration stream. If the config_partial_enable bit is set to ’0’, 
then no partial reconfiguration is executed, and no signal is sent to the neighbors. 
 
This partial reconfiguration allows for instance to use the configuration bits of a molecule to 
store information. A maximum of 54 bits can be stored in only one molecule, allowing for 
efficiently implementing genome storage. By modifying the LUT content, a cell can also 
modify its behaviour, that is a useful feature for evolvable hardware. 
 



The second plane of the organism subsystem implements a dynamic routing algorithm to allow 
the circuit to create paths between different parts of the molecular array. The possibility of 
having a pseudo-static routing has also been added, to ease the development of applications that 
only need local connections between cells. 
 
The dynamic routing system is designed to automatically connect the cells’ inputs and outputs. 
Each output of a cell has a unique identifier, at the organism level. For each of its inputs, the 
cell stores the identifier of the source from which it needs information. A non-connected input 
(target) or output (source) can initiate the creation of a path by broadcasting its identifier, in 
case of an output, or the identifier of its source, in case of an input. The path is then created 
using a parallel implementation of the breadth-first search algorithm. When all paths have been 
created, the organism can start operation, and execute its task, until a new routing is launched, 
for example after a cell addition or a cellular self-repair. 
 
Our approach has many advantages, compared to a static routing process. First of all, a software 
implementation of a shortest path algorithm, such as Dijkstra’s [2], is very time-consuming for a 
processor, while our parallel implementation requires a very small number of clock cycles to 
finalize a path. Secondly, when a new cell is created it can start a routing process, without the 
need of recalculating all paths already created. Thirdly, a cell has the possibility of restarting the 
routing process of the entire organism, if needed (for instance after a self-repair). Finally, our 
approach is totally distributed, without any global control over the routing process, so that the 
algorithm can work without the need of the central micro-processor. 
 
Every routing unit is composed of a switch box and a finite state machine. The switch box 
contains five multiplexers that can select the value sent to each of the four neighbors, and to the 
molecules underneath. The state machine is responsible for correctly configuring the 
multiplexers, and implements the distributed routing algorithm, by communicating with the 
other routing units. 
 
The routing algorithm is executed in four phases:  
 
Phase 1: Finding a Master  
In this phase, every target or source that wants to and is not connected to its correspondent 
partner tries to become master of the routing process. A simple priority mechanism chooses the 
most bottom-left routing unit to be the master, as shown in figure 8. Note that there is no global 
control for this priority, every routing unit knowing whether or not it is the master. This phase is 
over in one clock cycle, as the propagation of signals is combinational. 
 

  
Figure 8. Three consecutive steps of the routing algorithm. The black routing unit will be the master, and 

therefore will perform its routing 
 
Phase 2: Broadcasting the Address  
Once a master has been selected, it sends its address in case of a source, or the address of the 
needed source in case of a target. It is sent serially, in n clock cycles, where n is the size of the 
address. The same path as in the first phase is used to broadcast the address, as shown in figure 
9. 
 



  
Figure 9. The propagation direction of the address: north → south | east → south, west, and north | south 

→ north | west → north, east, and south | routing unit → north, east, south, and west 
 
Every routing unit, except the one that sends the address, compares the incoming value with its 
own address (stored in the molecule underneath). At the end of this phase, that is, after n clock 
cycles, each routing unit knows if it is involved in this path. In practice, there has to be one and 
only one source, and at least one target. 
 
Phase 3: Eliminating sources and targets  
In some situations, a source should start a routing process, for instance, in a developmental 
process. In such a process, it would be useful to have many sources and targets with the same 
ID. So at this stage, it is possible there is more than one source involved in the routing process. 
In order to avoid multiple sources, in this phase that lasts only one clock cycle, if a source is at 
the origin of the routing process, it sends a signal to every other routing unit, to let them know a 
source is at the origin. Then every other source with the same ID disabled its participation in the 
current process, and during the next phase, the source will connect to the nearest target. 
The same disable is performed in case a target launched the routing process. Every target that is 
not the master disables its participation to the current process, to ensure that the target that 
started the process will be the only one connected to a source. In this case, the nearest source 
will be connected to this target. 
 
Phase 4: Building the Shortest Path  
The last phase, largely inspired by [3], creates a shortest path between the selected source and 
the selected targets. An example involving 8 sources and 8 targets is shown in figure 10, for a 
densely connected network. 
 

 
 

Figure 10. Test case with a densely connected network 



A parallel implementation of the breadth-first search algorithm allows the routing units to find 
the shortest path between a source and many targets. Starting from the source, an expansion 
process tries to find targets. When one is reached, the path is fixed, and all the routing resources 
used for the path will not be available for the next successive iterations of the algorithm. 
 
Figure 11 shows the development of the algorithm, building a path between a source placed in 
column 1, row 2 and a target cell placed in column 3, row 3. After 3 clock cycles of expansion, 
the target is reached, and the path is fixed, prohibiting the use of the same path for a successive 
routing. 
 

 
 

Figure 11. Step (a) one, (b) two, (c) three and (d) four of the path construction process between the 
source placed in column 1, row 2 and target cell placed in column 3, row 3 

 
Based on addresses, the dynamic routing presented above is very flexible. However, for some 
applications, this flexibility can become a disadvantage, for example if we only need local 
communications between cells like a 4-neighborhood. 
 
A second mode of routing has been added for this purpose. A flip-flop in the tissue can be 
configured by the molecules to choose the mode to use for a specific application. The pseudo-
static mode uses the fact that every switch boxes are pass-through after a hardware reset. When 
in pseudo-static mode, the routing units that are connected to input or output molecules only 
shift the content of the molecule LUT into the configuration of the switchbox. By this way, in 
16 clock cycles, the inter-cellular routing is completed, and the circuit can start its task. The 
only limitation is that a path between two cells can only be a vertical or a horizontal one, 
without more complex possibilities (figure 12). 
 
2.3. The system interface 
 
As it has been mentioned previously, the system interface of the Poetic tissue plays a major role 
in allowing for its scalability features. This means that the physical size of the tissue can be 
accommodated to the actual needs of a given application without posing specific constraints 
neither on the system architecture nor in the connectivity pattern among the POEtic chips that 
constitute the tissue. 
 
The POEtic tissue, as it was presented in figure 1, can be constructed as a bidimensional array 
constituted by POEtic chips. The connectivity between these chips, as depicted in this figure, is 
based on two different buses, named organic (O) and interface (I) buses. The signals that 
constitute the organic bus allow the organic subsystems present in every POEtic chip to 



communicate (at a cellular level). 
 

 
 

Figure 12. A pseudo-static communication scheme between four cells 
 
The interface bus carries those signals that permit to handle the collection of POEtic chips as a 
single tissue, so that from a user point of view the tissue has only one environment subsystem 
and one organic subsystem. This is represented in figure 13. 
 
Regarding the scalability of the environment subsystem, even if every POEtic chip contains a 
single environment subsystem, only one of them will be active in the tissue. This is 
accomplished by a specific signal present in every POEtic chip, called master, that indicates 
(when set to a value ‘0’) that the environment subsystem of a specific chip will be managing the 
complete tissue. 
 
The 68 signals (32 data lines, 32 address lines, sahbi_hsel, sahbi_hready, sahbi_hwrite and 
sahbo_hready) that constitute the AHB bus used for the POEtic tissue are connected to all the 
POEtic chips. This means that the chip identified as a master of the system can access the 
resources present in any other chip. A specific chip is identified within the array using Cartesian 
coordinates that correspond to the physical position of the chip in the array. This means that a 
chip with coordinates (X,Y) is placed in column X and row Y within the array. 
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Figure 13. Scalability properties of the POEtic tissue 



 
The coordinates of a given chip are not pre-programmed, but are calculated for a given array 
configuration during a coordinate propagation phase that should be performed before the tissue 
is operational. For this purpose every POEtic chip has two inputs, named Xin and Yin, and two 
outputs, Xout and Yout. The Xin input of a given chip is connected to the Xout output of the 
chip placed in the same row and in the previous column within the array. The Yin input of a 
given chip is connected to the Yout output of the chip placed in the same column and in the 
previous row within the array. 
 
Every POEtic chip receives in serial mode its X coordinate through its Xin input and its Y 
coordinate through its Yin input. The coordinates are received in serial mode, so that by default 
the Xin and Yin inputs are in idle state (i.e., with a value ‘0’), and after one of these input is set 
to value ‘1’ the POEtic chip should recognise that during the next 4 (in the current version of 
the POEtic chip the X and Y coordinates are 4-bit wide, but this can be easily extended to any 
desired size) cycles its X or Y coordinate will be received through the corresponding input. 
Once a given chip has received its X and Y coordinates it calculates and sends the coordinates 
for its direct neighbours. The coordinate propagation process is started by the chip whose 
environment subsystem has been identified as a master. The coordinate propagation process is 
started when the microprocessor included in the environment subsystem of the master chip 
performs a write cycle on the address 0xF000_0004 (as it was indicated in table 1, the organic 
subsystem is mapped in the memory space ranging from 0xF000_0000 to 0xFFFF_FFFF). 
 
Once all the chips have got their actual coordinates within the Poetic tissue it is quite simple for 
the environment subsystem to access to the organic subsystem present in any chip. In order to 
access (either in read or write mode) the configuration of a specific molecule present in a 
POEtic chip placed at coordinates (X,Y) the environment subsystem should perform a read or 
write access to the memory position 0xF00X_YABC, where: 
 

• X: Row where the POEtic chip is placed 
• Y: Column where the POEtic chip is placed 
• A(3:0)B(3:0)C(3:2): These 10 bits indicate the address of the molecule within the chip. 

One POEtic chip contains 144 molecules, and their mapping ranges from 0x002 to 
0x091. 

• C(1:0): These 2 bits indicate which one of the 3 configuration words of the molecule 
are to be read or written. A value “01” implies the activation of the cs1 signal, a value 
“10” implies the activation of the cs2 signal, while a value “11” implies the activation 
of the cs3 signal. 

 
Bearing this in mind, the final organisation of the system interface included in every POEtic 
chip is that depicted in figure 14. 
 
The wen signal depicted in this figure indicates if the access to the configuration of a given 
molecule is in read or write mode. The bidirectional configuration data bus is in fact constituted 
by two independent 32-bit buses, one for read access and the other for write access. 
 
2.4. Physical implementation 
 
The POEtic chip has been implemented and fabricated as an ASIC of 54 mm2 using a 0.35 µm 
CMOS process. The chip, whose layout is depicted in figure 15, contains 144 molecules 
organised as an 8x18 array and the complete environment subsystem explained in previous 
sections. 
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Figure 14. Internal organisation of the system interface 
 
 

 
 

Figure 15. Layout of the POEtic chip 
 
3. Emulation of large-scale spiking neural networks models 
 
The spiking neural network model considered in our approach is that presented in [4]. This 
model outperforms previous approaches for implementing Spike Time Dependent Plasticity 
(STDP)-like learning methods when dealing with dynamic input stimuli. 
 
Basically, this model consists in a leaky Integrate-And-Fire scheme, in which synapses can 
change their weights depending on the time difference between spikes. The outputs of the 
synapses are added until their result Vi(t) overcomes a certain threshold θ. Then a spike is 
produced, and the membrane value is reset. 
The simplified equation of the membrane value is: 
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Where kmem=exp(-∆t/τmem), Vi(t) is the value of the membrane, Jij is the output of each synapse 
and Si(t) is the variable which represents when there is a spike. 
 
The goal of the synapse is to convert the spikes received from other neurons in proper inputs for 
the membrane. When there is a spike in the pre-synaptic neuron, the actual value of the output Jij 
is added to the weight of the synapse multiplied by its activation variable. But if there is no pre-
synaptic spike then the output Jij is decremented by the factor ksyn. The output J of the synapse i-
j is ruled by: 
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Where j is the projecting neuron and i is the actual neuron. R is the type of the neuron: 
excitatory or inhibitory, A is the activation variable which controls the strength of the synapse, 
and ksyn is the kinetic reduction factor of the synapse. If the actual neuron is inhibitory, this 
synaptic kinetic factor will reset the output of the synapse after a time step, but if the actual 
neuron is excitatory, it will depend on the projecting neuron. If the projecting neuron is 
excitatory the synaptic time constant will be higher than if it is inhibitory. The weight of each 
synapse also depends on the type of neuron it connects. If the synapse connects two inhibitory 
neurons, the weight will always be null, so an inhibitory cell can not influence another 
inhibitory cell. If a synapse is connecting two excitatory neurons, it is assigned a small weight 
value. This value is higher for synapses connecting an excitatory neuron to an inhibitory one, 
and it takes its maximum value when an inhibitory synapse is connected to an excitatory cell. 
In order to strengthen or weaken the excitatory-excitatory synapses, the variable A will change 
depending on an internal variable called Lij which is ruled by: 

 Lij(t+1)=kact*Lij(t) + (YDj(t)*Si(t)) – (YDi(t)*Sj(t)) (3) 

 
Where kact is the kinetic activity factor, which is the same for all the synapses.  
YD is the learning variable that measures, with its decay, the time separation between a pre-
synaptic spike and a post-synaptic spike. When there is a spike, YD will have its maximum 
value in the next time step, but when there is not, its value will be decremented by the kinetic 
factor klearn, which is the same for all synapses. 
When a pre-synaptic spike occurs just before a post-synaptic spike, then the variable Lij 
increases and the synapse strengthens. This means it reinforces the effect of a pre-synaptic spike 
in the soma. But when a pre-synaptic spike occurs just after a post-synaptic spike, the variable 
Lij decreases, the synapse weakens and the effect of a pre-synaptic spike in the soma will 
descend. For other kind of synapses, the activation variable is always equal to 1. 
Regarding the network configuration, 80% of the neurons are excitatory, while the remaining 
20% are inhibitory. Each cell makes connections with other neurons within a 5x5 
neighbourhood, i.e. 24 neurons. Figure 16  represents this connectivity pattern. 
 

 
Figure 16. Connectivity of a single neuron. 

 



The parameters that govern the functionality of the neuron block are: 
• The membrane path has a resolution of 12 bits, with a range [-2048, 2047], and the 

threshold is kept fixed to +640. 
• The membrane decay function has a time constant value of τ=20. 
• The refractory time is set to 1. 

 
The decay block will be used both in the learning and synapse blocks.  Its goal is to have a 
logarithmic decay of the input; it is obtained with a subtraction and controlling the time when it 
is done depending on the input value. Taking into account that this block is used in many parts 
of the design, the variable decayed has been called x. 
The block diagram is represented in figure 17. First of all, a new value of x should be obtained. 
It will be the input of a shift register which is controlled by the most significant bit of x and the 
external parameter mpar.  
The output of this shift register will be subtracted from the original value of x. This operation 
will be done when the time control indicates it. The time control is done with the value of a 
counter that is compared with the result of choosing between the external value step or the 
multiplication of (MSB – mpar) by step. The decay variable τ depends on the input parameters 
mpar and step. 
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Figure 17. Block diagram of the decay block. 

The learning block “measures” the time difference between a spike in the projecting neuron (j) 
and the actual neuron (i). Depending on these time differences and the types of the neurons, the 
synapse will be more or less active. 
 
When a spike is produced in the projecting neuron, the variable YD loads its maximum value 
and starts to decay slowly. Then, if the actual neuron spikes, the value of YDj is added to the 
decayed value of the L variable. On the other hand, if a spike is produced first in the actual 
neuron and after in the projecting neuron, the value of YDi is subtracted to the decayed value of 
the L variable. 
 
When the L variable overcomes a certain threshold (L_th), positive or negative, the activation 
variable (A) increases or decreases respectively, unless it is already in its maximum or 
minimum. If A is increased, L is reset to the value L-2*L_th, but if it is decreased, then L is 
reset to L+2*L_th. Figure 18 presents the organisation of this learning block. 



Figure 18. Organisation of the learning block. 
 
The parameters that govern the functionality of the learning block are: 

• The YD variable has a resolution of 6 bits and the learning variable (L) of 8 bits. The 
activation variable (A) can have four states.  

• The time constant for the variable YD is τ=20.  
• L_th= [-128,127] 
 

To improve the sensitivity of the block for long time differences spikes, the time constant for 
the variable L is 4000, but it can change depending on the size of the network where the neuron 
works. 
  
When there are spikes in the actual neuron after the spikes in the projecting neuron, the value of 
L increases, and the value of A also increases, so the synapse becomes more active. 
 
The goal of the synapse block is to set the value of J (the input value added to the membrane) 
and it depends on four factors: the synapse activation level (A), the spikes of the projecting 
neuron (sj) and the type of the actual neuron and the projecting neuron (ri and rj). 
For each synapse a certain weight is set. This weight is multiplied by the activation variable (A). 
For this purpose, a shift register is used, so when A=0, the weight becomes 0, when A=1 the 
weight rests the same, when A=2 the weight is multiplied by 2 and when A=3 it is multiplied by 
4. 
This output weight is added to the decayed value of the output J. But the decay curve depends 
on the type of the actual and the projecting neurons (ri and rj).  
There are two possible types for each neuron, excitatory and inhibitory, so we should obtain 
four possible values for the time constant which will decrease the addition. But, when both 
neurons are inhibitory, the weight of the synapse is always 0, so the J value is also always 0 and 
therefore it is nonsense to decrease it. Due to this reason, there are only three possible decay 
time constants.  
The three time constants are multiplexed, and the multiplexer is controlled by the types of 
neurons (ri,rj). The multiplexer output controls the decay block, and finally we obtain the J value 
at the output of this decay block. Figure 19 shows the organisation of the synapse block. 

 
Figure 19. Organisation of the synapse block. 

 
The parameters that govern the functionality of the synapse block are: 

• The internal resolution of the block is 10 bits. But the output resolution is of 8 bits, due 
to the internal value of J is divided by 4 to keep the correct scaling. 

• The time constants used by this block are presented in Table 3. 
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Time Constant 
(τ) 

Projecting 
Neuron Type (rj) 

Actual Neuron 
Type (ri) 

20 0 0 
0 0 1 
3 1 0 
0 1 1 

 
Table 3. Time constants for different synapse types. 

In this table r=0 means an excitatory neuron, while r=1 indicates an inhibitory neuron. 
 
The high resolution needed for the variables, as well as the number of operations to be 
performed may pose a serious limitation for the final implementation. Therefore, the first step in 
the physical realisation of the model has consisted in an evaluation of the minimum resolution 
to be used in the neuron data path. 
 
In a first attempt the resolution of the parameters has been reduced by two bits and some values 
and time constants have been changed to keep the correct scaling. Table 4 shows the new values 
of the internal parameters after this optimisation process. The final organisation resulting from 
this optimisation process is depicted in figure 20. 
 
Due to the complexity of the design, the simplification of the model is very important to avoid 
redundancy or to use just the necessary components. For this reason, a further simplification of 
all the building blocks that constitute the model has been performed [5].  
 
Parameter New value 
Membrane resolution 10 
Threshold +160 
Input (J) resolution 6 
Weights [0:8],[64:128],[128:256],[0:0] 
YD resolution 4 
L resolution 6 
Membrane decay time constant  20 
YD decay time constant  20 
L decay time constant  4000 
J decay time constants (00,01,10,11) 20,0,3,0 (keep the same values) 
 

Table 4. Resolution of the parameters for an optimised implementation. 
 
Once the model has been optimised it has been physically translated into the molecules that 
constitute the basic building blocks of the organic subsystem of the POEtic tissue. Figure 21 
shows this physical realisation. 
 
The molecule organisation shown in figure 21 corresponds to the actual structure of the organic 
subsystem present in the POEtic tissue, which is arranged as an 8x18 array of molecules. 
 
After designing the neuron model the VHDL models developed for the POEtic tissue have been 
configured and simulated to validate its functionality. 
 
After this validation stage the strategy for the simulation of large-sale SNN models has been 
considered. Since in its actual implementation the POEtic chip only allows for the 
implementation of a single neuron and the current number of POEtic chips is far less than 10000 
it will be necessary to use a smaller array of POEtic chips whose functionality should be time 
multiplexed in order to emulate the whole network. 
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Figure 20. Block diagram for the serial implementation of the neuron model. 

 
 

 
 

Figure 21. Molecule-level implementation of the neuron model. 
 
 
This means that every POEtic chip should be able to manage a local memory in charge of 
storing the weights and learning variables corresponding to the different neurons it is emulating 
in time. 
 
A 16-neuron network organised as a 4x4 array has been constructed using this principle. This 
would permit the emulation of a 10000-neuron network in 625 multiplexing cycles. Bearing in 
mind that each neuron is able to complete a single cycle in 150 clock cycles, this means that the 
minimum clock frequency required to handle input stimuli in real time (i.e., to process visual 
input stimuli at 50 frames/second) is around 5 MHz, far less than the actual clock frequency 
achievable by the organic subsystem of the POEtic tissue. 
 
The visual stimuli will come from an OmniVision  OV5017 monochrome 384x288 CMOS 
digital camera. Specific VHDL and C code have been developed in order to manage the digital 
images coming from the camera. To test the application, artificial image sequences have been 
generated on a display and then captured by the camera for its processing by the network. 
 
 



 
4. Conclusions 
 
In this paper we have presented a new family of programmable integrated electronic systems, 
called POEtic, that include features derived from some of the properties present in living beings, 
like evolution, development, self-repair, self-replication and learning. 
 
The combination of partial and total dynamic reconfiguration, as well as the self-configuration 
and dynamic routing capabilities make these devices an ideal candidate for the efficient 
implementation of bio-inspired artefacts. 
 
After describing in detail the different building blocks that constitute the tissue, an 
implementation approach for the emulation of large-scale spiking neural network models has 
been presented. The results derived from this implementation demonstrate that an electronic 
tissue built around these devices will permit the real-time emulation of this kind of models, thus 
serving as an excellent development and experimentation instrument for neuroscientists. 
 
After receiving the first POEtic chips specific development boards have been constructed to 
develop applications to be solved using the bio-inspired features offered by the tissue. 
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