Variability of theinfection timein scale-free networks
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Abstract

Recent studies suggest that a large number of natural afidiaihetworks are characterized by
very large degree fluctuations. This result means that anegtigible number of nodes are extremely
well connected while the majority just have a few links. THfe& of such large fluctuations can be
dramatic as illustrated by the fact that infectious ageatsspread on these networks even for a very
small value of the transmission probability.

Another consequence is that random immunization is inefiiicfor this kind of networks. Con-
sequently, containment protocols and vaccination of ttamntacts become our only defense but
are unfortunately difficult to use at a large scale and in tustext, an efficient method for de-
tecting epidemics during their early stage becomes imperaThese efforts, now broadly labeled
as “syndromic surveillance” are the centers of attentiopwiblic health agencies concerned with
bioterrorism-related diseases. More precisely, an ingmdrpoint is to be able to determine and
characterize specific nodes in the network which displagregting features in regards of an early
detection system. In the present work, we focus on two spdetitures: (i) a small average infection
timet,,; and (ii) low fluctuations around that tintg, ;.

We analyze and compare the behaviors of the infection tint&ireéd for the usual random Erdos-
Renyi graph and the Barabasi-Albert scale-free network fits#écompare the patterns obtained on
both kind of networks and we then describe the variationsefinfection time with the degree and
with the topological distance to the initially infected red
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[. INTRODUCTION

Numerous studies have shown that many natural and artifiei@orks (e.g. air transportation, sexual
contact, coauthorship, ...) have a distribution of thegrdek which follows a power law i, ~ k=) [1-

5]. This implies the absence of a characteristic scale aof tegree distribution, hence their name “scale-
free network” (SFN) [6, 7].

Classically, epidemic modelisation is based on the homagenmixing paradigm. All individuals have
the same probability to become infected and no heterogeimeihe contact network is taken into account.

However, superspreading events like the ones that appeetifeelonset of the recent SARS outbreak [8],
cannot be explained by using the previous paradigm. Comesiguthey make very difficult the realistic
estimation from initial data of the outbreak behavior [8,A]solution to this issue could lie on the particular
degree distribution of SFN which renders some features @abkoetworks by bringing on a non-negligible
number of highly connected nodes, called hubs or supemereaTherefore, from a public health point of
view, studying the spreading of epidemics on SFN is all theenappropriate.

This issue, whose applications extend to new emergentsdisesnd bioterrorist threats, justify detailed
studies of the incidence of the connectivity distributidribee initial stage of the epidemics. In particular,
given the stochastic nature of epidemic processes, we fmaustudy on the characterization and the un-
derstanding of their variability. The variability plays anportant role in the accuracy of models. Thus, it
has to be quantified to assess the meaningfulness of siongatiith respect to real outbreaks.

Concerning the epidemiological modeling, the simplestraggh is to consider that infected individuals
() may infect susceptible (S) ones with probability which will then remain infected (SI model). This
approach, in spite of its simplicity, allows to easily ondithe initial growth of epidemic outbreaks.

Using a numerical approach, we analyzed the evolution adespics generated by different sets of
initial parameters. Hence, we compared epidemic varigibilh a SFN (Barabasi-Albert (BA) [10]) to an
homogeneous network model (Erdés-Renyi (ER) [11]) in otdehighlight the singularities due to the
connectivity distribution.

[I. INFECTIONTIME FLUCTUATIONS

We consider that a good picture of the predictability of epnic path is given by the variation 6f, ; on
each node. This information tells us how systematicallyesodill be infected at regular moments during
the outbreak. In this study, we characterize it by computivey;,,; coefficient of variationC'V (t;,,5) =

. —{t: 2 .
%7 on a set of a thousand of outbreaks simulated on the samenketwo

In Fig. 1, we show node§;,,¢) (left panel) andC'V (¢;,,¢) (right panel) for an ER and a BA network.
In those plots, symbols aligned vertically represent nodis a given degreé:. By comparing Fig. 1
panels, we clearly notice that while the averaggg on BA is lower than on ER network, its corresponding
CV (tins) is larger. From a practical point of view, it means that, oe dand, BA nodes are infected more
quickly (smallert;, s values), but on the other hand, the momgpt will vary more from an epidemic to
another (greate€'V' (t;,,¢)), and consequently will be less predictable.

Figure 1 also reveals the tendency@V (¢, ) to increase with the nodes degree, and the high values
reached by high degree nodes on BA network.

On BA networks, low degree nodes are large majority. Thedfeniange ofC'V (¢;,¢) values tells us
that the degree may not be the most relevant discriminanttaatd/alues computed over the same degree
(lighter symbols) are not representative when dealing gitfall degree nodes. Consequently, variations of
tiny can be less easily predicted for low degree nodes. On theargnhigher degrees nodes have values
following a more clearly drawn slope, givingV'(¢;,,s) as a function of their degree more meaning.
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Figure 1: Infection time of network nodes as a function ofitlikegree. (a) Averaged infection time: Each black
symbol represents,, ¢ for a single node averaged ove)® outbreaks. Gray symbols shavy, ; averaged over nodes
with the same degre€b) Infection time coefficient of variation: each black symbtarsls forCV (¢;, ) computed
over 10° outbreaks. Gray symbols sha@/ (¢;,,¢) computed over nodes with the same degree. For both panels,
are values on BA network, andare values on ER network; results are computed on a singeonie{ N = 104,

(k) = 6); initially infected node degreky = 6 ; A = 0.01.

[11. CONCLUSIONS

In this short paper, we address the concern about the réladnd the efficiency of detection sites. A
good site candidate has to be on the outbreak path as soos antkly as possible. Here, we point out that,
despite their low delay before infectioty,(;), superspreading nodes exhibit high variations of theimanot
of infection. In other words, we may not be able to predict acusate and reliable time of infection for
them. As a consequence, high degree nodes should be usechwiibn in the set-up of an early epidemic
detection system.

We also draw attention to the differences between ER and B#arks concerning variability. As
depicted on Fig. 1b, the homogeneous nature of ER netwoekssto prevent singularities in the spreading,
and thus tend to lower th&V'(t;,,¢) of their nodes. Infection velocities, which can be deducethfFig. 1a,
also differ and are in concordance with previous studieg. [Ithese spreading disparities confirm that
outbreaks on the two topologies behave distinctly in marigtp@nd ignoring their differences may cause
problems.

In particular, our results stress that the epidemic valitghis amplified on scale-free BA network com-
pared to homogeneous ER network. This phenomenon has acptdotportance for the modeling of
epidemic control strategies, especially during the bdginof the spreading process which is a highly un-
stable period due to high degree nodes. In particular, tbdyssuggest that this high variability should be
taken into account in planning and designing control andaioment strategies.
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