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Abstract: In this note, we present a statistical-physics framework for combinatorial auctions, i.e.
multi-item auctions where bidders bid on combinations of items. The combinatorial problem is rep-
resented as a lattice-gas model, such that methods from the statistical physics of complex, disordered
systems can be applied. In a minimal probabilistic setting, we find a phase transition from an easily
solvable to a harder phase, where the solution space becomes clustered. In addition, the reformulation
as a statistical-physics model allows the introduction of new and efficient message passing algorithms
for single CA instances.

Auctions are a popular economic institution allowing to sell a variety of commodities
[1]. Today, the large diffusion of e-commerce and the use of the Internet as a world-wide
market place has brought about fundamental changes in the use of auctions. In situations,
in which the number of objects to be sold is large, standard single-item auction protocols
are clearly inappropriate. Moreover, objects often exhibit complementary features, such that
potential buyers are interested more in a given package of items rather than in separate single
objects. Multi-item auctions, in which bidders are allowed to bid on combinations of goods,
so-called combinatorial auctions (CA), were first motivated by the problem of airport slot
allocations (takeoff/landing rights) and radio spectrum licenses, and are now widely used
[2, 3]. Theoretical models of CA are interesting to be studied both from an analytical and
an algorithmic point of view as prototype examples of new web-based market mechanisms.

In the simplest setting, the CA problem can be formulated as follows: A set A of objects
(goods) is to be sold, and N players (bidders) are given. Every player i ∈ {1, ..., N} submits
a sealed bid {Ai, νi}, in which he expresses his preference for a package Ai ⊂ A of goods
and the price νi he is willing to pay for it. The CA is thus a combinatorial optimization
problem consisting in determining a collection of winning bids that maximizes the total
auctioneer’s revenue under the condition that no good can be sold twice, i.e. that Ai and Aj

are disjoint for any two winning bids. Compared to standard single-item auctions, CA have
two distinguishing features making them more challenging for theoretical and algorithmic
approaches: (i) The highest bid is not guaranteed to win. It can be overcome by a collection
of various lower bids containing partially the same objects, but giving a higher total revenue.
(ii) The CA problem is NP-complete, as follows easily in the above setting due to the
equivalence to the maximum weighted independent set problem [4]. This is, however, a
worst-case result and does not necessarily imply the impossibility of finding optimal solutions
in real-life CAs. It is thus important to develop a complementary typical-case scenario by
considering suitable ensembles of CA instances as a first benchmark test.

As a starting point into this direction, we will focus on a simple probabilistic model of
CAs where each player submits a single randomly drawn bid. This choice is motivated by
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the following points: (i) It allows for a detailed analytical treatment within a statistical-
mechanics description. The auctioneer’s goal of maximizing his revenue is reduced to finding
the ground state of an equivalent hard-sphere lattice-gas model with random chemical po-
tentials [5]. (ii) It is conjectured to retain the same level of computational complexity as
the most general case. In this sense, any insight into the reasons of computational hardness
in the simplified setting can be translated to more general settings. (iii) It allows to ex-
tend the theoretical description via statistical-mechanics tools to an algorithmic treatment
of single CA instances via efficient message-passing procedures. This may bridge the gap
between a theoretical analysis on the basis of a probabilistic CA ensemble and the need for
fast algorithms in practical applications [5].

To be more precise, the model includes N players and M = αN goods. Each player
chooses his package independently by selecting goods with probability z/M . The probability
that a player desires ` objects is thus, for M � 1, given by the Poisson distribution e−zz`/`!
of mean z. Analogously, the probability that a good is contained in k bid packages is given by
e−z/α(z/α)k/k!. The price is also drawn randomly according to some arbitrary distribution
p(ν|`) which may depend on the package size `. The model can be represented graphically
in two different ways, cf. Fig. 1: (i) The factor-graph representation consists of a bipartite
graph. Nodes are bidders and goods, and an edge signifies that a good is element of a
bidder’s package. (ii) The conflict-graph representation contains only the bidders as nodes.
Two of them are connected whenever their bids are in conflict, i.e. whenever their packets
contain at least one common good. This conflict graph naturally has the characteristics of a
small-world network: It has short distances O(N) inside each connected component, and it
has a non-trivial clustering coefficient due to objects wanted by more than two players.
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Figure 1: Factor-graph and conflict-graph representation of a combinatorial auction. Circles are
bidders, squares present items.

The conflict graph is the starting point of the statistical-mechanics analysis. Let us
consider a gas of hard particles on this graph: Each node can be position of up to one particle,
described by the occupation number xi ∈ {0, 1}, and is subject to a local chemical potential
νi (being equal to the value of the bid of player i). In this representation, the presence of
a particle (xi = 1) will be interpreted as a winning bid, an empty node corresponds to a
loosing bid. The total revenue is consequently given by

∑N
i=1 νixi. We still have to implement

the constraint that no good can be sold more than once: It is obviously equivalent to the
statement that no neighboring nodes in the conflict graph can be occupied simultaneously,
i.e. xixj = 0 for all (i, j) ∈ E, with E denoting the edge set of the conflict graph. The
resulting hard-sphere lattice-gas model can be rephrased in the following partition function

Ξ =
∑

{xi}∈{0,1}N

exp

(
β

N∑
i=1

νixi

) ∏
(i,j)∈E

(1− xixj)

where the revenue is coupled to the formal inverse temperature β. The last product imple-
ments the hard-sphere constraint, whereas a positive β assigns a higher weight to configu-
rations corresponding to a higher revenue of the CA. Consequently, the maximal revenue is
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given by

R = lim
β→∞

∂

∂β
log Ξ .

Some of the results of this analysis are summarized in Fig. 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3

R
/M

z

α = 1.5
α = 1.0
α = 0.5

0 0.5 1 1.5 2 2.5 3
α

2

2.5

3

3.5

4

z

RSB

RS

Figure 2: Left: Maximized revenue for different values of α = M/N , as a function of the average
package size z. Analytical results are compared to simulated annealing on random CA instances.
Prices are fixed to νi = 1. For small z, many goods are not contained in the packages, for high z
many conflicts appear. This explains the revenue maximum at an intermediate value of z. Right:
Phase diagram of the same model. Below the line, all solutions of maximal revenue are contained
in one single cluster inside the configuration space {0, 1}N . Finding one seems to be simple (easy
phase). At the line, the model undergoes a phase transition to a clustered solution space, and local
cost minima appear. Finding an optimal solution becomes computationally more demanding (hard
phase). It is currently under vivid discussion, in how far these local minima generally trap local
search algorithms.

Technically, the statistical mechanics analysis is based on the so-called cavity method,
cf. [5], which can be reformulated as a message passing algorithm [6, 7] using the ideas of
[8]. In the easy phase, this can be realized via the so-called warning- or belief-propagation
procedure, whereas message passing in the hard phase requires the application of the survey-
propagation algorithm. Technical details of this approach, together with a comparison to
standard approaches as simulated annealing or linear programming, go beyond the scope of
this note, and will be presented in a separate publication.
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