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Abstract

A large part of the recent development of the interest in complex networks has been
triggered by the observation of particular characteristics of real world networks,
such as the small-world properties or the heavy-tailed distributions of degrees. Many
datasets are however the result of an incomplete sampling of the underlying real
networks, and it has been argued that sampling procedures might introduce un-
controlled biases in the statistical properties of the sampled graph. In this paper,
we explore this issue in the case of the Internet, which is generally mapped from
a limited set of sources by using traceroute-like probes. The origin of the biases
introduced by such a sampling process is investigated and related with the global
topological properties of the underlying network. We complement the analytical dis-
cussion with a throughout numerical investigation of simulated mapping strategies
in network models with different topologies.
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1 Introduction

A significant research and technical challenge in the study of large informa-
tion networks is related to the lack of highly accurate maps providing infor-
mation on their basic topology. This is mainly due to the dynamical nature
of their structure and to the lack of any centralized control resulting in a
self-organized growth and evolution of these systems. A prototypical example
of this situation is faced in the case of the physical Internet. The topology
of the Internet can be investigated at different granularity levels such as the
router and Autonomous System (AS) level, with the final aim of obtaining
an abstract representation where the set of routers (ASs) and their physical
connections (peering relations) are the vertices and edges of a graph, respec-
tively. In the absence of accurate maps, local views are obtained by evaluating
a certain number of paths to different destinations by using specific tools such
as traceroute or by the analysis of BGP tables. At first approximation these
processes amount to the collection of shortest paths from a source vertex to
a set of target vertices, obtaining a partial spanning tree of the network. The
merging of several of these views provides the map of the Internet from which
the statistical properties of the network are evaluated.

This strategy has led to the obtention of various maps of the Internet [1–5]
which have been used for the statistical characterization of the network. Defin-
ing G = (V, E) as the sampled graph of the Internet with N = |V | vertices
and |E| edges, it is quite intuitive that the Internet is a sparse graph with a
much lower number of edges than in a complete graph: |E| � N(N − 1)/2.
Moreover, the average distance, measured as the shortest path, between ver-
tices is very small. This is the so called small-world property, that is essential
for the efficient functioning of the network. Most surprising is the evidence of
a skewed and heavy-tailed behavior for the probability that any vertex in the
graph has degree k defined as the number of edges linking each vertex to its
neighbors. In particular, the degree distribution appears to be approximated
by P (k) ∼ k−γ with 2 ≤ γ ≤ 2.5 [6]. Evidence for the heavy-tailed behavior
of the degree distribution has been collected in several other studies at the
router and AS level [7–11] and have generated a large activity in the field of
network modeling and characterization [12–16].

The obtained maps are however undoubtedly incomplete. Along with techni-
cal problems such as the instability of paths between routers and interface
resolutions [17], typical mapping projects are run from relatively small sets of
sources whose combined views are missing a considerable number of edges and
vertices [11,18]. In particular, the various spanning trees are specially miss-
ing the lateral connectivity of targets and sample more frequently vertices
and links which are closer to each source, introducing spurious effects that
might seriously compromise the statistical accuracy of the sampled graph.
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These sampling biases have been explored in numerical experiments of syn-
thetic graphs generated by different algorithms [19–22]. Very interestingly, it
has been shown (numerically and analytically) that apparent degree distri-
butions with heavy-tails may be observed even from homogeneous topologies
such as in the classic Erdös-Rényi graph model [19,20,23]. These studies thus
point out that the evidence obtained from the analysis of the Internet sampled
graphs might be insufficient to draw conclusions on the topology of the actual
Internet network.

This issue may be tackled through a mean-field statistical analysis and exten-
sive numerical study of shortest path routed sampling, considered as the first
approximation to traceroute-sampling (see Section 2), in different networks
models. We recall in Section 3 the theoretical arguments leading to an approx-
imate expression for the probability of edges and vertices to be detected. The
analytical study provides a general understanding of which kind of topologies
yields the most accurate sampling. In particular, the map accuracy depends
on the underlying network betweenness centrality distribution; the heavier the
tail the higher the statistical accuracy of the sampled graph.

Numerical investigation of maps obtained varying the number of source-target
pairs on networks models with different topological properties provides sup-
port to the analytical analysis. In particular, we consider networks with degree
distribution with poissonian, Weibull and power-law behavior. We study the
fractions of discovered vertices and edges as a function of the degree (Section
4), stressing the agreement with the theoretical predictions, as well as the
degree distributions obtained in the sampled graph (Section 5). Single source
mapping processes are shown to face serious limitations: even the targeting
of the whole network results in a very partial discovery of its connectivity.
On the contrary, the use of multiple sources promptly leads to obtained maps
fairly consistent with the original sample.

In Section 6, we also inspect quantitatively the portion of discovered network in
different mapping strategies for the deployment of sources that however impose
the same density of probes to the network. A region of low efficiency (less
vertices and edges discovered) is found, depending on the relative proportion
of sources and targets. This low efficiency region however corresponds to the
optimal estimation of the network average degree. This finding calls for a
“trade-off” between the accuracy in the observation of different quantities and
hints to possible optimization procedures in the traceroute-driven mapping
of large networks.
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2 Network models and traceroute-like processes

In a typical traceroute study, active sources deployed in the network send
traceroute probes to a set of destination vertices. Each probe collects infor-
mation on all the vertices and edges traversed along the path connecting the
source to the destination [17]. By merging the information collected on each
path it is then possible to reconstruct a partial map of the network. The edges
and the vertices discovered by each probe will depend on the “path selection
criterium” used to decide the path between a pair of vertices. In the real In-
ternet, many factors, including commercial agreement, traffic congestion and
administrative routing policies, contribute to determine the actual path, which
may differ even considerably from the shortest path. Despite these local, often
unpredictable path distortions, a reasonable first approximation of the route
traversed by traceroute-like probes is the shortest path between the two
vertices. This assumption, however, is not sufficient for a proper definition of
a traceroute model in that equivalent shortest paths between two vertices
may exist. For the sake of simplicity, we can thus define three selection mecha-
nisms defining different ideal-paths that may account for some of the features
encountered in real Internet discovery:

• Unique Shortest Path (USP) probe. In this case the shortest path route
selected between a vertex i and the destination target T is always the same
independently of the source S (the path being initially chosen at random
among all the equivalent ones).

• Random Shortest Path (RSP) probe. The shortest path between any source-
destination pair is chosen randomly among the set of equivalent shortest
paths. This might mimic different peering agreements that make indepen-
dent the paths among couples of vertices.

• All Shortest Paths (ASP) probe. The selection criterium discovers all the
equivalent shortest paths between source-destination pairs. This might hap-
pen in the case of probing repeated in time (long time exploration), so that
back-up paths and equivalent paths are discovered in different runs.

We will generically call M-path the path found using one of these measure-
ment or path selection mechanism. Actual traceroute probes contain a mix-
ture of the three mechanisms defined above. We do not attempt, however, to
account for all the subtleties that real studies encounters, i.e. IP routing, BGP
policies, interface resolutions and many others. In fact, in the real mapping
process, many effective heuristic strategies are commonly applied to improve
the reliability and the performances of the sampling. However, it turns out that
the different path selection criteria (p.s.c.) have only little influence on the gen-
eral picture emerging from our results. Moreover, the USP procedure clearly
represents the worst case scenario since, among the three different methods,
it yields the minimum number of discoveries. For this reason, if not otherwise
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specified, we will report the USP data to illustrate the general features of
our synthetic exploration. The interest of this analysis resides properly in the
choice of working in the most pessimistic case, being aware that path inflations
should actually provide a more pervasive sampling of the real network.

More formally, the experimental setup for our simulated traceroute mapping
is the following. Let G = (V, E) be a sparse undirected graph with vertices
(ver tices) V = {1, 2, · · · , N} and edges (links) E. Then let us define the sets
of vertices S = {i1, i2, · · · , iNS

} and T = {j1, j2, · · · , jNT
} specifying the ran-

dom placement of NS sources and NT destination targets. For each ensemble
of source-target pairs Ω = {S, T }, we compute with our p.s.c. the paths con-
necting each source-target pair. The sampled graph G = (V ∗, E∗) is defined as
the set of vertices V ∗ (with N∗ = |V ∗|) and edges E∗ induced by considering
the union of all the M-paths connecting the source-target pairs. The sampled
graph is thus analogous to the maps obtained from real traceroute sampling
of the Internet.

In our study the parameters of interest are the densities ρT = NT /N and
ρS = NS/N of targets and sources. In general, traceroute-driven studies run
from a relatively small number of sources to a much larger set of destinations.
For this reason, it is appropriate to work with the density of targets ρT while
still considering NS instead of the corresponding density. In many cases, an
appropriate quantity representing the level of sampling of the networks is
ε = NSNT /N : it represents the density of traceroute probes in the network
and therefore a measure of the load provided to the network by the measuring
infrastructure.

In the following, our aim is to evaluate to which extent the statistical prop-
erties of the sampled graph G depend on the parameters of our experimental
setup and are representative of the properties of the underlying graph G. The
analytical insights of Section 3 will be complemented by a numerical inves-
tigation of the traceroute-like exploration process on various graph models
endowed with very well-defined topological properties, so as to give a clear
result on which kind of topologies are related to good sampling performances
and vice-versa. Starting from this first investigation, further studies could deal
with more realistic models such as those created using Internet topology gen-
erators [13,12]. In particular, we will consider two main classes of graphs.

A) Homogeneous graphs in which the degree distribution P (k) has small fluc-
tuations and a well defined average degree. In this context, the homogeneity
refers to the existence of a meaningful characteristic average degree that rep-
resents the typical value in the graph. The most widely known model for
homogeneous graphs is given by the classical Erdös-Rényi (ER) model [24]:
in such random graphs GN,p of N vertices, each edge is present in E in-
dependently with probability p. The expected number of edges is therefore

5



|E| = pN(N − 1)/2. In order to have sparse graphs one thus needs to have
p of order 1/N , since the average degree is p(N − 1). Erdös-Rényi graphs are
typical examples of homogeneous graphs, with degree distribution following a
Poisson law. Since GN,p can consist of more than one connected component,
we consider only the largest of these components.

Another important characteristic discriminating the topology of graphs is the
clustering coefficient ci that, giving the fraction of connected neighbors of a
given node i, measures the local cohesiveness of nodes. The average clustering
coefficient C = 1

N

∑
i ci provides an indication of the global level of cohesiveness

of the graph. This number is generally very small in random graphs that lack
of correlations. In many real graphs however, the clustering coefficient appears
to be very high and opportune models have been formulated to represent this
property, both for homogeneous and heterogeneous graphs. In particular, we
consider the construction algorithm proposed by Watts and Strogatz for small-
world networks [28]: starting from a regular network (e.g. a one-dimensional
lattice with connections to the k nearest neighbors along the chain), each
link is rewired with a certain probability p. The resulting degree distribution
has a shape similar to the case of Erdös-Rényi graphs, peaked around its
average value. The clustering coefficient, however, is large if p � 1, making
this network a typical example of clustered homogeneous network.

B) Heterogeneous graphs for which P (k) is a broad distribution with heavy-tail
and large fluctuations, spanning various orders of magnitude. The prototype of
a scale-free graph is the growing network model by Albert and Barabási (BA)
[29]. The preferential attachment mechanism (each new node is connected
to m already existing nodes chosen with a probability proportional to their
degree) yields a connected graph of |V | = N nodes with |E| = mN edges,
having a power-law degree distribution P (k) ∼ k−γ with γ = 3, and small
clustering coefficient. Another growing model has been introduced by Doro-
govtsev, Mendes and Samukhin (DMS) [30]: at each time step, a new node is
introduced and connected to the two extremities of a randomly chosen edge,
thus forming a triangle. A given node is thus in fact chosen with a probability
proportional to its degree, which corresponds to the preferential attachment

Table 1
Main characteristics of the graphs used in the numerical exploration.

ER ER WS BA DMS RSF Weibull

N 104 104 104 104 104 104 104

|E| 105 5.105 105 4.104 2.104 22000 55000

k 20 100 20 8 4 4.4 11

C 0.002 0.01 0.52 0.006 0.74 0.067 0.12

kmax 40 140 26 334 346 3500 2000

6



rule. The resulting graphs have a large clustering coefficient (≈ 0.74) along
with a power-law degree distribution P (k) ∼ k−γ with γ = 3.

Such graphs can be considered as particular since they are constructed with
the preferential attachment mechanism, and we also consider random graphs
with given broad degree distributions. In the literature, different definitions
of heavy-tailed like distributions exist. While we do not want to enter the de-
tailed definition of heavy-tailed distribution we have considered two classes of
such distributions: (i) scale-free or Pareto distributions of the form P (k) ∼ k−γ

(RSF), and (ii) Weibull distributions (WEI) P (k) = (a/c)(k/c)a−1 exp(−(k/c)a).
The scale-free distribution has a diverging second moment and therefore virtu-
ally unbounded fluctuations, limited only by eventual size-cut-off. The Weibull
distribution is akin to power-law distributions truncated by an exponential
cut-off which are often encountered in the analysis of scale-free systems in
the real world. Indeed, a truncation of the power-law behavior is generally
due to finite-size effects and other physical constraints. Both forms have been
proposed as representing the topological properties of the Internet [8]. We
have generated the corresponding random graphs by using the algorithm pro-
posed by Molloy and Reed [31]: the vertices of the graph are assigned a fixed
sequence of degrees {ki}, i = 1, . . . , N , chosen at random from the desired de-
gree distribution P (k), and with the additional constraint that the sum

∑
i ki

must be even; then, the vertices are connected by
∑

i ki/2 edges, respecting the
assigned degrees and avoiding self- and multiple-connections. The parameters
used are a = 0.25 and c = 0.6 for the Weibull distribution, and γ = 2.3 for
the RSF case.

The main properties of the various graphs are summarized in Table 1. In all
numerical studies we have used networks of N = 104 vertices. It is noteworthy
that the maximum value of the degree (kmax) is of the same order as the
average for homogeneous graphs, but much larger for heterogenous ones.

3 Mean-field theory of simulated mapping process

We begin our study by recalling briefly the mean-field statistical analysis of the
simulated traceroute mapping done in [32]. The aim is to provide a statistical
estimate for the probability of edge and vertex detection as a function of NS,
NT and the topology of the underlying graph.

Let us define the quantity σ
(l,m)
i,j that takes the value 1 if the edge (i, j) belongs

to the selected M-path between vertices l and m, and 0 otherwise. For a given
set of sources and targets Ω = {S, T }, the indicator function that a given edge
(i, j) will be discovered and belongs to the sampled graph is simply πi,j = 1 if
the edge (i, j) belongs to at least one of the M-paths connecting the source-
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target pairs, and 0 otherwise. We can obtain an exact expression for πi,j by
noting that 1−πi,j is 1 if and only if (i, j) does not belong to any of the paths

between sources and targets, i.e. if and only if σ
(l,m)
i,j = 0 for all (l,m) ∈ Ω.

This leads to

πi,j = 1−
∏
l 6=m

1−
NS∑
s=1

δl,is

NT∑
t=1

δm,jtσ
(l,m)
i,j

 , (1)

where δi,j is the Kronecker symbol and selects only vertices belonging to the
set of sources or targets.

Starting from the above exact formula, it is interesting to look at the process
on a statistical ground by studying the average over all possible realizations
of the set Ω = {S, T }, identified by 〈· · ·〉. An uncorrelation assumption allows
to obtain the average discovery probability of an edge as

〈πi,j〉 ' 1−
∏
l 6=m

(
1− ρT ρS

〈
σ

(l,m)
i,j

〉)
, (2)

where we take advantage of neglecting correlations by replacing the average
of the product of variables with the product of the averages. In the case of the
ASP probing,

〈
σ

(l,m)
i,j

〉
is just one if (i, j) belongs to one of the shortest paths

between l and m, and 0 otherwise. In the case of the USP and the RSP, on the
contrary, only one path among all the equivalent ones is chosen. If we denote
by σ(l,m) the number of shortest paths between vertices l and m, and by x

(l,m)
i,j

the number of these paths passing through the edge (i, j), the probability that
the traceroute model chooses a path going through the edge (i, j) between l

and m is
〈
σ

(l,m)
i,j

〉
= x

(l,m)
i,j /σ(l,m).

The standard situation we consider is the one in which ρT ρS � 1 and since〈
σ

(l,m)
i,j

〉
≤ 1, we have

∏
l 6=m

(
1− ρT ρS

〈
σ

(l,m)
i,j

〉)
'

∏
l 6=m

exp
(
−ρT ρS

〈
σ

(l,m)
i,j

〉)
, (3)

that inserted in Eq.(2) yields

〈πi,j〉 ' 1− exp (−ρT ρSbij) , (4)

where bij =
∑

l 6=m

〈
σ

(l,m)
i,j

〉
. In the case of the USP and RSP probing, the

quantity bij is by definition the edge betweenness centrality
∑

l 6=m x
(l,m)
i,j /σ(l,m)

[25,26], sometimes also refereed to as “load” [27] (In the case of ASP prob-
ing, it is a closely related quantity). Indeed the vertex or edge betweenness
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is defined as the total number of shortest paths among pairs of vertices in
the network that pass through a vertex or an edge, respectively. If there are
multiple shortest paths between a pair of vertices, the path contributes to the
betweenness with the corresponding relative weight. The betweenness gives
a measure of the amount of all-to-all traffic that goes through an edge or
vertex, if the shortest path is used as the metric defining the optimal path
between pairs of vertices, and it can be considered as a non-local measure of
the centrality of an edge or vertex in the graph.

The edge betweenness assumes values between 2 and N(N − 1) and the dis-
covery probability of the edge will therefore depend strongly on its between-
ness. In particular, for edges with minimum betweenness bij = 2 we have
〈πi,j〉 ' 2ρT ρS, that recovers the probability that the two end vertices of
the edge are chosen as source and target. This implies that if the densities
of sources and targets are small but finite in the limit of very large N , all
the edges in the underlying graph have an appreciable probability to be dis-
covered. Moreover, for edges with high betweenness the discovery probability
approaches one. A fair sampling of the network is thus expected. In most
realistic samplings, however, we face a very different situation. While it is rea-
sonable to consider ρT a small but finite value, the number of sources is not
extensive (NS ∼ O(1)) and their density tends to zero as N−1. In this case it
is more convenient to express the edge discovery probability as

〈πi,j〉 ' 1− exp
(
−εb̃ij

)
, (5)

where ε = ρT NS is the density of probes imposed to the system and the
rescaled betweenness b̃ij = N−1bij is now limited in the interval [2N−1, N −
1]. In the limit of large networks N → ∞ it is clear that edges with low
betweenness have 〈πi,j〉 ∼ O(N−1), for any finite value of ε. This readily
implies that in real situations the discovery process is generally not complete, a
large part of low betweenness edges being not discovered, and that the network
sampling is made progressively more accurate by increasing the density of
probes ε.

A similar analysis can be performed for the discovery probability of vertices,
leading to the average

〈πi〉 ' 1− (1− ρS − ρT ) exp (−ρT ρSbi) , (6)

where bi is the vertex betweenness centrality, that is limited in the interval
[0, N(N − 1)] [25–27]. The betweenness value bi = 0 holds for the leafs of
the graph, i.e. vertices with a single edge, for which we recover 〈πi〉 ' ρS +
ρT . Indeed, this kind of vertices are dangling ends discovered only if they
are either a source or target themselves. As discussed before, the most usual
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setup corresponds to a density ρS ∼ O(N−1) and in the large N limit we can
conveniently write

〈πi〉 ' 1− (1− ρT ) exp
(
−εb̃i

)
, (7)

where we have neglected terms of order O(N−1) and the rescaled betweenness
b̃i = N−1bi is now defined in the interval [0, N − 1]. This expression points
out that the probability of vertex discovery is favored by the deployment of a
finite density of targets that defines its lower bound.

We can also provide a simple approximation for the effective average degree
〈k∗i 〉 of vertex i discovered by our sampling process. Each edge departing from
the vertex contributes proportionally to its discovery probability, yielding

〈k∗i 〉 =
∑
j

(
1− exp

(
−εb̃ij

))
' ε

∑
j

b̃ij. (8)

The final expression is obtained for edges with εb̃ij � 1. Since the sum over all
neighbors of the edge betweenness is simply related to the vertex betweenness
as

∑
j bij = 2(bi + N − 1), where the factor 2 considers that each vertex path

traverses two edges and the term N − 1 accounts for all the edge paths for
which the vertex is an endpoint, this finally yields

〈k∗i 〉 ' 2ε + 2εb̃i. (9)

Finally, the analysis allows to compute the edge redundancy re(i, j) of an edge
(i, j), defined as as the number of probes passing through the edge (i, j). This
quantity is indeed written for a given set of probes and targets as

re(i, j) =
∑
l 6=m

NS∑
s=1

δl,is

NT∑
t=1

δm,itσ
(l,m)
i,j

 . (10)

Averaging over all possible realizations and assuming the uncorrelation hy-
pothesis, we obtain

〈re(i, j)〉 '
∑
l 6=m

ρT ρS

〈
σ

(l,m)
i,j

〉
= ρT ρSbij . (11)

This result implies that the average redundancy of an edge is related to the
density of sources and targets, but also to the edge betweenness. For example,
an edge of minimum betweenness bij = 2 can be discovered at most twice in
the extreme limit of an all-to-all probing. On the contrary, a very central edge
of betweenness bij close to the maximum N(N − 1), would be discovered with
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a redundancy close to (N − 1) by a traceroute-probing from a single source
to all the possible destinations.

Similarly, the redundancy rn(i) of a vertex i, intended as the number of times
the probes cross the vertex i, can be obtained:

〈rn(i)〉 ' 2ε + ρSρT bi . (12)

In this case, a term related to the number of traceroute probes ε appears,
showing that a part of the mapping effort unavoidably ends up in generating
vertex detection redundancy.

The present analysis shows that the measured quantities and statistical prop-
erties of the sampled graph strongly depend on the parameters of the experi-
mental setup and the topology of the underlying graph. The latter dependence
appears through the key role played by edge and vertex betweenness in the
expressions characterizing the graph discovery. The betweenness is a nonlo-
cal topological quantity whose properties change considerably depending on
the kind of graph considered. This allows an intuitive understanding of the
fact that graphs with diverse topological properties deliver different answer to
sampling experiments.

4 Numerics

The analytical findings of the previous section may be tested and used as
guidance in the numerical analysis of simulated mapping experiments of net-
work models. In particular we will consider the graph topologies defined in
Section 2. Let us first consider the case of homogeneous graphs (ER and WS
model): the vertex and edge betweennesses are homogeneous quantities and
their distributions are peaked around their average values b and be, respec-
tively, spanning only a small range of variations. These values can thus be
considered as typical values. We can thus use Eq. (5) and (7) to estimate the
order of magnitude of probes that allows a fair sampling of the graph. Indeed,

both 〈πi,j〉 and 〈πi〉 tend to 1 if ε � max
[
b
−1

, be
−1

]
. In this limit all edges and

vertices will have probability to be discovered very close to one. At lower value
of ε, obtained by varying ρT and NS, the underlying graph is only partially
discovered. Fig. 1 shows for the WS model the behavior of the fraction N∗

k/Nk

of discovered vertices of degree k, where Nk is the total number of vertices of
degree k in the underlying graph, and the fraction of discovered edges 〈k∗〉 /k
in vertices of degree k. N∗

k/Nk naturally increases with the density of targets
and sources, and it is slightly increasing with k. The latter behavior can be
easily understood by noticing that vertices with larger degree have on average
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Fig. 1. Frequency N∗
k/Nk of detecting a vertex of degree k, frequency N∗

b /Nb of
detecting a vertex of betweenness b and proportion of discovered edges 〈k∗〉 /k as a
function of the degree and as a function of the betweenness for the WS (4 graphs on
the left) and the BA (4 graphs on the right) models. The exploration setup considers
NS = 2 and increasing probing level ε obtained by progressively higher density of
targets ρT .

a larger betweenness. On the other hand, the range of variation of k in homo-
geneous graphs is very narrow and only a large level of probing may guarantee
very large discovery probabilities. Similarly the behavior of the effective dis-
covered degree can be understood by looking at Eq. (9). Indeed the initial
decrease of 〈k∗〉 /k is finally compensated by the increase of b(k).

The situation is different in graphs with heavy-tailed connectivity distributions
(BA, DMS, RSF and WEI models), with an appreciable fraction of vertices
and edges with very high betweenness [33]. In particular, in scale-free graphs
the site betweenness is related to the vertices degree as b(k) ∼ kβ, where
β is an exponent depending on the model [33]. Since in heavy-tailed degree
distributions the allowed degree is varying over several orders of magnitude,
the same occurs for the betweenness values, and the tail of the distribution
is broader the broader the connectivity distribution. In such a situation, even
in the case of small ε, vertices whose betweenness is large enough (biε � 1)
have 〈πi〉 ' 1. Therefore all vertices with degree k � ε−1/β will be detected
with probability one. This is clearly exemplified for the BA model in Fig. 1
where the discovery probability N∗

k/Nk of vertices with degree k saturates
to one for large degree values. Consistently, the degree value at which the
curve saturates decreases with increasing ε. A similar effect is appearing in the
measurements concerning 〈k∗〉 /k. After an initial decay (Fig. 1) the effective
discovered degree is increasing with the degree of the vertices. This qualitative
feature is captured by Eq. (9) that gives 〈k∗〉 /k ' εk−1(1 + b(k)). At large
k the term k−1b(k) ∼ kβ−1 takes over and the effective discovered degree
approaches the real degree k. Fig. 1 also displays the frequency N∗

b /Nb and
the discovered degree of vertices with betweenness b, showing in a more direct
way the qualitative agreement with the analytical predictions.

In Fig. 2 we also report the behavior of the average vertex redundancy as
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Fig. 2. Average vertex redundancy as a function of the degree k for RSF (top) and
ER (bottom) model (N = 104). For the ER model, two blocks of data are plotted,
for k = 20 (left) and for k = 100 (right) The target density is fixed (ρT = 0.1),
and NS = 2 (circles), 10 (squares), 20 (triangles). The dashed lines represent the
analytical prediction 2ε + ρSρT b(k) in perfect agreement with the simulations.

a function of the degree k for both homogeneous (ER) and heterogeneous
(RSF) graphs. For both models, the behaviors are in good agreement with
the mean-field prediction, showing the tight relation between redundancy and
betweenness centrality. In the case of heavy-tailed underlying networks, the
vertex redundancy typically grows as a power-law of the degree, while the
values for random graphs vary on a smaller scale. This behavior points out that
the intrinsic hierarchical structure of scale-free networks plays a fundamental
role even in the process of path routing, resulting in a huge number of probes
iteratively passing through the same set of few hubs. On the other hand, for
homogeneous graphs the total number of vertex discoveries is quite uniformly
distributed on the whole range of connectivity, independently of the relative
importance of the vertices.

5 Degree distribution measurements

A very important quantity in the study of the statistical accuracy of the
sampled graph is the degree distribution. Fig. 3 shows the cumulative degree
distribution Pc(k

∗ > k) of the sampled graph defined by the ER model for
increasing density of targets and sources. Sampled distributions are only ap-
proximating the genuine distribution, however, for NS ≥ 2 they are far from
true heavy-tail distributions at any appreciable level of probing. Indeed, the
distribution runs generally over a small range of degrees, with a cut-off that
sets in at the average degree k of the underlying graph. In order to stretch
the distribution range, homogeneous graphs with very large average degree
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Fig. 3. Cumulative degree distribution of the sampled ER graph for USP probes.
Figures A) and B) correspond to k = 20, and C) and D) to k = 100. Figures A) and
C) show sampled distributions obtained with NS = 2 and varying density target
ρT . In the insets we report the peculiar case NS = 1 that provides an apparent
power-law behavior with exponent −1 at all values of ρT , with a cut-off depending
on k. The insets are in lin-log scale to show the logarithmic behavior of the corre-
sponding cumulative distribution. Figures B) and D) correspond to ρT = 0.1 and
varying number of sources NS . The solid lines are the degree distributions of the un-
derlying graph. For k = 100, the sampled cumulative distributions display plateaus
corresponding to peaks in the degree distributions, induced by the sampling process.

k must be considered; however, other distinctive spurious effects appear in
this case. In particular, since the best sampling occurs around the high degree
values, the distributions develop peaks that show in the cumulative distribu-
tion as plateaus. Note that, in the case of RSP and ASP model, the obtained
distributions are closer to the real one since they allow a larger number of
discoveries.

Only in the peculiar case of NS = 1 an apparent scale-free behavior with slope
−1 is observed for all target densities ρT , as analytically shown by Clauset
and Moore [20,23]. Also in this case, the distribution cut-off is consistently
determined by the average degree k. The present analysis shows that in order
to obtain a sampled graph with apparent scale-free behavior on a degree range
varying over n orders of magnitude we would need the very peculiar sampling
of a homogeneous underlying graph with an average degree k ' 10n; a rather
unrealistic situation in the Internet and many other information systems where
n ≥ 2.

Since, in heterogeneous graphs, vertices with high degree are efficiently sam-
pled with an effective measured degree that is rather close to the real one,
the degree distribution tail is fairly well sampled, while deviations should be
expected at lower degree values. This is indeed what we observe in numerical
experiments on graphs with heavy-tailed distributions (see Fig. 4). Despite
both RSF and WEI underlying graphs have a small average degree, the ob-
served degree distribution spans more than two orders of magnitude. The
distribution tail is fairly reproduced even at rather small values of ε. The data
shows clearly that the low degree regime is instead under-sampled. This un-
dersampling can either yield an apparent change in the exponent of the degree
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Fig. 4. Cumulative degree distributions of the sampled RSF, WEI and DMS graphs
for USP probes. The top figures show sampled distributions obtained with NS = 5
and varying density target ρT . The figures on the bottom correspond to ρT = 0.25
and varying number of sources NS . The solid lines are the degree distributions of
the underlying graph.

distribution (as also noticed in [21] for single source experiments), or, if NS is
small, yield a power-law like distribution for an underlying Weibull distribu-
tion. Furthermore, as Fig. 4 shows, an increase in the number of sources starts
to discriminate between scale-free and Weibull distributions by detecting a cur-
vature in the second case even at small values ρT = 0.25. It is, however, fair to
say that while the experiments clearly point out a broad and heavy-tailed dis-
tribution, the distinction between different types of heavy-tailed distribution
needs an adequate level of probing.

In conclusion, graphs with heavy-tailed degree distribution allow a better qual-
itative representation of their statistical features in sampling experiments. In-
deed, the most important properties of these graphs are related to the heavy-
tail part of the statistical distributions that are indeed well discriminated by
the traceroute-like exploration. On the other hand, the accurate identifica-
tion of the distribution forms requires a fair level of sampling that it is not
clear how to determine quantitatively in the case of an unknown underly-
ing network. We will discuss the implications of these results in real Internet
measurements in Sec. 7.

6 Optimization of mapping strategies

In the previous sections we have shown that it is possible to have a general
qualitative understanding of the efficiency of network exploration and the in-
duced biases on the statistical properties. The quantitative analysis of the
sampling strategies, however, is a much harder task that calls for a detailed
study of the discovered proportion of the underlying graph and the precise
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increasing ε, for RSF, WEI and ER graphs. For each underlying graph studied we
report two curves corresponding to larger ε achieved by increasing the target density
ρT at constant NS = 5 (squares) or the number of sources NS at constant ρT = 0.1
(circles). Curves similar to ER are obtained for WS, and to RSF for BA and DMS.

deployment of sources and targets. In this perspective, very important quan-
tities are the fraction N∗/N and E∗/E of vertices and edges discovered in
the sampled graph, respectively. Unfortunately, the mean-field approximation
breaks down when we aim at a quantitative representation of the results. The
neglected correlations are in fact very important for the precise estimate of the
various quantities of interest. For this reason we performed an extensive set of
numerical explorations aimed at a fine determination of the level of sampling
achieved for different experimental setups.

In Fig. 5 we report the proportion of discovered nodes and edges in the nu-
merical exploration of the graph models defined previously for increasing level
of probing ε. The level of probing is increased either by raising the number of
sources at fixed target density or by raising the target density at fixed number
of sources. As expected, both strategies are progressively more efficient with
increasing levels of probing. In heterogeneous graphs, it is also possible to see
that when the number of sources is NS ∼ O(1) the increase of the number of
targets achieves better sampling than increasing the deployed sources. On the
other hand, it is easy to perceive that the shortest path route mapping is a
symmetric process if we exchange sources with targets. This is confirmed by
numerical experiments in which we use a very large number of sources and a
density of targets ρT ∼ O(1/N), where the trends are opposite: the increase of
the number of sources achieves better sampling than increasing the deployed
targets.

In Fig. 6, we report the behavior of E∗/E and N∗/N at fixed ε and varying
NS and ρT . Very interestingly, the curves show a structure allowing for local
minima and maxima in the discovered portion of the underlying graph: at fixed
levels of probing ε, different proportions of sources and targets may achieve
different levels of sampling. This hints to the search for optimal strategies in
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the relative deployment of sources and targets. The picture, however, is more
complicate if we look at other quantities in the sampled graph. In Fig.6 we
show the behavior at fixed ε of the average degree k

∗
measured in sampled

graphs normalized by the actual average degree k of the underlying graph as
a function of ρT . The plot shows also in this case a symmetric structure. By
comparing the data of Fig.6 we notice that the symmetry point is of a different
nature for different quantities: the minimum in the fraction of discovered edges
corresponds to the best estimate of the average degree. This implies that at
the symmetry point the exploration discovers less edges than in other setups,
however, achieving a more efficient sampling of the effective degree for the
discovered vertices. A similar problem is obtained by studying the behavior
of the ratio C∗/C between the clustering coefficient of the sampled and the
underlying graphs: the best level of sampling is achieved at particular values
of ε and NS that are conflicting with the best sampling of other quantities.

The evidence purported in this section hints to a possible optimization of
the sampling strategy. The optimal solution, however, appears as a trade-
off strategy between the different level of efficiency achieved in competing
ranges of the experimental setup. In this respect, a detailed and quantitative
investigation of the various quantities of interest in different experimental
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setups is needed in order to pinpoint the most efficient deployment of source-
target pairs depending on the underlying graph topology. While such a detailed
analysis lies beyond the scope of the present study, an interesting hint comes
from the analytical results of Section 3: since vertices with large betweenness
have typically a very large probability of being discovered, placing the sources
and targets preferentially on low-betweenness vertices (the most difficult to
discover) may have an impact on the whole process. The usual correlation
between connectivity and betweenness thus indicates that the exploration of
a real network could be improved by a massive deployment of sources using
low-connectivity vertices.

7 Conclusions and outlook

The rationalization of the sampling biases at the statistical level provides a
general interpretative framework for the results obtained from the numerical
experiments on graph models. The sampled graph clearly distinguishes be-
tween homogeneous and heavy-tailed topologies. This is due to the exploration
process that statistically focuses on high betweenness vertices, thus providing
a very accurate sampling of the distribution tail. In graphs with heavy-tails,
such as scale-free networks, the main topological features are therefore eas-
ily discriminated since the relevant statistical information is encapsulated in
the degree distribution tail which is fairly well captured. Quite surprisingly,
the sampling of homogeneous graphs appears more cumbersome than those of
heavy-tailed graphs. Dramatic effects such as the existence of apparent power-
laws, however, are found only in very peculiar cases. In general, exploration
strategies provide sampled distributions with enough signatures to distinguish
at the statistical level between graphs with different topologies.

This evidence might be relevant in the discussion of real data from Internet
mapping projects. Indeed, data indicate the presence of heavy-tailed degree
distribution both at the router and AS level. The present discussion indicates
that it is very unlikely that this feature is just an artifact of the mapping
strategies. The upper degree cut-off at the router and AS level runs up to 102

and 103, respectively. A homogeneous graph should have an average degree
comparable to the measured cut-off, which is hardly conceivable in a realistic
perspective (for instance, it would require that nine routers over ten would
have more than 100 links to other routers). In addition, the major part of
mapping projects are multi-source, a feature that readily washes out the pres-
ence of spurious power-law behavior. On the contrary, heterogeneous networks
with heavy-tailed degree distributions are sampled with particular accuracy
for the large degree part, generally at all probing levels. This makes very plau-
sible, and a natural consequence, that the heavy-tail behavior observed in real
mapping experiments is a genuine feature of the Internet.
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On the other hand, it is important to stress that while at the qualitative
level the sampled graphs allow a discrimination of the statistical properties,
at the quantitative level they might exhibit considerable deviations from the
true values such as size, average degree, and the precise analytic form of the
heavy-tailed degree distribution. For instance, the exponent of the power-
law behavior appears to suffer from noticeable biases. In this respect, it is
of major importance to define strategies that optimize the estimate of the
various parameters and quantities of the underlying graph. In this paper we
have shown that the proportion of sources and targets may have an impact on
the accuracy of the measurements even if the number of total probes imposed
to the system is the same. For instance, the deployment of a highly distributed
infrastructure of sources probing a limited number of targets may result as
efficient as few very powerful sources probing a large fraction of the addressable
space [34,35]. The optimization of large network sampling is therefore an open
problem that calls for further work aimed at a more quantitative assessment
of the mapping strategies both on the analytic and numerical side.
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