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We study traffic dynamics in growing scale-free networks. Both the scale-free structure of the
network and the adaptive nature of the dynamics which controls traffic in the network are considered
in the model. The model is investigated with computer simulations and analytically for the case
of scale-free tree. For the scale-free tree, an exact formula and its power law approximation of the
complementary cumulative distribution function (CDF) of link load (edge betweenness) is presented.
We examine whether the scaling properties of the network affect the performance of the transport
mechanism and estimate the average number of competing transport mechanisms at bottlenecks. We
find that bottlenecks tend to appear on the periphery of the network as the performance increases.
Various bandwidth allocation strategies are compared. We show that the best performance is
achieved when capacity is distributed proportionally to the expected load of links. We demonstrate
that it is necessary to study both the topology and the dynamics of the transport mechanism to
understand the whole system.
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I. INTRODUCTION

The statistical properties of complex networks has been investigated extensively in the physics community in recent
years [1–4]. With the increasing computing power of modern computers, analysis of large-scale networks and databases
has become possible. It has been shown that the degree statistics of many natural and artificial networks follows power
law. Examples for such networks vary from social interconnections and scientific collaborations [5] to the world-wide
web [6] and the Internet [7, 8]. These networks are usually referred to as scale-free networks.

The first mathematical model of complex networks, the random graph theory was developed by Erdős and Rényi
(ER) [9]. In this model, the number of nodes is fixed and connections are established randomly. Although the ER
model leads to rich theory, it fails to predict the power law distributions observed in scale-free networks. Barabási and
Albert (BA) proposed a more suitable model of these networks [10, 11]. The BA model is also based on the random
graph theory, but, in addition, it involves two key principles: (a) growth, that is, the size of the network increases
during development, and (b) preferential attachment, that is, new network elements are connected to higher degree
nodes with higher probability.

The concepts of graph theory are used throughout this paper. A graph consists of vertices (nodes) and edges (links).
Edges are ordered or un-ordered pairs of vertices, depending on whether ordered or un-ordered graph is considered,
respectively. The order of a graph is the number of vertices it holds, while the degree of a vertex counts the number
of edges adjacent to it. A path is also defined by the most natural way: it is a vertex sequence, where any two
consecutive elements form an edge. The graph is called connected, if for any vertex pair there exists a path which
starts from one vertex and ends at the other.

The study of complex networks usually deals with the structural properties of networks, like degree distribution,
shortest path distribution, degree–degree correlations, clustering, etc. Furthermore, some complex networks also
involve a dynamical system which governs traffic in the network. The matter of importance in such systems is
the performance of the dynamics. Therefore, exploring the influence of network structure upon traffic dynamics is
essential. Moreover, one should be interested in distributing the available resources to obtain the best performance
for a given network structure.

From this point of view “betweenness” is the most important attribute. Betweenness measures the number of
shortest paths passing through a certain network element. Node betweenness has been studied recently by Goh, Kahng,
and Kim [12], who argued that it follows power law in scale-free networks, and the exponent δ ≈ 2.2 is independent
from, in a certain range, the degree distribution. Szabó, Alava, and Kertész [13] used rooted deterministic trees to
model scale-free BA trees, and found scaling exponent δt = −2.

The study of complex networks usually deals with the structural properties of networks, like degree distribution,
shortest path distribution, degree–degree correlations, clustering, etc. Furthermore, a complex network may also
involve a dynamical system which governs traffic in the network. In this paper we study scale-free networks with
embedded flow dynamics. The dominant algorithm which controls the data traffic in the Internet is the Transmission
Control Protocol (TCP) [14]. For the detailed analysis of TCP mechanism we refer to Ref. [15]. Since TCP performance
affects overall network performance, TCP modeling is an important issue that has been attracted research interests
during the last years. Traditional approaches to performance evaluation packet networks have normally relied on
attempts to describe as closely as possible the dynamics of network elements over a discrete state-space. A new class
of semi-analytical models has recently been introduced in the networking arena, and today appears to be the most
promising approach for scalable and accurate performance analysis of large IP networks. This new approach, that is
often called ‘fluid models’, adopts an abstract deterministic description of the average network dynamics through a
set of ordinary differential equations, thus neglecting the short term, packet-by-packet description of the stochastic
network dynamics. We will present a simple model, which considers both the scale-free structure of the Internet and
the adaptive nature of the underlying dynamics using fluid models. We stress that the main goal of this paper is to
study the TCP-like (adaptive) dynamics on growing scale-free networks, not to model the Internet.

II. THE NETWORK MODEL

It has been shown that the structure of autonomous systems (AS) in the Internet is scale-free tree [16]. An AS is a
large segment of the Internet, which usually belongs to one organization, for example to a university, a large company,
a national office, etc. In order to keep our model analytically tractable, we model the whole Internet with a simple
scale-free rooted BA tree, extended with initial attractiveness [17]. Shortcuts, correlations with the geographical
distribution of the population [18], and other details are neglected in our model.
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FIG. 1: Schematic illustration of the evolving network at time τ . Vertex v, connected to the network at τe, denotes the root
of cluster C. Variable n = |C| − 1 denotes the number of nodes in C, except v (marked by ◦’s).

A. The BA model

The construction of the network proceeds in discrete time steps according to the BA model. Let us denote time
with τ ∈ N. Initially, at τ = 0, the graph consists only of a single vertex without any edges. Then, in every time step,
a new vertex is connected to the network with a single, directed edge. Note that the initial vertex is distinguished
from all the other, since it has only incoming connections; we refer to it as root vertex. The target of the new edge is
selected randomly from the present vertices of the graph. The probability that a new vertex connects to an old one
is proportional to the attractiveness of the old vertex v. Attractiveness is defined as

A(v) = a + q,

where parameter a > 0 denotes the initial attractiveness and q is the in-degree of vertex v. The scaling properties
of the network can be smoothly controlled by parameter a: it has been shown that the probability distribution of

in-degrees is P (q) ∼ (q + a)
−(2+a)

[17]. Note that the special case a = 1 practically repeats the original BA model.
Indeed, except for the root node, the attractiveness of every vertex becomes equal to its degree if a = 1; this is exactly
the definition of the attractiveness in the BA model [10]. On the other hand, the model tends to Poisson-type ER
graph if a → ∞, since preferential attachment disappears in the limit, and P (q) ∼ e−q.

We refer to a connected sub-graph as a cluster in this paper (Fig. 1). To calculate the number of shortest paths
passing through a given edge, it is sufficient to know the size of the cluster attached to the given edge n. If the size
of the network is N , then from elementary combinatorics it follows that the number of shortest paths, that is the
betweenness, or shortly the load of the particular edge is

L = (n + 1) (N − n − 1) . (1)

The probability distribution of cluster size for any finite N can be given exactly:

PN (n) =
N − α

N − 1

1 − α

(n + 1 − α) (n + 2 − α)
, (2)

where 0 ≤ n < N − 1, and α = 1/ (1 + a). The details of the calculations will be published elsewhere.
For 1 ≪ N and 1 ≪ n ≪ N Eq. (2) can be approximated with

PN (n) ≈ (1 − α)
1

n2
,

where the scaling exponent ν = 2 is independent of α, therefore it is universal in the class of evolving scale-free trees.
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B. Betweenness

The probability distribution of betweenness L can be given by the following transformation formula of random
variables:

PN (L) =
N−2
∑

n=0

δL,(n+1)(N−n−1)PN (n).

However, this expression is difficult to handle. An alternative description of a random variable is the complementary
cumulative distribution function (CDF), defined as F c(x) = P(L ≥ x), that is the probability that the value of random
variable exceeds x.

From (1) it is obvious that the load of an edge exceeds L if and only if nL ≤ n < N − (nL + 1), where

nL =

⌈

N − 2

2
−

N

2

√

1 −
4L

N2

⌉

,

and ⌈·⌉ denotes the ceil function. It immediately follows that the complementary CDF of the load is

F c
N (L) =

N−nL+2
∑

n=nL

PN (n) =
N − α

N − 1

(1 − α) (N − 2nL − 1)

(nL + 1 − α) (N − nl − α)
. (3)

If N ≪ L ≪ N2/4 then the complementary CDF can be approximated by the following power law

F c
N (L) ≈ (1 − α)N

1

L
.

Finally, the expectation value of the edge betweenness is calculated:

EN [L] =

∞
∑

L=0

LPN (L) =

N−2
∑

n=0

(n + 1) (N − n − 1) PN (n)

= (1 − α)
(N − α) (N + 1 − 2α)

N + 1
[Ψ(N − α) − Ψ(1 − α)] − (1 − α) (2N + 1 − 2α) ,

where Ψ(z) = d [ln Γ(z)] /dz is the digamma function [19]. Since Ψ(z) ∼ ln z as z → ∞, therefore

EN [L] = (1 − α) N lnN + O(N),

if N → ∞.

III. THE MODEL OF NETWORK DYNAMICS IN THE INTERNET

Data is transferred between source and target computers through intermediate routers. Before transmission data
is cut into smaller units, called packets. This way, if some part of the file is lost or gets corrupted, then only the
damaged or lost parts should be retransmitted, not the whole file. The TCP algorithm administers the departure,
arrival and retransmission of packets.

Interactions of different TCP flows inevitably cause congestion in the network. Packets are temporarily queued
in buffers, but when a buffer is full, incoming packets are dropped by routers. When a packet successfully reaches
its destination, the receiver sends an acknowledgement (ACK) packet back to the source. The elapsed time between
packet departure and ACK arrival is called round-trip time, TRTT.

An important feature of the TCP algorithm is that it can adapt its throughput to the changing network conditions.
The throughput, that is, the amount of bits transferred per unit time, is increased when arriving ACK indicates
successful transmission, and decreased when missing ACK implies congestion.

In this section the fluid approximation of the TCP algorithm, the Additive Increase–Multiplicative Decrease (AIMD)
model is discussed, supposing that the topology of the network does not change. Modelling dynamics on a fixed
topology is legitimate when the time scales describing the development of the network topology and the dynamical
process superposed to the network differ widely. A good example is Internet traffic, whose modelling requires time
resolutions from milliseconds up to a day [20–22], compared with the months required for significant topological
changes [23].

Detailed description of AIMD model can be found in [24]. The TCP standard is given in [14].
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A. The AIMD model

Let us suppose that NTCP number of TCPs are operating in the network and their throughput is denoted by
X(1)(t),X(2)(t), . . . ,X(NTCP(t)). A heuristic, but reasonable assumption of the AIMD model is that between con-
secutive packet loss events the development of throughput X(i), 0 < i ≤ N can be approximated by the following
differential equation [25]:

dX(i)(t)

dt
=

P

T
(i)
RTT(t)2

, (4)

where T
(i)
RTT(t) denotes the round-trip time of the ith TCP connection at time t, and P is the packet size. In fixed

topology, round-trip times may vary due to queuing delays. If queuing delays are negligible, however, then round-trip

times are constants T
(i)
RTT(t) ≡ T

(i)
RTT, and (4) can be solved:

X(i)(t) = X(i)(0) +
P

T
(i)
RTT

2 t. (5)

Note that (4) applicable only if the packet loss ratio is modest (< 1 − 2%) [26].
Eqs. (4) and (5) are valid only between packet loss events tn, which occur when the total throughput on edge e

first reaches capacity Ce of that particular edge:

∑

i∈Ie

(

X(i)
n +

P

T
(i)
RTT

2 ∆tn+1

)

= Ce, (6)

where Ie denotes the set of TCPs which share edge e, X
(i)
n = X(i)(tn) is the throughput of the ith TCP at tn, and

∆tn = tn − tn−1 is the elapsed time between the nth and the previous congestion events. The first moment when (6)
holds is

∆tn+1 = min
e





Ce −
∑

i∈Ie
X

(i)
n

∑

i∈Ie
P/T

(i)
RTT

2



 . (7)

At congestion events, some TCPs that share the congested link lose packets. The AIMD model provides that the
packet losses can be modeled by a stationary stochastic process; the owners of the lost packets are selected randomly
and independently. The probability ps that a TCP flow experience packet loss is called synchronization parameter.

According to the TCP congestion control mechanism, those TCPs which lose packets halve their throughput. The
schematic time evolution of the total throughput and the throughput of a chosen TCP is shown in Fig. 2.

B. The model of TCP connections

The hosts of the source and the destination of the TCP connections are located randomly in the Internet. The
actual location of the connections might be influenced by many factors including the importance and the availability
of the computers, the user’s language, behavior and preference, etc.

We assume in our model that TCP connections are established randomly in the network, and the distribution
of both the source and the destination of the TCPs are homogeneous. That is, every pair of nodes may establish
a directed TCP connection with the same, uniform probability, p = 1

N−1 . Therefore, the average number of TCP

connections is E [NTCP] = N in the network. Moreover, data transfers are considered to be persistent in our model.
For a more realistic model, one should take finite file sizes and the heterogeneous TCP connections into consideration.

IV. DISCUSSIONS

The model we outlined in the previous sections was studied with extensive numerical simulations. First, we validate
the analytic results that we obtained in Sec. II. Then, the influence of the network topology on the performance is
discussed.
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FIG. 2: Schematic time evolution of the total throughput (thick line) and the throughput of one TCP (thin line) in the AIMD
model for constant round-trip time. Packet losses occur at t1, t2, . . . moments, when the total throughput reaches the capacity
of the bottleneck link Cb. Time intervals between consecutive packet loss events are ∆t1, ∆t2, . . . .

A. Validation of edge betweenness distribution

The exact formula (3) presented in Sec. II B shows that possible values of the edge betweenness are L =
(N − 1) , 2 (N − 2) , 3 (N − 3) , . . . , [N/2] (N − [N/2]), that is, the CDF is constant between the above integer val-
ues.

Simulations confirm the validity of Eq. (2). With computer simulations N = 105 node random networks were
generated with α = 0 (ER), α = 1/3, α = 1/2 and α = 2/3 (BA) parameter values. Empirical distributions, obtained
from 100 independent simulations, formula (3) and power law approximations are compared in Fig. 3.

The expected staircase structure of the distribution can be clearly seen. The power law approximation fits the
complementary CDF in the range N ≪ L ≪ N2/4 accurately.

B. Influence of the network structure on TCP performance

We study in this section how the structure of the topology (α) affects the “performance” of the TCPs in the network.
Let us define performance first: if NTCP number of TCPs are operating in the network where bandwidths {Ce} have
been allocated to the links, then the performance of the ith TCP, Q(i), is defined as the time average of its throughput
X(i)(t):

Q(i) = X̄(i) ≡ lim
t→∞

1

t

∫ t

0

X(i)(u) du.

Let us consider me number of TCPs, which utilize a bottleneck link and let us suppose that the competing TCPs
share the available bandwidth equally. It has been shown [24] that the expected performance of such TCPs is

E

[

Q(i)
]

=
(

1 −
ps

2

) Ce

me

,

where Ce denotes the capacity of the bottleneck link, and ps is the synchronization parameter, introduced in the
AIMD model above. For the sake of simplicity, let the synchronization parameter be so small that only one packet is
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FIG. 3: Complementary CDF of edge betweenness, obtained from 100 realizations of N = 105 node networks, is shown at
α = 0 (squares), α = 1/3 (circles), α = 1/2 (triangles), and α = 2/3 (diamonds) parameter values. Equation (3) (solid line)
and power law approximation (1 − α) N/L (dotted line) are also plotted.

dropped at every congestion epoch: psme ≈ 1. With this assumption

E

[

Q(i)
]

=

(

1 −
1

2me

)

Ce

me

. (8)

The performance of the network is obviously influenced by the bandwidth distribution {Ce}. For the performance
of different network structures to become comparable, the average bandwidth C̄ = 1/ (N − 1)

∑

e Ce is fixed. Fur-
thermore, the limited amount of capacity is distributed with the same strategy in networks with different scaling
parameter α.

In case of homogeneous TCP distribution, the expected number of TCPs which share a given link is proportional
to the betweenness Le, that is the number of shortest paths passing through the particular link:

E [me] =
E [NTCP]Le

N (N − 1)
=

Le

N − 1
,

where the expected number of TCPs of out model, E [NTCP] = N is substituted. In this section, mean field ap-
proximation is applied for distributing capacity, that is capacity is allocated proportionally to the edge betweenness:
Ce = C0Le. The normalization coefficient C0 can be given by:

C0 =
C̄

EN [L]
≈

C̄

(1 − α)N lnN
+ O(1/N)

Using the above equations, the following formula can be obtained from Eq. (8) for the expected performance of the
ith TCP:

E

[

Q(i)
]

≈

(

1 −
1

2m

)

C̄

(1 − α) lnN
, (9)

where m is the number of TCPs, including the ith TCP, which share the bottleneck link.
Network performance can be characterized by the complementary CDF of TCP performance: F c(Q) = P

(

Q(i) > Q
)

.

On Fig. 4 CDF of TCP performance is shown on normal-log plot for N = 104 node networks with α = 0, 1/3, 1/2,
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FIG. 4: CDF of TCP performance, obtained from three realizations of N = 104 node networks, is shown on normal-log plot
at α = 0 (squares), α = 1/3 (circles), α = 1/2 (triangles) and α = 2/3 (diamonds) parameter values. Average capacity is
set to C̄ = 105[b/s] for every network. Simulation lasted for 100N congestion epochs. Inset: Complementary CDF of TCP
performance on log-log plot.

2/3 parameter values. Empirical distributions were obtained from simulations running for 100N congestion epochs
on three realizations of random networks of each α values. The mean of the link capacity was set to C̄ = 105[b/s].
Inset shows complementary CDF of TCP performance on log-log plot.

A point of inflection can be observed in Fig. 4 at every α parameter. The behavior of the CDF is markedly different
below and above the point of inflection. The sharp difference in the CDF implies that TCPs can be divided into two
categories according to whether their performance is over or below the point of inflection.

The tail of the complementary CDF of TCP performance, above the point of inflection (see inset of Fig. 4) consists
of TCPs whose throughput is much higher than the expected performance (9). These TCP operate in the core of the
network, where every link along the path of their connection has large bandwidth. Moreover, they either hardly need
to compete with other TCPs for the available bandwidth, or they win the competition at congestion epochs. The
relative number of such TCPs is approximately 15% if α = 0, and it is decreasing with the growth of parameter α.

Below the point of inflection performances of TCPs are limited by low-bandwidth links, located on the periphery
of the network, and by congested bottlenecks inside the network. If we suppose that the point of inflection approx-
imately equals the expected throughput of TCPs at bottleneck links E

[

Q(i)
]

, then the number of TCPs competing
at bottlenecks can be estimated from Eq. 9. In Table I the location of the point of inflection QI and the estimated
number of TCPs at bottleneck link is shown for networks with different scaling parameter α. Estimates show that as
scaling parameter α increases bottlenecks tend to form on the outer links where only 1–2 TCP share the links.

Overall performance of the networks, measured by the average TCP performance

Q =
1

NTCP

NTCP
∑

i=0

Q(i),

is also shown in Table I. We found that the overall performance Q also increases with parameter α. It follows from
above that the scaling properties of the topology influence the TCP performance. It is reasonable to suppose that
the interaction between the topology and the dynamical system is mutual, that is the evolution of the network can
by influenced by the dynamical system to reach optimum TCP performance as well.
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TABLE I: Table shows average TCP performance Q, the point of inflection of the CDF of TCP performance QI and the
estimated number of TCPs at bottlenecks for networks with different scaling parameter α.

α Q[b/s] QI [b/s] m

0 7785 9655 4.52

0.3333 9259 13057 2.52

0.3891 9346 14456 2.68

0.5 11184 17200 2.40

0.6666 13790 23118 1.72

C. Performance of other bandwidth distribution strategies

In this section different bandwidth distribution scenarios are compared. The topology of the network and the
average capacity is kept fixed, and only link capacities are changed in simulations. The scaling parameter of the
topology is chosen to be α = 1/2 for numerical simulations. Besides the mean field bandwidth distribution strategy
discussed in the previous section, the following scenarios are considered:

Uniform Capacity is the same for every link: Ce = C̄,

Minimum Capacity is proportional with the following minimum: min(qA, qB),

Maximum Capacity is proportional with the following maximum: max(qA, qB),

Product Capacity is proportional with the following product: qA · qB ,

where qA and qB denote the in-degrees of the nodes which compose a particular link. Uniform scenario presented as
a reference. It can be considered as the worst case scenario, when no information is available on the details of the
network. Minimum, maximum and product strategies take the local structure of the network into account, and the
more connection the link possess, the more capacity they allocate for the particular link. The difference between the
three strategies is whether they prefer loosely, moderately or highly connected links.

The complementary CDF of link capacities, obtained as the result of the above bandwidth distribution strategies,
are compared in Fig. 5. CDF of the uniform strategy is degenerated, and the structure of the network is not taken into
consideration this case. The maximum strategy prefers the lower bandwidths at the cost of a cutoff at about 106b/s
capacity. The minimum strategy also prefers lower bandwidths at the cost of high bandwidths, but no cutoff exists.
The complementary CDF of minimum strategy also resembles the mean field distribution with a different scaling
exponent. The product strategy prefers the mid-range, and it underestimates both the low and the high capacity
range, compared to the mean field strategy.

Simulation results of the CDF of TCP performance is shown in Figure 6 for the above mentioned bandwidth
distributions. The performance of mean field strategy is clearly the best. The next two best performing strategies,
the minimum and the product perform almost the same, although they prefer completely different bandwidth ranges.
It follows that the whole bandwidth range must be taken into consideration in any bandwidth distribution strategy
to reach the optimum network performance. The performance of the maximum strategy is worse considerably than
the previous two. Finally, the uniform bandwidth distribution is the worst of all: its performance is just a few percent
of the mean field scenario’s performance. The network where this strategy is applied is heavily congested, since the
bottlenecks form in the core of the network.

Network performances, that is average TCP performances are shown in Table II for the different bandwidth dis-
tribution strategies. The measured network performances confirm the qualitative analysis of Fig. 6. Table II shows
that mean field bandwidth allocation strategy is almost twice more effective than the second, minimum strategy, and
it is more than twice as good as the product strategy. The performance of a network with maximum bandwidth
distribution strategy is just about one fifth of performance of the same network when mean field strategy is used.
Moreover, the performance of uniform scenario is even less then the third of the second worst, maximum strategy.

V. CONCLUSIONS

A complex model of the network embedded with dynamics has been studied in this paper. Both the scale-free
structure of the network and the TCP dynamics, which controls traffic, are considered in the model. The topology
of the network has been modeled by a growing scale-free random graph model, where the scaling properties of the
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FIG. 5: Comparison of the complementary CDF of link capacity is shown for different bandwidth distribution strategies on
log-log plot. Data is obtained from 10 realizations of N = 104 node networks with scaling parameter α = 1/2. Average capacity
is set to C̄ = 105[b/s] for every network. The following scenarios are considered: uniform (pentagons), maximum (diamonds),
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plot. Data is obtained from 10 realizations of N = 104 node networks with scaling parameter α = 1/2. Average capacity is
set to C̄ = 105[b/s] for every network. Simulation lasted for 100N congestion epochs. The following scenarios are considered:
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TABLE II: Table shows network performance for different bandwidth distribution strategies.

Strategy Q[b/s]

Uniform 740.79

Maximum 2391.94

Minimum 6574.69

Product 5279.5

Mean field 11284.6

network can be changed with parameter α. The TCP dynamics has been approximated by the fluid AIMD model.
We have assumed in the model that TCP connections are distributed homogeneously in the network, that is TCP
connections are established between every pair of nodes with the same probability. It follows that the expected number
of TCPs which utilize a link is proportional to the link load (edge betweenness), that is the number of shortest paths
passing through the particular link.

We can summarize the main conclusions of this paper as follows:

• For the case of scale-free tree we analytically computed conditional cluster size distribution, total cluster size
distribution, complementary CDF of link load (edge betweenness), and the expectation value of the link load
(edge betweenness), see Section II B. The exact formula and the approximation for the complementary CDF of
link load have been validated by numerical simulations in Section IVA.

• The purpose of TCP connections is to transfer data in the network. The performance of a TCP connection is
measured by its throughput, that is its average transfer rate. We have investigated in Section IVB whether TCP
performance is influenced by the scaling properties of the network. For the comparison of different networks
the bandwidth allocation strategy has been fixed to the mean field strategy. It has been shown that the TCP
performance increases as the scaling parameter α increases. It follows that the network topology influences the
performance of the TCP.

• From the analysis of the CDF of TCP performance we have estimated the number of TCPs at bottleneck links.
We have found that the number of TCPs at bottlenecks decreases as parameter α increases. It follows that
bottlenecks move to the periphery of the network, when network performance is higher. This is understandable,
since a bottleneck in the core of the network can reduce the performance of more TCP than a bottleneck on the
periphery of the network.

• We have investigated TCP performance in networks which were built on various bandwidth allocation strategies
in Section IVC. We have found that mean field strategy performs about twice as well than the minimum and the
product strategies, five times as well than the maximum, and it is more than fifteen times as good as the uniform
strategy. These results indicate that the mean field bandwidth distribution strategy provides the optimum TCP
performance.
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