
Evolutionary Game Theory with

Applications to Adaptive Routing∗

Simon Fischer† Berthold Vöcking‡

Abstract

One of the most important problems in large communication networks like the
Internet is the problem of routing traffic through the network. Current Internet tech-
nology based on the TCP protocol does not route traffic adaptively to the traffic
pattern but uses fixed end-to-end routes and adjusts only the injection rates in order
to avoid congestion. A more flexible approach uses load-adaptive rerouting policies
that reconsider their routing strategies from time to time depending on the observed
latencies. In this manuscript, we survey recent results from [1, 2] about the application
of methods from evolutionary game theory to such an adaptive traffic management.
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1 Introduction

Recently, game theoretical analysis of the Internet has attracted a growing amount of
interest. One of the models studied in this context is the Wardrop model [3] in which
each of an infinite number of selfish users controls an infinitesimal amount of traffic that
is to be routed through a network. Due to a lack of central coordination, agents strive to
minimise their latency selfishly. Classical game theory predicts that agents will assign their
traffic according to a Nash equilibrium, i. e., in a way such that no agent has an incentive
to change their routing strategy unilaterally. For this model, a number of interesting
results have been found. For example, Beckmann et al. [4] shows existence and essential
uniqueness of Nash equilibria. Roughgarden and Tardos [5] prove bounds on the so-
called price of anarchy which is the worst-case ratio between the social welfare (e. g., the
average latency) at a Nash equilibrium and the social welfare at an optimal assignment.
Other results show how to impose taxes on the agents such that social optimum and Nash
equilibrium coincide [6, 7].

Nash equilibria are interesting from a practical point of view as they represent stable
and fair allocations. Classical game theory, however, relies on several assumptions that
do not seem to be practical. In particular, players are assumed to have full and accurate
information about the game and also about the behaviour of the opponents and must act
completely rationally. It is questionable whether these assumptions are satisfied when the
game under study should model the Internet. Quite obviously, participants in the Internet
have incomplete and inaccurate knowledge. Furthermore, they have bounded rationality.
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A more reasonable assumption might be that players learn how to perform well in the
game by experience. This is where evolutionary game theory (see e. g. [8, 9]) comes into
play. Here, all of the above assumptions are dropped and instead it is assumed that the
game is played repeatedly against random opponents. Over time, agents have the chance
to optimise their personal cost by reacting to simple observations. Describing a process in
which agents adapt their behaviour to the overall situation based on the observed payoff,
we can formulate a system of differential equations. Our hope is that the solution concepts
of differential equations like attractors or asymptotically stable rest points coincide with
Nash equilibria. This is not the case for games in general. In order to ensure this, a
refinement of Nash equilibria, evolutionary stability, is required. We can show that for our
class of games, Nash equilibria possess this property, thus enabling us to show that load
adaptive rerouting policies converge towards Nash equilibria. This provides additional
motivation to the well-studied concept of Nash equilibria and the many analyses based on
this concept that have been performed so far. In addition, we give bounds on the speed
of convergence. One practically very important aspect in adaptive routing is the effect
of stale information. In applications, the latency information that rerouting decisions are
based on is typically not up to date. It is well known, that basing routing decisions on
stale information can cause oscillation effects and seriously harm network performance. In
a simplified model, we show how this can be avoided using a class of adaptive rerouting
policies that is not too greedy.

2 The Model

2.1 Selfish Routing

For any of a set of commodities i ∈ {1, . . . , k}, a fraction of ri agents wants to route an
equivalent amount of flow from source si to sink ti using paths from the set of paths Pi

connecting these two nodes. Let P = ∪i∈[k]Pi where [k] = {1, . . . , k}. A feasible flow
on this network is a positive real-valued vector (fP )P∈P that satisfies the flow demands,
i. e.,

∑
P∈Pi

fP = ri for all i ∈ [k]. Given a flow vector f , the flow on an edge e ∈ E is
fe =

∑
P3e fP . The latencies in the network are specified by strictly increasing functions

`e : [0, 1] 7→ R
+
0 . Given a flow vector f , the latency on edge e ∈ E is given by `e(fe) and

the latency of path P ∈ P is given by `P (f) =
∑

e∈P `e(fe). A flow vector f is said to be
at a Nash equilibrium if for any commodity i ∈ [k] and every pair of paths P, P ′ ∈ Pi with
fP > 0 it holds that `P (f) ≤ `P ′(f). In other words, at a Nash equilibrium, no agent has
an incentive to change their routing strategy.

In a scenario where routing is not controlled by a central authority but by individually
and selfishly acting agents, the concept of Nash equilibria makes sense. Though the concept
of Nash equilibria seems to be a natural and appealing stability concept for the above
scenario, it neglects the question of how the agents can come to such a state. In fact,
this requires very accurate knowledge about the network topology, latency functions, the
demands of other commodities, and the behaviour of the other agents as well as full
rationality. These assumptions are quite obviously not satisfied if the network under
study is the Internet. The following section will present some very simple processes which,
in contrast to the assumptions of classical game theory, require only very local knowledge
and almost no computational effort at all and will turn out to result in Nash equilibria.
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2.2 Rerouting Dynamics

Consider a large population of agents in a routing network, each agent choosing one of the
possible routing paths. If the number of agents in this scenario is infinite, then a vector
(xP )P∈P specifying the fractions of agents using each individual path P ∈ P is actually
equivalent to a feasible network flow.

Now assume that every agent wants to optimise their personal latency having virtually
no knowledge about the flow and demands of other agents. One reasonable behaviour for
an agent would be to reconsider their routing strategy from time to time, at Poisson rates,
say, and revise their strategy based on the observed performance. An agent might then
pick another routing path at random (e. g., with probability proportional to the population
share currently using this path) and compare the latency of the own path with the latency
of the other. If the other path turns out to be worse than the current routing strategy,
nothing happens. However, if the other path offers an improvement with respect to latency,
the agent might switch to the new path with a probability proportional to the size of the
latency gain. If we take this process to the fluid limit, i. e., letting the number of agents
go to infinity and identifying random variables describing the change of the population
shares in one step with their expectation values, we obtain an expression for the change
rate of the population shares:

ḟP = λi · fP · (¯̀i − `P ) for i ∈ [k], P ∈ Pi, (1)

where ˙ indicates the derivative with respect to time, ¯̀
i is the average latency of commodity

i, and λi is some factor that accounts for proportionality factors needed to ensure that
probabilities do not exceed 1 etc. Note that the solution orbit {ξ|∃t ≥ 0 : ξ = f(t)} of
this system of differential equations is independent of the scale of the vector (λi)i∈[k] as
long as all λi > 0. Scaling all λi by the same factor scales the speed at which orbits are
traversed by this factor. Equation (1) has several appealing properties and has therefore
been studied extensively in the evolutionary game theory literature. It is known as the
replicator dynamics (for a survey of this and other dynamics, see, e. g., [8]).

A natural generalisation of this dynamics that preserves the aspect of local control is a
class of rerouting policies that consists of two steps. Again, agents are activated at Poisson
rates. Once activated, an agent performs two steps:

1. Sampling: Pick a path Q at random with probability σQ. In the most simple case
we have sQ = 1/m where m is the number of paths of the agent’s commodity. For
the replicator dynamics we have σQ = fQ, i. e., the probability to sample path Q is
proportional to the fraction of agents using it.

2. Migration: Migrate from the current path P to path Q with probability µ(`P , `Q).
For the class of better response dynamics we have µ(`P , `Q) = 1 if `Q < `P and
µ(`P , `Q) = 0 otherwise. For the replicator dynamics we have µ(`P , `Q) = max{(`P −
`Q) ·λ, 0} where we choose λ small enough such that the probability is bounded from
above by 1.

Altogether, we can specify the rate rPQ at which agents move from path P to path Q and
finally the time derivatives of the population shares. For all commodities i ∈ {1, . . . , k}
and all paths P,Q ∈ Pi we have

rPQ = fP · σQ · µ(`P , `Q) and ḟP =
∑

Q∈Pi

(rQP − rPQ). (2)
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Let us remark that by the Picard-Lindelöf-Theorem [10] a unique solution to this system of
differential equations exists if the right-hand sides are Lipschitz continuous. We therefore
require the latency functions `e, e ∈ E as well as σ and µ to be Lipschitz continuous. How-
ever, even for linear latency functions, Equation (1) contains cubic terms thus rendering
an analytic solution impossible.

3 Equilibria and Convergence

The first natural question is whether the above dynamics actually converge towards Nash
equilibria in the long run. More formally, we want to show that Nash equilibria are global
attractors of our system of differential equations. Since the replicator dynamics is not
innovative, i. e., fP (t) = 0 implies that fP (t′) = 0 for all t′ ≥ t, the replicator dynamics
can never discover such unused paths. We therefore assume for the rest of the paper that
there are no unused links in the initial population.

For the purpose of showing convergence, evolutionary stability has been introduced
as an equilibrium concept which is stricter than the concept of Nash equilibria. For the
single-commodity case, evolutionary stability can be characterised as follows [9].

Definition 1 (evolutionary stable). A flow vector f ∈ ∆ is called evolutionary stable
iff (1) it is a Nash equilibrium and (2) for all best replies f̃ to f , f̃ 6= f it holds that
f̃ · `(f̃) > f · `(f̃).

In our scenario, a best reply to a flow vector f corresponds to a flow vector f̃ that
uses only minimum latency paths with respect to the latency vector ` induced by f . Since
Nash equilibria are not in general unique, but only unique with respect to the edge-flows
(fe)e∈E , we say that a flow vector f is essentially evolutionary stable if condition (2) above
holds for all best replies f̃ that differ from f for at least one edge e ∈ E (instead of one
path P ∈ P). Then we can show the following lemma.

Lemma 1 ([1]). For single-commodity networks, Nash equilibria are essentially evolu-
tionary stable.

Given this property, we can prove convergence of the replicator dynamics towards
Nash equilibria for the single-commodity case using standard techniques of evolutionary
game theory [9]. For the multi-commodity case and for general dynamics of the form of
Equation (2), the proof is an application of Lyapunov’s second method [10] in conjunction
with a Potential function introduced by Beckmann etal. [4].

Theorem 2 ([1, 2]). In terms of edge flows (fe)e∈E, the replicator dynamics (1) (provided
that fP (0) > 0 for all P ∈ P) and, more generally, all dynamics of the form of Equation (2)
(provided that σQ is always positive and σ and µ are continuous) converge towards a Nash
equilibrium.

From the computer scientists’ perspective we are interested in the time until our dy-
namics reach equilibria. Clearly, in the continuous fluid limit model, equilibria cannot
be reached exactly but merely approximated. Considering the single-commodity case, we
define approximate equilibria as follows. Let Pε be the set of paths that have latency at
least (1 + ε) · ¯̀, i. e., Pε = {P ∈ P | `P (f) ≥ (1 + ε) · ¯̀} and let fε :=

∑
P∈Pε

fP be the
fraction of agents using these paths. A population f is said to be at an ε-approximate
equilibrium if and only if fε ≤ ε.

Note that by definition of the replicator dynamics, we cannot, in general, expect to
reach a state where fε = 0 since a population share using a path with constant high latency
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will never completely vanish. Similarly, it can take arbitrarily long, until many agents are
within a factor of (1 + ε) of the minimum latency path since initially there may be an
arbitrarily small fraction of agents on this link. Our definition takes care of these two
effects.

In order for the time to reach an approximate equilibrium to be meaningful, the dy-
namics must not depend on the scale by which we measure latency. We use the parameter
λ to normalise our dynamics and choose λ = 1/ ¯̀. For single-commodity networks the
replicator dynamics with λ = 1/ ¯̀ converges to an ε-approximate equilibrium within time
O(ε−3 · ln(`max/`

∗)) where `∗ is the optimal average latency and `max is the maximum
latency of a path over all possible flows. Somewhat weaker bounds on the speed of con-
vergence in multi-commodity games can be found in [1] as well.

4 Stale Information

One of the most important problems in load adaptive routing is the fact that information
about latency, delay, or bandwidth may be out of date by the time it is gathered. It is
well-known that this can cause oscillation effects and seriously harm performance. Mitzen-
macher [11] introduced the bulletin board model to study these effects. In this model, all
information relevant to the rerouting process is stored on a centralised bulletin board that
is accessible to all agents. However, information on the bulletin board is not always up to
date but merely updated every T units of time. The bulletin board can be a model for
a scenario where latency information is broadcasted to the agents at intervals or where
this information is stored on a server from which it can be polled by the agents. Let us
remark, that this is a purely theoretical model which, however, exhibits the effects we
want to study.

It is clear that two conditions can cause the policy to oscillate. First, if small changes
in the flow on an edge can cause a large change in latency, then agents must migrate to this
edge very carefully in order not to overshoot the balanced state. Hence, we consider only
latency functions of bounded slope, i. e., we consider some β such that `′e(x) ≤ β for all
e ∈ E, x ∈ [0, 1]. Second, agents must not move to fast if the observed latency difference
between the two considered paths is small as this could otherwise cause the same effect.
We consider a number α > 0 such that µ(`1, `2) ≤ α(`1−`2) for `1 ≥ `2 and µ(`1, `2) = 0 if
`1 < `2. We call rerouting policies satisfying this property α-smooth. Finally, let L be the
length of the longest path in the network. Given these properties we can show that our
policies converge towards a Nash equilibrium provided that the bulletin board is updated
frequently enough.

Theorem 3 ([2]). If the update frequency 1/T ≥ 4Lα β and σP assigns non-zero prob-
abilities to all paths P ∈ P, then the solution of dynamics (2) converges towards a Nash
equilibrium in the bulletin board model.

We can also show that the parameters that go into our upper bound are actually
necessary in the following sense. We say that a function x(·) oscillates if for some τ > 0
and some t0 it holds that x(t0) = x(t0 +nτ) for all n ∈ N. A differential equation ẋ = f(x)
oscillates if there exists a boundary condition x(0) = x0 such that the solution orbit
oscillates.

Theorem 4. For any α, β, and L with αβ L ≥ 1 there exist a network in which the
longest path has length L, latency functions whose slope is bounded by β, and an α-smooth
migration rule such that for any T > 8/(α β L) the differential equation related to the
dynamics oscillates.
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5 Conclusion

We have argued that the assumptions of full information and unbounded rationality made
by classical game theory in order to motivate the central concept of Nash equilibria are
not realistic with respect to routing in large networks. Instead, we have described a simple
class of rerouting policies that, in the fluid limit, converge towards Nash equilibria. These
policies do not rely upon these assumptions but merely on very simple observations and
little computation. Thus, we have strengthened the motivation of Nash equilibria.

We have also given upper bounds on the time of convergence towards approximate equi-
libria. Furthermore, we have studied the effects of stale information which often imposes
significant performance degradation on practical applications. We have shown bounds on
the necessary update time for the information depending on smoothness parameters of the
network such that these effects can be avoided.
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