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Abstract

We show new lower bounds for the star-discrepancy and its inverse for
subsets of the unit cube. They are polynomial in the quotient d/n of the
number n of sample points and the dimension d. They provide the best
known lower bounds for n not too large compared with d.

1 Introduction

The star-discrepancy of a set is one of the main tools to estimate the worst case
error of multivariate integration for certain classes of functions. There are rather
accurate bounds on the best possible star-discrepancy of an n-point set in the
d-dimensional unit cube [0, 1]d for fixed dimension d and, compared with d, very
large n (typically exponential in d), see e.g the monographs of H. Niederreiter
[Nie92] and M. Drmota and R. F. Tichy [DT97]. For some applications the
dimension d may be so large that it becomes impossible to use enough points
such that these bounds give reasonable error estimates. The question how the
discrepancy depends on the dimension d then turns out to be a critical issue.

S. Heinrich, E. Novak, G. W. Wasilkowski and H. Woźniakowski recently
studied this question in [HNWW01]. They prove an upper bound on the star
discrepancy that shows that it depends only polynomially on d/n. They also
show a lower bound which is rather far from the upper bound as it depends
exponentially on d/n. It is the purpose of this paper to show that the lower
bound can be improved to a polynomial behavior in d/n.

To state problems and results precisely let us introduce the necessary nota-
tion. Cardinality of a finite set A and Lebesgue measure of a measurable subset
B of Rd are denoted by |A| and |B|, respectively. Let T be a finite subset of the
d-dimensional unit cube Id = [0, 1]d with |T | = n. Given x ∈ Id, we consider
the box Cx = {y ∈ Id : 0 ≤ yi < xi for i = 1, . . . , d}. The discrepancy of T in
the box Cx is given by

D(T, x) = |Cx| − n−1|T ∩ Cx|.
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The star-discrepancy of T is then defined as

D∗
∞(T ) = sup

x∈Id

|D(T, x)|.

Let
D∗
∞(n, d) = inf{D∗

∞(T ) : T ⊂ Id, |T | = n}
be the minimal star-discrepancy of an n-point subset in dimension d. Our results
are sometimes better expressed via the inverse function

N∗
∞(d, ε) = min{n : D∗

∞(n, d) ≤ ε} = min{|T | : T ⊂ Id, D∗
∞(T ) ≤ ε}

for ε ∈ (0, 1).
The main result in [HNWW01] states that there exist constants c1, c2, ε0 > 0

such that for all 0 < ε ≤ ε0

c1d log(1/ε) ≤ N∗
∞(d, ε) ≤ c2d/ε2, (1)

or, in terms of the discrepancy, there exist constants c1, c2, ε0 > 0 such that for
all d, n

min(ε0, e
−c1n/d) ≤ D∗

∞(n, d) ≤ c2

√
d/n. (2)

In [Hei03], the problem was raised to narrow the considerable gap between lower
and upper bounds in (1) in terms of the dependence on ε. We prove here

Theorem 1. There exist constants c, ε0 > 0 such that

N∗
∞(d, ε) ≥ cd/ε for 0 < ε < ε0 (3)

and
D∗
∞(n, d) ≥ min(ε0, cd/n). (4)

In fact, our proof shows this lower bound for the discrepancy defined with
arbitrary coefficients instead of the uniform weights 1/n. Let a = (a1, . . . , an) ∈
Rn and T = {t1, . . . , tn} ⊂ Id. Then we consider the discrepancy function with
weight a given by

D(T, a, x) = |Cx| −
n∑

i=1

ai1Cx(ti),

where 1C denotes the indicator function of the set C. Obviously, D(T, x) =
D(T, a, x) for a = (1/n, . . . , 1/n). Furthermore, we define as in the uniformly
weighted case

D∗
∞(T, a) = sup

x∈Id

|D(T, a, x)|.

Finally, let

D∞(n, d) = inf{D∞(T, a) : T ⊂ Id, |T | = n, a ∈ Rn}
be the minimal weighted star-discrepancy of an n-point subset in dimension d
and

N∞(d, ε) = min{n : D∞(n, d) ≤ ε}
its inverse function. Obviously, D∞(n, d) ≤ D∗

∞(n, d) and N∞(n, d) ≤
N∗
∞(n, d). Then Theorem 1 is an immediate consequence of
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Theorem 2. There exist constants c, ε0 > 0 such that

N∞(d, ε) ≥ cd/ε for 0 < ε < ε0 (5)

and
D∞(n, d) ≥ min(ε0, cd/n). (6)

The proof of the upper bound in (1) and (2) in [HNWW01] is based on the
fact that the class of boxes (Cx)x∈Id is a Vapnik-Červonenkis class of dimension
d. A feature of our proof of the lower bound is that it also uses essentially the
VC-property of this class. Let us recall the necessary notions and results.

Let (X,P) be a probability space with probability measure P. A countable
family C of measurable subsets of X is called a Vapnik-Červonenkis class (for
short VC-class) if there exists a nonnegative integer v such that

|{A ∩ C : C ∈ C}| < 2v+1

for any subset A ⊂ X with |A| = v + 1. The smallest such v is called
VC-dimension of C. A basic inequality for any VC-class of dimension v, in-
dependently due to N. Sauer [Sau72], S. Shelah [She72], V. N. Vapnik and
A. Ya. Červonenkis [VC71], is the estimate

|{A ∩ C : C ∈ C}| ≤
v∑

i=0

(|A|
i

)
(7)

for any finite set A ⊂ X.
The discrepancy of an n-element set T = {t1, . . . , tn} ⊂ X with respect to

C ∈ C and weight a = (a1, . . . , an) ∈ Rn is then given as

D(T, a, C) = P(C)−
n∑

i=1

ai1C(ti).

The discrepancy of T with respect to C and a is

DC
∞(T, a) = sup

C∈C
|D(T, a, C)|.

Again, we abbreviate DC
∞(T ) = DC

∞(T, a) for the uniform weight a =
(1/n, . . . , 1/n). Observe that the such defined discrepancy with respect to the
class of boxes (Cx) in Id (with x restricted to Id ∩ Qd) is exactly the star dis-
crepancy defined earlier. In [HNWW01], the upper bounds in (1) and (2) are
proved in this more general setting:

Theorem 3. There is a constant c > 0 such that for any VC-class C of di-
mension v, any probability P as above and any n ∈ N there exists T ⊂ X with
|T | = n and DC

∞(T ) ≤ c
√

v/n.
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Our lower bound from Theorem 2 also allows such a generalization taking
into account the covering numbers of the class C with respect to the pseudo-
metric dP(C1, C2) = P(C1∆C2). For ε > 0, the covering number N(M,d, ε)
of a pseudometric space (M, d) is the smallest number of (closed) ε-balls
B(x, ε) = {y ∈ M : d(x, y) ≤ ε} that cover M . If there is no finite cov-
ering with ε-balls we set N(M, d, ε) = ∞. We will need the obvious fact
that if M is equipped with two metrics d1 and d2 such that d1 ≥ d2 then
N(M, d1, ε) ≥ N(M, d2, ε).

Theorem 4. Let C be a VC-class of dimension v which is closed under inter-
sections and let P be a probability as above. Assume that there exists a constant
κ > 0 such that N(C, dP, ε) ≥ (κε)−v for all ε > 0. Then there exist constants
c, ε0 > 0 such that for all n, all T ⊂ X with |T | = n and all a ∈ Rn

DC
∞(T, a) ≥ min(ε0, cv/n).

Observe that by a result of D. Haussler [Hau95], the required entropy be-
havior in the assumption of the theorem is essentially the worst possible for any
VC-class of dimension v.

2 Proofs

The attentive reader familiar with the lower bound proof of (1) in [HNWW01]
will observe that our approach was inspired by that one. We first prove Theo-
rem 4 and then deduce Theorem 2 from it by estimating the relevant covering
numbers. We start with two lemmas. We always deal with a v-dimensional
VC-class C of measurable subsets of a ground set X equipped with a probability
P.

Lemma 5. Assume that T ⊂ X with |T | = n and ε > 0 satisfy

v∑

i=0

(
n

i

)
< N(C, dP, ε).

Then there exist C1, C2 ∈ C such that P(C1∆C2) = dP(C1, C2) > ε and T ∩C1 =
T ∩ C2.

Proof. Let N be a maximal subset of C such that dP(C1, C2) > ε for distinct
C1, C2 ∈ N . The maximality of N implies that the closed balls with centers in
N and radius ε cover C. Hence N(C, dP, ε) ≤ |N |. Now it follows from (7) and
the assumption that

|{T ∩ C : C ∈ C}| ≤
v∑

i=0

(
n

i

)
< |N |.

Hence there must exist distinct C1, C2 ∈ N such that T ∩ C1 = T ∩ C2.
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Lemma 6. Let T ⊂ X, ε > 0, and C1, C2 ∈ C be such that P(C1∆C2) =
dP(C1, C2) > ε and T ∩ C1 = T ∩ C2. If C is closed under intersections then
DC
∞(T, a) ≥ ε/4 for all a ∈ Rn.

Proof. Let C = C1 ∩ C2 ∈ C, n = |T |, and S = T ∩ C1 = T ∩ C2 = T ∩ C. Let
α =

∑n
i=1 ai1S(ti). Then

4DC
∞(T, a) ≥ D(T, a, C1) + D(T, a, C2)− 2D(T, a, C)

= (P(C1)− α) + (P(C2)− α)− 2(P(C)− α)
= P(C1) + P(C2)− 2P(C) = P(C1∆C2) > ε.

Proof of Theorem 4. We may assume that κ ≥ 1. Choose c = 1/4κe and assume
that n ≥ v and 0 < ε ≤ cv/n. Then

v∑

i=0

(
n

i

)
<

(en

v

)v

≤
(

1
4κε

)v

≤ N(C, dP, 4ε).

Then Lemma 5 implies that there exist C1, C2 ∈ C such that P(C1∆C2) =
dP(C1, C2) > 4ε and T ∩C1 = T ∩C2. Now Lemma 6 shows that DC

∞(T, a) ≥ ε.
Hence

DC
∞(T, a) ≥ cv/n whenever n = |T | ≥ v.

If on the other hand n = |T | < v, we may choose an extension S ⊃ T with
|S| = v. Finally, also extending the weight a ∈ Rn to a weight b ∈ Rv by letting
bi = ai for i = 1, . . . , v and bi = 0 for i = v + 1, . . . , n, it follows from what was
already shown that

DC
∞(T, a) = DC

∞(S, b) ≥ c =: ε0.

Remark. To not clutter up our argument, we did not try to optimize the
constants in our results. It is obvious, that better estimates on

∑v
i=0

(
n
i

)
for

particular choices of n, v lead to better constants.

Proof of Theorem 2. We first derive (6) from Theorem 4. To that end, let C be
the system of all boxes Cx with x ∈ Id ∩ Qd and let P be Lebesgue measure
on Id. Then D∗

∞(T, a) = DC
∞(T, a) for any finite T ∈ Id and a ∈ R|T |. It is

well-known that the class C has VC-dimension v = d, see e.g. [Dud84, Corollary
9.2.15]. So Theorem 4 indeed implies (6) once we show that there is some κ > 0
such that

N(C, dP, ε) ≥ (κε)−d for all ε > 0. (8)

This was basically already done in [HNWW01]. Nevertheless we include a short
argument here for the convenience of the reader.
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Let us transfer the distance dP to Id by d(x, y) := dP(Cx, Cy). We first show
that

d(x, y) ≥ |Cx∧y| ‖x− y‖1 for x, y ∈ Id (9)

where x ∧ y is the coordinatewise minimum of x and y and ‖u‖1 =
∑d

i=1 |ui| is
the l1-norm of u ∈ Rd. Indeed, let z = x ∧ y and estimate

|Cx \ Cy| = |Cx \ Cz| =
d∏

i=1

xi −
d∏

i=1

zi =
d∑

i=1

x1 . . . xi−1(xi − zi)zi+1 . . . zd

≥
d∏

i=1

zi

d∑

i=1

(xi − zi) = |Cz|
d∑

i=1

(xi − zi).

Analogously, we obtain

|Cy \ Cx| ≥ |Cz|
d∑

i=1

(yi − zi).

Both inequalities together yield as claimed

d(x, y) = |Cx∆Cy| ≥ |Cz|
d∑

i=1

(xi + yi − 2zi) = |Cz|
d∑

i=1

|xi − yi|.

If x, y ∈ M := [1− 1/2d, 1]d, it follows from |Cx∧y| ≥ (1− 1/2d)d ≥ 1/2 that
d(x, y) ≥ ‖x− y‖1/2. Hence a simple volume comparison implies that

N(C, dP, ε) = N(Id, d, ε) ≥ N(M, d, ε) ≥ N(M, ‖ . ‖1, 2ε) ≥ |M |
(2ε)d|B| ,

where |B| = 2d/d! is the volume of the ld1-unit ball B = {x ∈ Rd : ‖x‖1 ≤ 1}.
So we arrive at

N(C, dP, ε) ≥ d!
(8εd)d

≥ (8eε)−d

which is (8) with κ = 8e.
Finally, inequality (5) is immediate from (6).
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this problem and for some useful discussions about the contents of this note.
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