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Abstract. In this paper, we study stability of computations in the presence of
random faults (noise). We focus on homogeneous models such as cellular au-
tomata. We present a new proof of stability of Toom’s 2-dimensional automaton.
The arguments are based on the methods from the famous “Positive Rates” paper
by P. Gács. The advantage of our construction is that it explains precisely how er-
rors spread in the computational array and how they are stabilized. Also we show
that the same technique can be used to prove correctness of a 3-dimensional fault
tolerant computational array.

1 Introduction

In most models of computation, programs are not stable towards faults: if a
single step is corrupted, then the result of the computation is erroneous. A task of
theoretical and practical interest is to implement reliable computations on faulty
devices: the problem is to construct models which provide reliable computations
even if some elementary step are faulty. Different approaches were proposed,
mainly several variants of faulty circuits and cellular automata – see a survey
in [1]. In the present paper we focus on computations based on faulty cellular
automata.

The first step towards implementation of stable computations on faulty cel-
lular automata, is the following basic problem: construct a cellular automaton
that has at least 2 stable configurations. Here we say that a configuration is sta-
ble, if with high probability most cells of the array keep the initial state (corre-
sponding to this configuration) for a long (or even infinite!) time despite random
perturbation. Note that this problem is interesting for its significance in physics
and thus many authors motivate this kind of work by study of phase transition
instead of computation.
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The first result in this area belongs to Andrei Toom. In [2] he presented a
very simple two-dimensional stable cellular automaton. Despite apparent sim-
plicity of Toom’s cellular automaton (which has only two states) the original
proof of its stability was very technical. Several other proofs of Toom’s result
were then given [3–6], but they all are quite non-trivial. One of the goals of this
paper is to provide a simple proof that explains precisely what happens with
faults and their consequences in the array of Toom’s automata.

Toom’s construction was used later in [4] in order to simulate 1-dimensional
array of cellular automata by a 3-dimensional array of stable automata in real
time (“in real time” means that one step of computation of the 1-dimensional
simulated cellular automata is simulated by one step of the 3-dimensional sim-
ulating cellular automata). Later, Peter Gács improved this result and imple-
mented fault tolerant computations on 2-dimensional [7] and 1-dimensional [8]
arrays of faulty cellular automata. To achieve these results Gács developed inter-
esting technique, which might be useful in other situations. However, the con-
struction by Gács is extremely difficult and long, and is really understood by a
very small number of people. This is a serious obstacle to further progress in
this field: the problem is fundamental and the construction should be used for
many related problems but it cannot be as it is. The author himself notes in [1,
8] that one of the most important open problems in this area is to simplify the
proof of his results, i.e, to find an understandable construction of self-correcting
computations based on faulty cellular automata.

In this paper we deal with the first (and the easiest) part of this construction.
Using ideas from [8], we present a new simplified proof of stability of the Toom
2-dimensional automaton, and also correctness of the three-dimensional reliable
cellular array proposed in [4]. Our main intention is to split the proof into a few
independent steps and provide a simple proof for each of them. Our goal is to
explain what happens with faults and their consequences: how long ‘islands’ of
disturbed cells can survive and how they shrink.

Our paper is organized as follows: we first discuss in all detail the most
simple case: Toom’s rule for an infinite 2-dimensional cellular automaton. In
Section 3 we explain what happens on finite arrays of faulty automata (torus).
In Section 4 we use our construction to explain the embedding of computations
into 3-dimensional fault tolerant cellular automaton.

2 Toom’s rule on the infinite plane.

We start with a 2-dimensional cellular automaton. Let us consider a 2-
dimensional array of cells, the infinite plane Z × Z. There is a fixed (finite)
automaton in each cell of the space. This automaton has two states: ‘alive’ and



‘dead’. We identify the state of the cell with the state of the automaton it con-
tains. All cells update synchronously as follows: the state of any cell at time t+1
is defined as majority of states of itself, its North and its East neighbors at time
t, see Fig. 1. The majority is well defined since there are 2 state possibilities for

(x, y) (x + 1, y)

(x, y + 1)

Fig. 1. Toom’s rule

each of 3 cells. We call this automaton rule Toom’s rule since it is inspired by
Toom’s work [2].

Note that if we have a finite ‘island’ of n alive points on the infinite plane
of dead points, Toom’s rule will shrink this island in time at most n. To see this,
we circumscribe a triangle that we call ‘Toom’s triangle’ around the island, see
Fig. 2. This (virtual) triangle has the property to contain all alive cells, be isocele
and minimal.

In course of time, Tooms’s rule transforms the island of alive cells. At each
step we circumscribe around the island new Toom’s triangle. How does the is-
land vary on time, and what happens with the Toom triangle? Obviously, the
vertical leg of the triangle may not move to the left, and the horizontal leg tri-
angle may not move downwards. But the hypotenuse moves to the south-west
(each step it must shift at least by 1). Thus the triangle shrinks to nothing in a
finite number of steps. Moreover, the number of steps required to eliminate the
island is not greater than the initial size of Toom’s triangle, which is not greater
than the number of alive cells in the island.

The arguments above are quite trivial. But we stress that the idea of shrink-
ing of Toom’s triangle is the main issue of our arguments. In the sequel we shall



Fig. 2. Toom’s triangle

generalize these arguments for a non-trivial case, when the evolution of Toom’s
triangle becomes more complicated due to random faults.

Now, let us introduce faults. We model them by a random transformation.
At any time step, any dead cell might (randomly) come to live. We call such
events ‘miracles’. Our probabilistic model is as follows: we assume that mira-
cles at different cells and times are independent and that the probability to get
a miracle at point a at time t is some (small) ε > 0. Beware that miracles are
not symmetric: they consist of spontaneous life but not of spontaneous death.
This non-symmetry strengthen our result because in order to prove that a dead
configuration is stable, we cannot use in our model the spontaneous death of
alive cells.

Initially, i.e., at time t = 0, all cells are dead.

What is to be proved looks very simple: we want to prove that if ε is small
enough, then any cell at any time is dead with high probability. Our ideas come
from reading of [1, 8, 9].

An Informal plan of our proof is:

1. Separate all miracles into ‘islands’ of different levels. Islands are sets of
miracles in space × time. An n-level island of miracles should be of size
about qn × qn in space and about qn in time (we specify the values qn later);
an n-level island should contain enough miracles (at least 2n). Islands of the
same rank should be separated from each other in space and time, so than
they cannot interfere with each other. The first step of our proof is the fact
that such ranking of the set of miracles is possible with probability 1.



2. Show that an n-level island of miracles disappears without consequences in
time O(qn), without interacting with other islands of the same rank. If there
were no lower rank errors, the proof would be trivial: we could circumscribe
Toom’s triangle around a given island and note that it shrinks as when there
are no miracles (the vertical and the horizontal legs may not move left and
down respectively, the hypotenuse moves South-West at speed at least 1). In
the presence of lower rank errors, the vertical and the horizontal sides may
move left and down respectively. What we prove is that this movement is
sufficiently slow. The speed of the hypotenuse may also be a bit less than
1, but we prove that it remains high enough. This is how we obtain that the
triangle vanishes in time O(qn).

2.1 Notations and definitions

We denote by Space the set Z × Z, and by Time the set Z+.
Define a random perturbation as ξ(a), a ∈ Space×Time. Let Prob[ξ(a) =

1] = ε and Prob[ξ(a) = 0] = 1− ε. We assume that ξ(a) and ξ(b) are indepen-
dent for a 6= b. Intuitively, when ξ(a) = 1 there is “noise” and a miracle may
occur in the cell and time addressed by a.

Now we are ready to define Toom’s cellular automaton in a faulty situation.
For any point (x, y, t) ∈ Space × Time the state of a cell s(x, y, t) is 1 (alive)
or 0 (dead).

1. s(x, y, 0) = 0 for any x, y, i.e., initially all cells are dead;
2. for any t > 0 the following transition rule is used: let a = (x, y, t), a0 =

(x, y, t − 1), ae = (x + 1, y, t − 1), an = (x, y + 1, t − 1); then

s(a) = max{s′(a), ξ(x, y, t)},

where s′(a) = majority{s(a0), s(ae), s(an)}. In other words, at a noisy
point (i.e., if ξ(a) = 1) a cell is made alive, independently of its neighbor-
hood. In a normal point (i.e., in a point a such that ξ(a) = 0) Toom’s rule is
applied.

A point a ∈ Space × Time is called a miracle, if Toom’s rule is not applied
at this point, i.e., s(a) 6= s′(a). Beware that if the point is noisy and becomes
alive, it is not sure that it is a miracle. It could be alive due to Toom’s rule, and
in this case, even if it is noisy, it is not called a miracle.

We denote by M ⊂ Space×Time the set of all miracles. The main idea of
the proof is to split M into ‘islands’ of miracles of different size.



We use l∞-norm to measure the distance between points in the space-time.
For two points a = (x, y, t) and a′ = (x′, y′, t′) in Space × Time we denote
dist(a, b) = max{|x−x′|, |y−y′|, |t− t′|}. For A, B ⊂ Space×Time denote

dist(A, B) = min
a∈A,b∈B

dist(a, b).

The size (diameter) of a set S ⊂ Space × Time is defined as max
a,b∈S

dist(a, b)

Let us fix now the constants qn: we choose C = 10000, q0 = 3, qn =
Cn2qn−1. The exact values of this parameters are not very important. However,
it is essential that

∑
(qn/qn+1) < ∞.

Definition 1 (0-level islands and semi-islands).
A) We call a 0-level semi-island every singleton containing a miracle.
B) We call a 0-level island any 0-level semi-island S such that dist(S, M \S) >
q1/5.
C) The union of all 0-level islands is denoted M0.

In general, M0 is a proper subset of M .
Suppose that for all k < n we have defined k-level semi-islands, k-level

islands, and Mk. Then we define by induction semi-islands and islands of level
n and the set Mn:

Definition 2 (n-level semi-islands and islands).
A) A nonempty set S ⊂ M \ Mn−1 is called an n-level semi-island if

(1) S is of size at most qn;
(2) S contains at least two disjoint (n − 1)-level semi-islands.

B) An n-level semi-island S is an n-level island if
(3) dist(S, M \ (S ∪ Mn−1)) > qn+1/5

C) We denote by Mn the union of Mn−1 and all n-level islands.

Note that an n-level island is defined as an n-level semi-island that is isolated
from other semi-island of level n and higher. Note also that any n-level semi-
island contains at least 2n miracles.

Definition 3 (birth time). Let S be an n-level island. The birth time of S is
min{t : ∃x, y (x, y, t) ∈ S}.

2.2 The structure of M

We say that an n-level semi-island S ⊂ M is minimal, if any proper subset
of S is not a n-level semi-island. Obviously, any n-level semi-island contains



a subset that is a minimal n-level semi-island. Further we prove a statement
concerning minimal semi-islands. In the following proposition we let M−1 = ∅
to simplify the notation.

Proposition 1. For any m, for all a ∈ M \ Mm−1, the miracle a belongs to a
minimal m-level semi-island S, which contains exactly 2m miracles and is of
size at most qm/3.

Proof: From Definition 2, condition (2), it follows that any n-level semi-
island contains at least 2n points. Thus, if some n-level semi-island contains
exactly 2n points, it is minimal.

We prove the proposition by induction. The inductive base m = 0 holds, as
a 0-level semi-island is just a singleton, and q0 = 3.

Assume that the statement is true for all n < m; let a ∈ M \ Mm−1.
We must prove that a belongs to some minimal m-level semi-island. From the
inductive hypothesis, there exists a minimal (m − 1)-level semi-island S1 such
that a ∈ S1; the set S1 consists of 2m−1 points and is of size at most qm−1/3.

Claim: There exists a point b ∈ M \ Mm−2 such that qm−1/3 <
dist(b, S1) < qm/4.

Assume the contrary is true, i.e., for any point b ∈ M \ Mm−2 if
dist(b, S1) ≤ qm/4, then we have dist(b, S1) ≤ qm−1/3. In this case we can
extend S1 and get an (m− 1)-level island, which implies a contradiction. More
precisely, define

S̃1 = {b ∈ M \ Mm−2 : dist(b, S1) ≤ qm−1/3}.

The set S̃1 is of size less than qm−1. Hence, condition (1) from Definition 2
holds for S̃1 with n = m − 1.

Further, S1 ⊂ S̃1, so (2) of Definition 2 is also true for S̃1.
From our assumption we get that the distance between S̃1 and M \(Mm−2∪

S̃1) is at least (qm/4 − qm−1/3), which is greater than qm/5. Thus, condition
(3) from Definition 2 is true for S̃1. Hence, the set S̃1 is a (m − 1)-level island,
a ∈ Mm−1, and we get a contradiction. The claim is proved.

From this Claim we get a cell b ∈ M \ Mm−2, which is at distance at
least qm−1/3 and at most qm/4 from S1. By inductive hypothesis, there exists a
minimal (m − 1)-level semi-island S2 3 b; the set S2 consists of 2m−1 points
and is of size at most qm−1/3. As the distance between S1 and b is at least
qm−1/3, the sets S1 and S2 are disjoint.

Set S = S1 ∪S2. By definition, S contains two disjoint (m− 1)-level semi-
islands and consists of 2m−1 + 2m−1 = 2m miracles. Also, S is of size at most
(2/3qm−1 + qm/4) < qm/3. Thus, S is an m-level semi-island of size less than
qm/3. It is minimal, since S consists of 2m points. �



Definition 4. Let u be a point in Space × Time. Denote by εn(u) probabil-
ity of the event that there exists at least one n-level semi-island S such that
dist(u, S) ≤ qn+1.

Proposition 2. There exists a γ > 1 such that for a small enough ε (from the
definition of perturbation ξ) for any u ∈ Space × Time we have εn(u) ≤
(γε)2

n

.

Proof: Let us fix a point u in the space-time. We are interested in the
probability of the event that there exists an n-level semi-island S such that
dist(u, S) ≤ qn+1. Note that such a semi-island S should be inside of the
2qn+1-neighborhood of u.

As any n-level semi-island contains a minimal n-level semi-island, it
is enough to bound the probability of the following event: in the 2qn+1-
neighborhood of u there exists a minimal n-level semi-islands.

We are going to count the total number of all minimal n-level semi-islands
in the given neighborhood of u. Each n-level semi-island contains at least 2n

miracles. Hence, if the number of such semi-islands is Ln, then εn ≤ Ln · (ε)
2n

.
To make the arguments more clear, we shall count not the number of semi-

islands but length of their descriptions. More precisely, we show that a minimal
semi-island S in the given area can be uniquely identified (while the point u is
known) by some description of length O(2n). We suppose that any description
is just a string of 0’s and 1’s. As there exist at most 2l different descriptions of
length l, there are at most 2O(2n) different semi-island that have such a descrip-
tion. So, our bound for the length of descriptions implies

εn ≤ 2O(2n) · ε2
n

< (γε)2
n

for some constant γ, which does not depend on ε and n.
We should define more formally what a complexity of a semi-island is. For

the reader acquainted with the notion of Kolmogorov complexity [10] we could
say that this is plain Kolmogorov complexity. But actually a more restrictive and
simple definition is enough for our proof:

Definition 5. Denote by In the set of all minimal n-level semi-islands in
(2qn+1)-neighborhood of u. We shall say that there exist discriptions of length
ln for all n-level semi-islands in the given area, if there exists a surjective map-
ping

F : {0, 1}ln → In.

Intuitively, F is a rule, which maps a description (a string of one’s and zero’s
of length ln) to the corresponding semi-island.



Lemma 1. Let u be a point in the space-time. Then for all minimal semi-
islands in 2qn+1-neighborhood of u there exist descriptions of length ln =
D(

∑
k≤n

log k

2k )2n for some constant D.

In the proof we shall explain the description rule in intuitive terms. We be-
lieve it should be quite clear how to define the corresponding mapping F for-
mally.

We prove this lemma by induction. The base is trivial: a 0-level semi-island
is just a singleton. There are O(q3

1) points in the (2q1)-neighborhood of u, and
we can provide descriptions of length (3 log q1 + O(1)).

Let us prove the inductive step. Let S be a minimal n-level semi-island in
the qn+1-neighborhood of u. From the definition of a semi-island it follows that
S is a union of two disjoint semi-island of level (n − 1). Denote this islands
S′ and S′′. It is not hard to see that we can choose two points u′, u′′ in the
space-time such that

1. dist(u′, S′) ≤ qn,
2. dist(u′′, S′′) ≤ qn,
3. in each coordinate, the difference between u and u′, and between u and u′′

is a multiple of qn.

Note that there are only O((qn+1/qn)3) = O((n + 1)6) possible positions for
u′ and u′′.

To identify S given u, it is enough to identify u′ and u′′, and then identify
S′ given u′ and S′′ given u′′. In a word, our description of S consists of 4 parts:
description of u′ given u, description of u′′ given u, and descriptions of S ′ and
S′′ given u′ and u′′ respectively.

To describe each of two points u′, u′′, it is enough log((n+1)6)+O(1) bits
of information. Further, by the inductive assumption, to identify S ′ given u′ or
S′′ given u′′ we need strings of length

(
∑

k≤n−1

D
log k

2k
)2n−1.

In the whole, the description of S requires

O(log((n + 1)6)) + 2D(
∑

k≤n−1

log k

2k
)2n−1 ≤ D(

∑

k≤n

log k

2k
)2n

digits (if D is taken large enough). The lemma is proven.
To prove the proposition it remains to note that the series

∑ log k

2k converges.
Thus, any minimal n-level semi-island S in qn+1-neighborhood of u has a de-
scription of length O(2n), and we are done.

�



Remark 1. The fact that Space × Time has dimension 3 is not important for
the proof above. The same argument would work for any finite dimension.

Remark 2. Proposition 2 implies that
∑

i<∞

εi = O(ε) if ε is small enough.

Corollary 1. If ε is small enough, with probability 1 every miracle belongs to
some n-level island.

Proof: Let u ∈ M . By Proposition 1 there are two possibilities: either (i) u ∈
Mn for some n ≥ 0, i.e., u belongs to some n-level island, or (ii) u belongs to
an n-level semi-island for every n ≥ 0. From Proposition 2 it follows that (ii)
holds with probability 0, since εn → 0 as n → ∞. �

We shall say that the set of miracles M is standard, if each miracle belongs
to some n-level island.

2.3 Evolution of an n-level island

Every alive cell is alive because it is a consequence of some miracles. Let us
define this more formally.

Definition 6. An explanation path from an alive point a ∈ Space×Time to an
n-level island S is a sequence a0, a1, . . . , am of alive points in Space × Time
such that

1. a0 = a, am ∈ S
2. for any k < m if ak has coordinates (x, y, t) then ak+1 is one of three points

(x, y, t − 1), (x + 1, y, t − 1), (x, y + 1, t − 1).

Note that some ai in the sequence above might belong to other islands but S.
If there exists an explanation path from an alive point a to an n-level island

S, we say that a is a consequence of S.

Obviously, for a standard set of miracles M any alive point is a consequence
of some island of miracles (or, maybe, of many islands).

Remark 3. Let a sequence of points a0, a1, . . . , am be an explanation path, and
ai = (xi, yi, ti) for i ≤ m. Then ti − tj ≥ max{xj −xi, yj − yi} for any i < j.

There may be more than one explanation path from a point a to an island S.
Further we select explanation paths with some special properties.

Definition 7 (Space-greedy explanation path). Let a0, . . . , am be an expla-
nation path from an alive point a = a0 to some island S. This path is called
space-greedy if the following conditions hold for any i < m:



– ai 6∈ S.
– Let ai = (x, y, t). This point is a consequence of S but not its member.

Hence, at least two of points (x, y, t − 1), (x + 1, y, t − 1), (x, y, t + 1)
are alive, and, moreover, at least one of them is a consequence of S. For a
space-greedy path, if (x + 1, y, t − 1) or (x, y + 1, t − 1) is a consequence
of S, then ai+1 must be one of these two points. Only if none these points is
a consequence of S, ai+1 = (x, y, t − 1).

And two similar definitions:

Definition 8 (South-most explanation path). Let a sequence of points
a0, . . . , am be an explanation path from an alive point a = a0 to an island
S (am ∈ S). This path is called south-most if for any i < m the following
conditions hold:

– ai 6∈ S.
– If one of points (x, y, t− 1), (x + 1, y, t− 1) is alive, then ai+1 must be one

of these two points. Otherwise ai+1 = (x, y + 1, t − 1),

Definition 9 (West-most explanation path). Let a sequence a0, . . . , am be an
explanation path from an alive point a = a0 to some island S (am ∈ S). This
path is called west-most if for any i < m the following conditions hold:

– ai 6∈ S,
– If one of points (x, y, t − 1), (x, y + 1, t) is alive, then ai+1 is one of these

two points. Only otherwise ai+1 = (x + 1, y, t − 1).

Note that if u is a consequence of some n-level island S, then there exist a
space-greedy, a west-most and a south-most explanation paths from u to S.

Definition 10. A point a ∈ Space × Time is called a proper consequence of
an n-level island S, if the following conditions hold

1. a is not a consequence of any island of level higher than n.
2. if a is a consequence of another n-level island S ′, then the birth time of S is

not greater than the birth time of S ′.

Lemma 2. Assume the set of miracles M is standard, a ∈ M , and a is a proper
consequence of an n-level island S. Assume a is also a consequence of another
n-level island S ′. Then for any consequence b of S ′ we have dist(b, S) > 10qn.

Proof of lemma: Let b = (x, y, t) be a consequence of S ′, and assume
dist(b, S) ≤ 10qn. Denote by t0 the birth time of S. Then

t − t0 ≤ 11qn. (1)



The point b is a consequence of S ′, so there exists an explanation path
b0, b1, b2, . . . , bm from b to S′ (b = b0 and bm is point in S ′). Let bm =
(xm, ym, tm). As dist(b, S) ≤ 10qn and dist(S, S ′) > qn+1/5 (the dis-
tance between any two n-level islands must be large), we get dist(b, bm) >
qn+1/5 − 10qn. Hence, by Remark 3,

t − tm > qn+1/5 − 10qn. (2)

From inequalities (1) and (2) we have tm < t0, so the birth time of S ′ is
less then the birth time of S. Hence, by Definition 10, item (2), a is not a proper
consequence of S. Thus, we get a contradiction. �

Theorem 1. Suppose that the set of miracles M is standard. Let a be a proper
consequence of an n-level island S. Then dist(a, S) < 8qn. Consequently, for
any point b ∈ S the distance between a and b is less than 9qn.

Proof of theorem: We prove the theorem by induction. Inductive basis n =
0 is trivial. Let us deal with inductive step. We should prove that an explanation
path from S to its proper consequence a cannot be too long. It is enough to
prove that if a is a proper consequence of S and dist(a, S) < 10qn, then we
have dist(a, S) < 8qn.

Lemma 3. Let a be a consequence of S. Let P = (a0, a1, . . . , ak) be a space-
greedy explanation path from a = a0 to some ak = a′ ∈ S. Let a = (x, y, t)
and ak = (x′, y′, t′). Denote T = t − t′ and L = (x′ − x) + (y′ − y). Suppose
T > 5qn−1. Then L ≥ 9T/10.

Informally, this lemma says that the hypotenuse of Toom’s triangle around S
moves to the south-west with average speed greater than 9/10.

Proof of lemma: Obviously, every next point in the path P has the time
coordinate less by 1, so T = k. Further, any ai either has the same space coor-
dinates as ai+1, or one of its space coordinates is shifted by 1. To get the Lemma
we should prove that there are at most 10% of such points ai in the path P , that
ai and ai+1 have the same space coordinates.

Let ai = (xi, yi, ti) and ai+1 = (xi, yi, ti − 1) have the same space coordi-
nates. The points (xi +1, yi, ti−1) and (xi, yi +1, ti−1) are not consequences
of S, because P is space-greedy. As ai is alive, two variants are possible:

1. ai is a miracle and, hence, it belongs to some island S ′;
2. at least one of points (xi + 1, yi, ti − 1), (xi, yi + 1, ti − 1) is alive and,

hence, is a proper consequence of some island S ′ 6= S.



In both cases we say that S ′ supports the path P at the point ai.
As a is a proper consequence of S, from Lemma 2 it follows that the level

of S′ is less than n.
For each number i < k such that the point ai has the same space coordinate

as ai+1, we fix an island S ′ = S′(ai) as above. We should answer two questions:

– How many points ai of the path P can support one k-level island S ′?
– How many k-level islands can support the path P at different points?

Answer to the first question is simple: by the inductive hypothesis of Theo-
rem 1, it is less than 9qk−1 (all proper consequences of a k-level islands S ′ are
at the distance at most 9qk from any point in S ′).

To answer the second question some calculations are required. Assume that
S′ and S′′ are two k-level islands that support the path P at points ai and aj re-
spectively. By the inductive hypothesis, dist(ai, S

′) < 8qk and dist(aj , S
′′) <

8qk. The same time, the distance between any two k-level islands is lower-
bounded: dist(S ′, S′′) > qk+1/5. Hence, the distance between ai and aj is quite
large. At least, dist(ai, aj) > qk+1/10 (a very rough bound). From Remark 3
we get |ti− tj | = |i−j| > qk+1/10. Upperbound the number of all points ai on
the path that are supported by k-level islands: it is less than dT/(qk+1/10)e·9qk.
Sum up this value for all k < n:

∑

k<n

d10T/qk+1e · 9qk ≤ (1 + 1/5) · 90
∑

k<n

Tqk/qk < 120T
∑

k<∞

(qk/qk+1)

(the first inequality follows from the condition T > 5qk+1 for all k < n).
Further, in the definition of qn the constant C was chosen so that

∞∑

k=0

(qk/qk+1) ≤ 1/2000.

Lemma follows from this bound immediately.

Lemma 4. Let a be a consequence of S, and P = (a0, a1, . . . , ak) be a south-
most explanation path from a = a0 to some a′ = ak ∈ S. Let a = (x, y, t) and
ak = (x′, y′, t′), and denote T = t − t′, L′ = (y′ − y). Suppose that T > 5qn.
Then L′ ≤ T/10.

Informally, this lemma says that the horizontal leg of Toom’s triangle around S
moves to the south with average speed less than 1/10.



Proof of lemma: very similar to the proof of Lemma 3. We are interested in
points ai on the path P such that ai and ai+1 have different Y -coordinates. We
should prove that there are at most 10% of such points in P .

Let ai = (xi, yi, ti) and ai+1 = (xi, yi + 1, ti − 1). Then the points (xi +
1, yi, ti − 1) and (xi, yi, ti − 1) are not consequences of S, because P is south-
most. Hence, either ai is a miracle (and belongs to some island S ′), or at least
one of point (xi + 1, yi, ti − 1), (xi, yi, ti − 1) must be alive and be a proper
consequence of some islands S ′ 6= S. In these cases we say that S ′ supports the
path P at the point ai.

How many points ai can support one k-level island S ′? By the inductive
hypothesis of Theorem 1, the number of such points is less than 9qk.

How many k-level islands can support the path P at different points?
Assume that S ′ and S′′ are two k-level islands that support P at points ai

and aj respectively. By inductive hypothesis, the distances dist(ai, S
′) and

dist(aj , S
′′) are both less than 8qk. The same time dist(S ′, S′′) > qk+1/5.

Hence, |i − j| > qk+1/10.
The number of all points ai supported by k-level islands is at most

dT/(qk+1/10)e · 9qk. Sum up this value for all k < n:

∑

k<n

d10T/qk+1e · 9qk ≤ (1 + 1/5) · 90T
∑

k<n

qk/qk+1 ≤ T/10.

Lemma is proved.
Also a statement symmetrical to Lemma 4 holds:

Lemma 5. Let a be a consequence of S, and P = (a0 = a, a1, . . . , ak) be
a west-most explanation path from a to S, where a = (x, y, t) and ak =
(x′, y′, t′). Let T = t′ − t and L′′ = (x′ − x). If T > 5qn then L′′ ≤ T/10.

Informally, this lemma says that the vertical leg of Toom’s triangle around S
moves to the west with average speed less than 1/10.

Now we can prove the theorem. The idea is simple: for each time t draw
Toom’s triangle around the set of all consequences of the island S. The lemmas
above imply that as the time coordinate increase, the hypotenuse of this triangle
goes to the south-west with average speed at least 9/10, and the vertical and
horizontal legs go to the west and south respectively with small average speed
(at most 1/10). Hence, the triangle must shrink in time O(qn).

The same idea can be expressed in other terms. Let some point a is a con-
sequence of an error island S. Then there are south-most, west-most and space-
greedy explanation paths from a to S. On one hand, these three paths diverge
when we go to the past; on the other hand, the ends of all three paths must be
inside S, see Fig. 3. Hence, the distance in time and space between a and S



cannot be to large, so these explanation paths have no possibility to diverge too
far.

X

Y

Time

an alive point

an error island

Fig. 3. Three explanation paths from an alive point to an error island

Let us do the precise computations. Denote by tfirst and tlast the minimal
and the maximal times of miracles in S; denote by xmin, xmax, ymin, ymax the
minimal and the maximal space coordinates of miracles in S respectively.

Let a = (x, y, t) be a consequence of S. First, we prove that t− tlast < 8qn.
If t − tlast ≤ 5qn, there is nothing to prove. Assume that contrary and employ
the lemmas above. From Lemma 3 it follows that for a space-greedy explanation
path from a to a′ = (x′, y′, t′) ∈ S the difference (x′ + y′) − (x + y) is quite
large comparative to (t− t′). More exactly, we have (xmax−x)+(ymax−y) >
9/10(t − tlast). Further, from Lemma 4 the south-most explanation path goes
from a to a′′ = (x′′, y′′, t′′) ∈ S such that (y′′ − y) is quite small comparative
to (t − t′′). More precisely, (ymin − y) < 1/10(t − tfirst). Similarly, from
Lemma 5 we get (xmin − x) < 1/10(t − tfirst). It is not hard to check that
these three inequality above imply t − tlast < 5qn (a very rough bound).



Thus, we have proved that for any proper consequence a = (x, y, t) of S
the bound t − tlast < 5qn holds. Let us fix any explanation path from a to S.
Denote by a′ = (x′, y,′ , t′) ∈ S the last point in this explanation path. Then

t − t′ ≤ (t − tlast) + (tlast − tfirst) � 8qn.

From Remark 3, x′ − x ≤ t − t′ and y′ − y ≤ t − t′. Hence, dist(a, S) < 8qn.
�

Corollary 2. Any point a ∈ Space × Time is dead with large probability ε̂
(ε̂ → 1 as ε → 0).

Proof of corollary: First of all, we may assume that the set of all miracles M is
standard (Corollary 1).

Let a be an alive point. As M is standard, from Lemma 2 it follows that a
is a proper consequence of some island S. From Theorem 1 it follows that the
point a is in the 8qn-neighborhood of S.

From Proposition 2 we get that probability of the event ‘a is on the distance
less then 8qn from some n-level island’ is less than εn ≤ (γε)2

n

. Hence, a is
alive with probability less than the sum

∑
i<∞

εi = O(ε), see Remark 2.

The Corollary above implies a more general statement. Until now, we al-
lowed only ‘one-way’ noise: a dead cell could become spontaneously alive, but
not visa-versa. Let us consider a more traditional model. Let we have a 2-D cel-
lular automaton, each cell has two states. At each cell normally Toom’s rule is
applied, but with small probabilities a cell can randomly change its state (from
‘alive’ to ‘dead’ or from ‘dead’ to ‘alive’). Such a probabilistic automaton is usu-
ally called a small perturbation of Toom’s rule. Again, we suppose that random
transitions at different cells and at different moments of time are independent.
Combining the result above with the standard arguments [11], we get that any
such automaton has at least two different invariant measures: ‘most cells are
alive’ and ‘most cells are dead’.

3 Toom’s rule on torus.

In this section we discuss the behavior of Toom’s automaton on a finite space-
time. Let p be a positive integer, and Space be the torus Zp×Zp, where Zp is the
set of integers modulo p. The time scale will be also finite: Time = {0, . . . , T}.
The definition of Toom’s faulty automaton from Section 2 can be obviously used
for this finite variant of Space×Time. Moreover, as any small area on the torus
is equivalent to an area on the plane, the behavior of Toom’s automaton on a
torus and on the plane is quite similar. Further we explain how the arguments
from Section 2 can be applied in the new situation.



3.1 Notation and definitions

Define random perturbation ξ(a) and the evolution of the automaton s(x, y, t)
word for word as in Section 2. The only difference is that now x, y run over Zp

and t ∈ {0, . . . , T}.
For u, u′ ∈ Zp denote

|u − u′|p = min
k∈Z

|u − u′ + kp|.

Define the distance between points in the space-time as follows: for a = (x, y, t)
and a′ = (x′, y′, t′) in Space × Time

dist(a, b) = max{|x − x′|p, |y − y′|p, |t − t′|}.

As usually, for A, B ⊂ Space × Time denote

dist(A, B) = min
a∈A,b∈B

dist(a, b),

and call size of a set S ⊂ Space×Time its diameter defined as max
a,b∈S

dist(a, b).

The old definition of the n-level semi-islands and the n-level islands can
be used now for the finite variant of space-time (employing the defined above
notion of distance on the finite Space × Time).

3.2 Adopting the proof for a torus.

All arguments of Section 2 work for n-level islands in the finite space-time if
only their size is small comparative to the size of torus. We shall suppose that
all islands of level lower than n0 are small enough:

Definition 11. Let us fix the size p of the space-time. Denote by n0 the maximal
integer such that qn0

≤ p.

The following analogs of Proposition 1 and Proposition 2 hold for the finite
case:

Proposition 3. For any m < n0, for all a ∈ M \Mm−1, the miracle a belongs
to a minimal (by inclusion) m-level semi-island S. Such a set S contains exactly
2m miracles and is of size at most qm/3.

Proposition 4. There exists γ > 1 such that for small enough ε (from the defi-
nition of perturbation ξ) for any u ∈ Space × Time and any n < n0

εn(u) ≤ (γε)2
n

,

where εn is defined as in Definition 4.



The proofs are exactly the same as in the infinite case.

Corollary 3. Let

Space × Time = Zp × Zp × {0, . . . , T}.

Then every miracle belongs to an n-level island for some n < n0 with proba-
bility (1 − εn0

) ≥ 1 − (γε)2
n0 (for some γ > 1, and ε from the definition of

perturbation ξ).

Proof: Let a ∈ M . By Proposition 3, if a 6∈ Mn for all n < n0, then a belongs
to some n0-level semi-island. But probability of this event is at most εn0

. �

We say that the set of miracles on the finite space-time is standard if each
miracle belongs to an n-level island for some n < n0.

Theorem 2. Let

Space × Time = Zp × Zp × {0, . . . , T}.

Suppose that the set of miracles M is standard. Let a be a proper consequence
of an n-level island S. Then dist(a, S) < 8qn.

This theorem can be proved by the same arguments as Theorem 1 in Section 2.
From Theorem 2 we get a corollary:

Corollary 4. Let

Space × Time = Zp × Zp × {0, . . . , T}.

Then each point a ∈ Space×Time is alive with probability p > 1− p2Tεn0
−

O(ε), if ε is small enough.

Proof: First of all note that the total number of points in Space × Time with a
positive time coordinate is p2T . Hence, with probability at least

(1 − p2Tεn0
)

there is no n0-level semi-islands in Space × Time. Further, if there is no n0-
level semi-islands, then each miracle belongs to some n-level island for n < n0,
i.e., the set of miracles is standard. Then every alive point is a proper conse-
quence of some n-level island. From Theorem 2 it follows that a proper conse-
quence of an n-level island S must be in 8qn-neighborhood of S. Hence, each
point is alive with probability at most

∑

i<n0

εi = O(ε).

�



Remark 4. We defined n0 = n0(p) as the maximal integer such that qn0
< p.

It is not hard to see that for a fixed ε the value εn0
= εn0

(p) tends to zero (as
p → ∞) faster than any polynomial in p. Thus, if we want to guarantee that
each point in space-time is alive with probability O(ε), we can let T grow faster
than any polynomial in p.

4 Implementing fault-tolerant computations on a 3D cellular
automaton

In this section we use the technique developed above, to prove the result
from [4]: we explain how to construct a 3-D cellular automaton, which sim-
ulates a given 1-D cellular automaton in spite of perturbation (i.e., assuming
that any cell at any moment with a small probability can randomly change its
state). We assume that in the simulated automaton the state of a cell depends on
its own state and the states if its closest neighbors on the previous step.

In our model, we have an infinite space Z × Z × Z (if we want to simulate
an infinite 1-D array of cellular automata) or Zp × Zp × Zp (if we simulate a
finite 1-D array). There is a fixed finite automaton in each cell of the space. Each
vertical column in the space, i.e., each family of cells

Cu,v = {(u, v, z) ∈ Space}

is supposed to simulate a 1-D array of cellular automata. One cell of our automa-
ton corresponds to one cell of the simulated automaton. Denote by s(x, y, z, t)
the state of the cell with coordinates (x, y, z) at time t.

In the beginning, all columns should be synchronized and represent the ini-
tial configuration of the simulated array. If there is no random mistakes, all
columns should synchronously simulate the computation of the simulated ar-
ray. In this case for each t > 0 the state s(x, y, z, t) is a function of its closest
neighbors in the column:

s(x, y, z, t + 1) = Trans(s−1, s0, s+1),

where

– s−1 = s(x, y, z − 1, t),
– s0 = s(x, y, z, t),
– s+1 = s(x, y, z + 1, t),

and Trans is the transitions rules of the simulated automaton. Thus, if there
is no faults, we just simulate a bunch of 1-D arrays, and they all are working
synchronously.



To make the simulation working in presence of faults, each cell should ob-
serve also its neighbors in nearby columns. We compose the transition mapping
F with Toom’s rule. More exactly, the following rule is used:

s(x, y, z, t + 1) = Trans(s−1, s0, s+1),

where

– s−1 is majority of the triple s(x, y, z − 1, t), s(x + 1, y, z − 1, t), s(x, y +
1, z − 1, t)),

– s0 is majority of the triple s(x, y, z, t), s(x + 1, y, z, t), s(x, y + 1, z, t)),
– s+1 is majority of the triple s(x, y, z + 1, t), s(x + 1, y, z + 1, t), s(x, y +

1, z + 1, t)).

We assume that random faults in all cells and any moments of time are indepen-
dent. Our aim is to prove that if probability of a random mistake at any given
point and any time is small enough, then for all x, y, z, t the state s(x, y, z, t)
with high probability presents the correct value of the cell z of the simulated
array at moment t.

4.1 Dead and alive cells again

To prove correctness of the automaton above we should investigate the behav-
ior of the ‘spoiled’ cells, i.e., those cells whose state is not correct due to ran-
dom faults. We define a very simple automaton with only two states: ‘alive’
and ‘dead’. We define it so that at any moment the set of all alive points of the
new automaton covers the set of all ‘spoiled’ cells of the original automaton. In
other words, if the original automaton has a spoiled cell at (x, y, z) at moment
t, then the new automaton (being disturbed with the same faults) must have an
alive point at (x, y, z) at the same time t. Note that converse is not true, i.e,
the new automaton can have an alive cell (x, y, z) at moment t even though the
corresponding cell of the original automaton is not spoiled.

Let us describe the new automaton. Initially, all cells of the new automaton
are dead. The cells are updated by the following rule: The cell (x, y, z) is alive
at moment (t + 1) if at least one of the majorities s−1, s0, s+1, where again

– s−1 is majority of the triple s(x, y, z − 1, t), s(x + 1, y, z − 1, t), s(x, y +
1, z − 1, t)),

– s0 is majority of the triple s(x, y, z, t), s(x + 1, y, z, t), s(x, y + 1, z, t)),
– s+1 is majority of the triple s(x, y, z + 1, t), s(x + 1, y, z + 1, t), s(x, y +

1, z + 1, t)).



Besides the deterministic rule above, at any moment any dead cell can be ran-
domly made alive. As in the previous sections, we call these events ‘miracles’.
Miracles at different cells and moment of time are independent.

More precisely, let us define the perturbation as a random function
ξ(x, y, z, t), which has two values (0 and 1). We suppose ξ(x, y, z, t) = 1
with a small probability ε > 0, and values of this function at different points
of space-time are independent. If ξ(x, y, z, t) = 1, we make the cell (x, y, z)
of the automaton alive at time t; otherwise (if ξ(x, y, z, t) = 0) we apply the
deterministic rule above.

We will prove that if ε is small enough, then any cell at any time is dead with
high probability. Clearly, this result implies that the fault tolerant simulation of
a 1D array of cellular automata (defined above) is adequate (i.e., each cell at any
moment with high probability has a correct value).

The proof of the result above follows the same plan as our proof of Theo-
rem 1 and Theorem 2. We should just update the definitions to deal with 4-D
space-time. Further we explain how the required modifications can be done.

4.2 Adopting the arguments for 3-D space

Now Space is the set Z
3 or Z

3
p. Proposition 1 holds for the new definitions (the

old proof is valid). The same is true for Proposition 2 (see Remark 1). The only
non-trivial modifications are required in the proof of Theorem 1. We should
adopt the definition of explanation paths to 3-D space. This can be done as
follows.

Definition 12. An explanation path from an alive point a ∈ Space × Time to
an n-level island S is a sequence a0, a1, . . . , am of points in Space × Time
such that

1. a0 = a, am ∈ S

2. for any k < m if ak has coordinates (x, y, z, t) then ak+1 is one of the
points (x, y, z′, t − 1), (x + 1, y, z′, t − 1), (x, y + 1, z′, t − 1), where z′ ∈
{z − 1, z, z + 1} (nine variants in total).

If there exists an explanation path from an alive point a to an n-level island S,
we say that a is a consequence of S.

Definition 13. Space-greedy explanation path: Let a0, . . . , am be an expla-
nation path from an alive point a = a0 to some island S. This path is called
space-greedy if the following conditions hold for any i < m:

– ai 6∈ S.



– Let ai = (x, y, z, t). This point is a consequence of S but not its member.
Hence, at least one of points (x, y, z′, t−1), (x+1, y, z′, t−1), (x, y, z′, t+
1) (z′ ∈ {z−1, z, z +1}) is alive and at least one of them is a consequence
of S. For a space-greedy path, if one of points (x+1, y, z ′, t− 1) or (x, y +
1, z′, t−1) is a consequence of S, then ai+1 must be one of these two points.
Only if none these points is a consequence of S, ai+1 = (x, y, z′, t − 1).

Definition 14. South-most explanation path: Let a0, . . . , am be an explana-
tion path from an alive point a = a0 to an island S (am ∈ S). This path is
called south-most if for any i < m the following conditions hold:

– ai = (x, y, z, t) 6∈ S.
– If one of points (x, y, z′, t−1), (x+1, y, z′, t−1) (z′ ∈ {z−1, z, z+1}) is

alive, then ai+1 must be one of these two points. Otherwise ai+1 = (x, y +
1, z′, t − 1),

Definition 15. West-most explanation path: Let a0, . . . , am be an explanation
path from an alive point a = a0 to some island S (am ∈ S). This path is called
west-most if for any i < m the following conditions hold:

– ai = (x, y, z, t) 6∈ S,
– If one of points (x, y, z′, t − 1), (x, y + 1, z′, t) (z′ ∈ {z − 1, z, z + 1})is

alive, then ai+1 is one of these two points. Only otherwise ai+1 = (x +
1, y, z′, t − 1).

Based on this definitions, we can apply the arguments from the proof of Theo-
rem 1 given in Section 2. We omit the details.

Note that in the finite case the computation on a zone p can be simulated
during super-polynomial time, see Remark 4.

5 Conclusion

In this paper we presented a detailed proof of Toom’s theorem, which says that
Toom’s 2-dimensional cellular automaton has stable nontrivial global state. We
showed how the same ideas help to implement reliable computations based on a
3-dimensional array of faulty cellular automata. We proved that our construction
allows to simulate any polynomial time algorithm on faulty cell automata, and
the result is correct with probability 1 − O(ε) if any cell at any step of compu-
tation is corrupted with probability ε. We stress that the construction works for
any small enough ε, for any size of the array (and polynomial number of steps
of the computation).



In our opinion (which is, of course, quite subjective), the new proof is more
easy to understand than the previous ones. More specifically, we understand
better the consequences of faults on computations.

We hope that our work will help to use these methods in other problems
concerning cellular automata and related areas.

References
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4. Gács P, Reif J: A simple three-dimensional real-time reliable cellular array, Journal of Com-
puter and System Sciences. 1988; 36,2: 125–147.
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