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Abstract

The problem of network worms is worsening despite increasing efforts
and expenditure on cyber security. Worm propagation is a random process
that creates a complex system of interacting agents (worm copies) over
the propagation medium—a scale-free graph, representing real-world net-
works. Understanding the propagation of network worms on scale-free
graphs is the first step towards devising effective techniques for worm quar-
antining. After presenting the drawbacks of existing mean-field models,
we develop a pair-approximation (correlation) model of worm propaga-
tion that employs the salient network characteristics—order, size, degree
distribution, and transitivity. Inclusion of the transitivity shows signifi-
cant improvement over existing pair-approximation models. The validity
of the model is confirmed by comparing the numeric solution of the model
to results from our individual-based simulation. Our model demonstrates
that the network structure has considerable impact on the propagation
dynamics when the worm uses local propagation strategies.

Keywords: propagation, network worm, scale-free graph, correlation
model

1 Introduction

Network worms represent a serious threat to confidentiality, integrity, and avail-
ability of computer resources on the Internet. The existing automated network-
security solutions (e.g., anti-virus software, firewalls, and intrusion detection
systems) and human-dependent counter measures (e.g., software patching, traf-
fic blocking) have been deemed inadequate for timely detection and control of
worm propagation [10, 42, 43]. Since the problem of network worms is worsen-
ing every year despite increasing efforts and expenditure on cyber-security [10],
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devising techniques for controlling their propagation is of great practical im-
portance [29]. An important first step in developing control strategies is (1) to
understand the dynamics of worm propagation and (2) how worm propagation
is affected by the network structure.

Cyber attacks employ malicious mobile-code (MMC )—a program designed
to perform a malicious action by propagate copies of itself to computers, having
a known vulnerability, on a network. MMCs can be classified into three broad
categories based on the extent of human intervention required for their propa-
gation [24], namely: autonomous, human-dependent, and hybrid. Furthermore,
based on their actions, MMCs may be grouped into three classes: Trojan horses,
computer viruses, and network worms. A Trojan horse is a program that is
given (fraudulently) the same name as a legitimate piece of software, but, when
executed, it performs a malicious act. A computer virus is an MMC that mod-
ifies resident programs to perform malicious actions on a single computer. Like
Trojan horses, computer viruses require human intervention to propagate on a
network.

A network worm is a stand-alone program that propagates autonomously
by sending copies of itself to other computers on the network. A computer
is considered compromised if it hosts a replica of the worm. A worm prop-
agates by sending a copy of autonomous MMC (AMMC ) to a host, having
the exploited vulnerability detected through scanning and probing. Therefore,
the worm propagation is a random process that generates a complex system
of interacting agents (AMMCs) over the propagation medium—a scale-free net-
work. A recent study [47] has shown that: (1) probing attempts are in the range
from one to three millions per day, (2) sources and destinations of intrusion are
uniformly distributed among Autonomous Systems, (3) scanning of ports other
than 80 (HTTP), characteristic for Code Red and Nimda, constitute 40% to
80% of all intrusion attempts, and (4) while vertical and, in particular, hori-
zontal scans are prevalent [37], other methods such as coordinated and stealthy
scans are widely used.

The size of an AMMC is relatively small (less than a hundred KB), and the
scan and probe pieces are negligibly small (a kilobyte and a dozen bytes, respec-
tively) [35, 36, 41]. The code of Sapphire Worm, for example, consisted of only
376 bytes [25]. Thus, the only immediately observable effect of an attack on a
network is an increase in the routing-related requests [11, 22], as the worm keeps
probing different hosts. Due to the short time required for their propagation,
worms can inflict considerable damage to the networks. For instance, CodeRed
Worm [9] infected 150,000 computer systems in 14 hours. The damage inflicted
by Nimda [8] to 86,000 computer systems, has been estimated to $13 billion
[10]. On January 24, 2003, the Sapphire Worm, taking advantage of a known
vulnerability in Microsoft’s SQL Server 2000, spread across different networks,
including Bank of America’s network of 13,000 ATMs [25]. Since a malicious
worm has the capacity for global impact on today’s network-dependent society,
developing models of propagation and control is a first step towards a compre-
hensive network-security solution.

An important question in modeling worm propagation on a scale-free net-
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work is whether the population of computers (whose communication is captured
by the network) is to be represented in groups based on average degree and risk
of transmission or whether the computers and their communication are to be ex-
plicitly simulated. The latter level of detail provides a powerful tool as it allows
the structure of the network to be included in the control techniques. Between
the extremes of networks whose represented by a complete graph (see Section
3) and individual-based simulation on scale-free networks, it is possible to di-
vide the population of computers into groups with similar characteristics—e.g.,
degree (number of contacts)—and derive a set of equations describing the prop-
agation dynamics. Thus, the contact structure can be captured by stratifying
the modeled population.

Our contribution here is a mathematical model of worm propagation that
makes use of information about network structure—order, size, degree distrib-
ution, and clustering coefficient (transitivity). We compare the results of the
model with an individual-based simulation of worm propagation on scale-free
graphs that model the Internet (obtained from the Oregon Route View project).
We point out that, although the introduction of the Internet has arguably made
the assumption of sparseness no longer valid, the idea of locality (especially in
the case of analytical modeling of local propagation strategies) is still applicable,
and, therefore, used in our model.

The paper is organized as follows: In Section 2, we discuss adequate models
for the propagation medium—the Internet, and define two abstractions of the
Internet topology: the Microscopic Internet graph and the Macroscopic Internet
graph. In Section 3, we present a comprehensive survey of the existing models for
worm propagation and control by (1) categorizing the models into seven classes
and (2) identifying their advantages and disadvantages. Derivation of a pair-
approximation SIS and SIR model for worm propagation on scale-free graphs is
presented in Section 4. Finally, to test the accuracy of our approach, in Section
5 we present a comparative empirical study of our pair-approximation model,
the mean-field model, and the model of propagation on Erdös-Renyi graphs
versus the results of the individual-based simulation.

2 Adequate Model for the Propagation Medium

Due to the diversity of exploited vulnerabilities, network worms can propagate
on various types of networks. A (physical) network is a collection of intercon-
nected computers, each with its distinct IP address. Such a network can be
represented by a connected, undirected graph G = (V,E), with the nodes as
computers and the edges as the (physical) communication links (e.g., wire, op-
tical cable). Since G is connected, communication between any arbitrary pair
of nodes u and v, takes place through a u, v-path in G. Although graph G,
just defined, represents a physical network, it may also represent a logical (or
virtual) network. For example, in an e-mail graph, a node v would represent a
user and the (directed) edges emanating from v would go to all the individuals
in the e-mail address book of v. Likewise, in a webgraph each node u would rep-
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resent a web page and each (directed) edge emanating from uwould represent a
hyperlink coming out of web page u.

Despite the differences in what they model, these graphs have the following
similar characteristics: (1) degree distribution, (2) clustering coefficient, and
(3) average distance. We note that a scale-free random graph model cannot
be accepted as a valid representation of a real-world network if it satisfies only
these three characteristics. To clarify these characteristics, we give the following
definitions:

Definition 1: The degree distribution gives the probability that a node, cho-
sen uniformly at random, is of degree d.

Empirical studies of real-world networks have demonstrated that the degree
distribution falls in the class of so-called scale-free (power-law) probability dis-
tributions, such that P (d (v) = d) = d−f (f is the exponent of the power-law
degree distribution).

Definition 2: Given a graph G = (V, E) and a node v ∈ V of degree d (v),
the clustering coefficient Cv of node v is defined as the ratio between the total
number of edges incident on all pairs of neighbors of v and the number of edges
in a clique formed by the neighbors of v.

The clustering coefficient of G is the average of clustering coefficients over
all nodes. The clustering coefficient of G has values in the range 0 ≤ C ≤ 1.
There is yet another measure of clustering in graphs, called transitivity [28].

Definition 3: Transitivity is the ratio between the number of triangles and
the total number of paths of length three.

Definition 4: Average distance of G is the mean over all shortest distances
between any connected nodes.

The Internet can be modeled on two levels: microscopic and macroscopic.
In the Microscopic Internet graph, nodes stand for routers and hosts, while
edges represent communication links. The Macroscopic Internet graph can be
thought of as a contraction of the Microscopic Internet graph: here, each node
represents an Autonomous System (which incorporates a number of routers).
To simplify the analysis, parallel edges and loops (having negligible influence
in modeling propagation) will be deleted from the Macroscopic Internet graph.
Two nodes in the Macroscopic Internet graph are adjacent if there is at least one
pair of routers (belonging to different Autonomous Systems) that can communi-
cate. Note that both, the Microscopic and the Macroscopic Internet graphs are
undirected. Faloutsos et al. [14] studied both graphs, and concluded that the
degree distribution follows a power-law. In the Microscopic Internet graph, the
exponent of the power-law f had a value of 2.48, while in the Macroscopic In-
ternet graph, the exponent ranged between f = 2.15 and f = 2.2 (studies were
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performed between 1997 and the end of 1998). Govindan and Tangmunarunkit
[15] mapped the connectivity of nearly 150,000 router interfaces, confirming the
power-law exponent of f = 2.3. The studies of Yook et al. [48] conducted
between 1997 and 1999 showed that the Macroscopic Internet graph has a clus-
tering coefficient in the range from 0.18 to 0.3 and an average distance between
3.70 and 3.77.

3 Existing Models of Worm Propagation

Due to the strong analogy between network worms and infectious diseases, epi-
demiological models have been widely used in modeling worm’s propagation.
Since a worm propagates along the edges of a network, we will use graph-
theoretic terms to describe the existing epidemiological models of propaga-
tion. Epidemiological models are based on two simplifications [16]: (1) At any
given time t, each node can be in one of a finite number of states, e.g. sus-
ceptible, quarantined-susceptible, removed-susceptible, infectious, quarantined-
infectious, removed-infectious, and detected. The choice of which states to in-
clude in a model depends on the characteristics of the particular worm being
analyzed and the purpose of the model; and (2) Translation of the worm trans-
mission mechanism into a probability that a node will infect another node. In
a similar way, transitions between other states of the model are described by
simple probabilities. Epidemiological models can be analyzed analytically or by
means of simulation.

The propagation takes place on a graph G with n nodes and m edges.
Let S (t) denote the number of susceptible nodes at time t, Qs (t) be the
number of quarantined-susceptible nodes, Rs (t) be the number of removed-
susceptible nodes, I (t) be the number of infectious nodes, Q (t) be the number
of quarantined-infectious, and R (t) denote the number of removed nodes. The
fraction of nodes in a particular state is represented by the lower case letter.
Let β denote the rate at which susceptible nodes are infected. Most models
of propagation assume β is constant, averaging out the differences in processor
speed, network bandwidth, and location of the infectious node. The existing
models also assume that a node cannot be infected multiple times.

Susceptible-Infectious (SI) model: In this class of models, once a sus-
ceptible node becomes infectious, it does not change its state. These models
can be used in the study of the worst-case propagation, when automated and
human counter-measures are not available. Let the average degree of an infec-
tious node be d, and the fraction of infectious nodes at time t be i (t). The
expected number of susceptible neighbors that can be infected by a given infec-
tious node is d (1− i (t)). Since there are I (t) infectious nodes, the total rate
of newly-infected nodes is βd (1− i (t)) i (t). The general SI model is described
by the differential equation (1):

di (t)
dt

= βd (1− i (t)) i (t) , (1)
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with boundary conditions: i (0) =
I (0)

n
> 0 and for all t ≥ 0, i (t) + s (t) = 1.

The solution of equation (1) for the fraction of infectious nodes is the logistic

curve: i (t) =
i (0) eβ ′t

1− i (0) + i (0) eβ ′t , where β′ = βd. The S-shaped curve de-

scribing the fraction of infectious nodes has three regions: (1) slow start, when
only few nodes are infected at every time step, (2) exponential growth, when
the number of newly-infected nodes grows exponentially, and (3) equilibrium
state, when the number of infectious nodes assumes some value around which it
fluctuates steadily.

If the worm propagates on the complete graph on n nodes, Kn, where d =
(n− 1), the model (1) can asymptotically be written as:

di (t)
dt

= β (1− i (t)) I (t) , (2)

with boundary conditions: i (0) =
I (0)

n
> 0 and for all t ≥ 0, i (t) + s (t) = 1.

One then has that i (t) =
i (0) eβ (n−1)t

1− i (0) + i (0) eβ (n−1)t
. Staniford et al. [35] applied

model (2) to fit the data collected by the Chemical Abstracts Services from the
propagation of CodeRed I Worm, and estimated the product β (n− 1) for Code
Red I to be 1.8. However, they used the number of scanned nodes, which is
much larger than the number of infectious nodes, thus, leading to erroneous
conclusions. Weaver [41] and Wagner et al. [38] used this model to study
four local propagation strategies: hit-list, topological, permutation, and local-
subnet, although we must note that the complete graph as underlying topology
is inappropriate for studying such local strategies.

Zou et al. [50] used a modification of model (2) to analyze a trend-detection
mechanism based on the traffic-anomaly created by worms. The detection sys-
tem is composed of distributed ingress and egress sensors for worm activity.
When the monitoring system receives a surge of illegitimate scans, a Kalman
filter is activated to estimate the parameter β. Since in the early stage the
propagation exhibits exponential growth with constant, positive rate, the model
can be described as I (t) = (1 + βn dt) I (t− 1). The authors derived a bias-
correction formula for estimation of the number of infectious nodes at time t,
I (t), from the number of observed infectious nodes Z (t): Let σ be the aver-
age number of scans sent by an infectious node. After time interval dt , the
expected number of scans observed by u monitors is βuI (t)σdt

/
232 (assum-

ing the Internet is a complete graph), while the probability that any of the
I (t)− Z (t− 1) infectious nodes are observed is 1− (

1− u
/
232

)σdt. When the
estimate of β starts oscillating around a positive constant value, the worm has
been detected. Yet, it is not evident how the topology might affect Zou et al.’s
detection mechanism.

In Erdös-Renyi random graphs with edge-density p, the expected degree of
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a node is p (n− 1). The propagation on these graphs can be described as:

di (t)
dt

= βp (n− 1) (1− i (t)) i (t) , (3)

with solution: i (t) =
i (0) eβ p(n−1)t

1− i (0) + i (0) eβp (n−1)t
.

Susceptible-Infectious-Susceptible (SIS) model: In this class of mod-
els, an infectious node recovers at some rate, and thus it becomes susceptible
again. These models can be used in the study of worm’s propagation when
some computers are temporarily turned off but are not patched (e.g., the case
of Code Red I worm). Let the average degree of an infected node be d, and the
rate at which an infectious node recovers be γ. The rate of newly-infected nodes
is proportional to the expected fraction of susceptible neighbors, the number of
infected nodes, and the probability β. The rate at which infectious nodes re-
cover is proportional to the number of infectious nodes and rate γ. The system
of differential equations (4) describes the general SIS model:

di (t)
dt

= βd (1− i (t)) i (t)− γi (t) (4)

with boundary conditions i (0) =
I (0)

n
, and for all t ≥ 0, i (t) + s (t) = 1. From

equation (4),
di (t)
dt

< 0 if and only if s (t) <
γ

βd
= δ. Thus, the worm “dies out”

if the initial fraction of susceptible nodes is below the epidemic threshold
γ

β d
.

The solution of (4) gives a functional form for the fraction of infectious nodes:

i (t) =
(1− δ) i (0)

i (0) + (1− δ − i (0)) e− (β′−γ)t
, where β′ = βd. If the worm propagates

on the complete graph on n nodes, Kn, where d = (n− 1), the model (4) can
asymptotically be written as [34]:

di (t)
dt

= β (1− i (t)) I (t)− γi (t) , (5)

with solution i (t) =
(1− δ) i (0)

i (0) + (1− δ − i (0)) e− (β(n−1)−γ)t
.

Solomon [34] studied a modification of model (5) where the rate γ is a
weighted average of the rate γ1 (for computers not running anti-virus software),
applicable to the fraction of infectious nodes, and the rate γ2 (for computers
running the most recent version of anti-virus software), applicable to the frac-
tion of susceptible nodes, i.e., γ = γ1i (t)+γ2 (1− i (t)). With this modification
Solomon found that the necessary effectiveness of the anti-virus software (de-
scribed by the rate γ) should be 0.5 in order to stop the propagation before it
achieves exponential growth.

Kephart et al. [18, 19] employed model (4) to study the effects of three
topologies on the propagation of viruses: Erdös-Renyi random graphs, regular
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lattices of degree eight, and hierarchical random graphs. For the Erdös-Renyi
random graphs with d ≥ 5, simulation results coincide with the predictions of
the model. The simulation study of propagation on 100-by-100 lattice demon-
strates quadratic growth, in contrast with the exponential growth characteristics
for the complete graph and Erdös-Renyi graphs. The hierarchically-clustered
random graphs in this study are generated as follows: given a rooted tree of
height h, in which every node has a degree (d + 1) (i.e., it has d successors),
the nodes of the graph are the leaves of the tree. Two nodes, u and v, are
made adjacent with probability P (h (w)) proportional to the height of node
w—the first common ancestor of nodes u and v. In his simulation, Kephart
used P (h (w)) = αph(w), where parameter p is used to control the degree of
localization (when p tends to 0, the graph is composed of isolated nodes, while
when p approaches 1, the topology of the hierarchically-clustered random graph
is asymptotically that of the Erdös-Renyi random graphs). Here, the propa-
gation shows sub-exponential growth. Further simulation studies conducted by
Kephart [19] shows that sparsely-connected (random) graphs inhibit the prop-
agation.

Previous models are limited in their accuracy due to their simplistic treat-
ment of timing factors, such as infection delay—the length of time between the
instant of worm’s arrival at a node and the instant when this node becomes in-
fectious to its neighbors. Model (4) could be altered to incorporate the infectious
delay, as follows [40]:

di (t)
dt

= βde−γε (1− i (t)) i (t− ε)− γi (t) , (6)

where i (t− ε) = 0 for t < ε. At time t ≥ ε, the fraction of infectious nodes is the
same as the fraction of infectious nodes at time (t− ε), since all nodes infected
between (t− ε) and t are delayed. The term e−γε accounts for the transfer of
a node from infectious to susceptible state during the delay period. Equation
(6) belongs to the class of non-linear delayed differential equations, which can
be solved under the assumption i (t− ε) = i (t). Wang et al. [40] support their
analytical solution with simulation similar to that of Kephart et al. [18], and
show that the epidemic threshold depends not only on the average degree, but
also on the infection delay. In addition, Kim et al. [20] performed a simulation
study of the propagation on a subgraph of the Internet, using a constant delay
equal to the average round-trip time obtained from real-life traffic.

Pastor-Satorras et al. [30] modified model (4) to study the effects of the
scale-free Barabasi-Albert topology on the propagation with rate of recovery
γ = 1. Since a scale-free degree distribution is not concentrated around its
mean value, the model must include differential equation for every group of
nodes of degree k:

dik (t)
dt

= βk (1− ik (t))Θ
(
{ik (t)}dmax

dmin

)
− ik (t) , (7)

where Θ
(
{ ik( t) }dmax

k = dmin

)
describes the probability that a susceptible node of
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degree k is adjacent to an infectious node. For a scale-free network, the prob-
ability that an edge is incident on a node of degree k is kP (k)

/
d. The aver-

age probability that an edge is incident on an infectious node is then Θ (t) =
1
d

dmax∑
k=dmin

kP (k) ik (t). The conclusion of this model is that scale-free topologies

do not have epidemic-threshold. The authors also argued that the cut-off in
the scale-free distribution forces a non-zero epidemic threshold. We point out
that the result of this study is limited to scale-free topologies without degree-
correlations. Contrary to this result, the simulation study of Eguiluz et al. [13]
demonstrates that in the so-called structured scale-free networks, where adja-
cent nodes share large number of common neighbors, there exists a non-zero
threshold even in the limit of large n.

While the results of the presented studies are valuable, a model, where nodes
that have recovered and are no longer susceptible, could better approximate the
realistic propagation of a worm when human counter-measures are in place.

Susceptible-Infectious-Removed (SIR) model and its variations: In
this class of models, an infectious node can be removed (i.e., it can no longer
spread the worm). This model can be used to study the effects of software
patching and traffic blocking. At any time t, a node can be susceptible, infec-
tious, or removed. Let γ be the rate at which infectious nodes are removed.
Using analogous arguments as in the previous section, the general SIR model
can be written as:

di (t)
dt

= βd (1− i (t)) i (t)− γi (t) ,

dr (t)
dt

= γi (t) ,
(8)

with boundary conditions: i (0) =
I (0)

n
≥ 0, r (0) =

R (0)
n

≥ 0, and for all t ≥ 0,

i (t) + s (t) + r (t) = 1. The epidemic threshold for SIR models is analogous to
the one in SIS models. Zou et al. [49] used a modification of the system (8) to
determine the effect of human counter-measures (on removing both susceptible
and infectious nodes) and the decreasing rate β (t). This so-called two-factor
model assumes complete graph as underlying topology, and a constant fraction
of the removed-infectious nodes at any time t:

di (t)
dt

= β (t) (1− r (t)− rs (t)− i (t)) i (t)− dr (t)
dt

,

dr (t)
dt

= γi (t) ,

drs (t)
dt

= µ (1− r (t)− rs (t)− i (t)) (r (t) + i (t)) ,

β (t) = β (0) (1− i (t))η
.

(9)

It is unclear, however, how the parameters have been chosen in order to fit the
data from the Code Red I worm propagation.

Boguna et al. [5] studied the SIR model, with the probability γ = 1, on
scale-free topologies. Using the notation introduced in previous sub-section, the
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model can be formulated as follows:

dik (t)
dt

= βk (1− ik (t))Θ
(
{ik (t)}dmax

dmin

)
− ik (t) ,

drk (t)
dt

= γik (t) ,
(10)

which can be solved if one assumes that i (0) is very small in the beginning of
the propagation. Pastor-Satorras et al. [30] conducted a simulation study to
investigate the effects of node-immunization (i.e. node-removal) on the propa-
gation, before the worm is introduced in the network. They demonstrated that
random immunization is inefficient in slowing down the propagation; however,
immunization targeted at nodes of highest degrees can significantly inhibit the
growth of propagation. While the latter result seems interesting, the authors
argue that detecting nodes of high degrees in scale-free networks is a difficult
problem.

Similarly, the simulation study of Wang et al. [39] examines the effects of
immunization of nodes on the propagation on two topologies: rooted trees and
clustered networks (composed of cliques inter-connected with small number of
edges). The simulation’s parameter is the propagation fan out—number of nodes
to which the worm can send replicas at each time step. The time needed for the
worm to propagate from one node to another is assumed to be one time tick.
The first set of simulation is conducted on networks where no immunized nodes
exist to determine the number of times a node is re-infected (called re-infection
count). Two types of immunization are simulated—random and selective. Ran-
dom immunization performs better on rooted trees as there is only one path
between any two nodes; thus, it is possible to cut off an entire sub-tree of the
network, which is not the case with the clustered network. For the case selective
immunization in rooted trees, nodes with highest re-infection counts were cho-
sen (note, these nodes coincide with nodes with largest degrees). In the case of
clustered networks, two strategies are used: first based on the re-infection count,
and second on the weighted sum of the inter-cluster and inner-cluster degrees for
every node. The first strategy was able to contain the propagation, but results
in a higher propagation rate. The second could slow down the propagation rate,
but was unable to contain the propagation.

The principal disadvantage of the studies in [39] and [30] is that immuniza-
tion is static, i.e., a fraction of nodes is immunized before the worm starts
propagating. In reality, the counter-measures should be dynamic in nature to
play important role in slowing down the propagation of the worm.

Susceptible-Infectious-Detected-Removed (SIDR) model: This model
was analyzed by Williamson et al. [45] in order to determine the effectiveness
of the behavior-blocking approach called virus throttling [44]. Virus-throttling
is an automatic mechanism for slowing a worm’s propagation. Here, a node can
be in one of the four states: susceptible, infectious, detected (in which the virus
has been detected and cannot actively spread further), and removed. The model
assumes complete graph as underlying topology. The model involves two stages:
in the first stage, prior to the release of the virus signature, nodes progress from
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susceptible to infectious state at some rate β. In the second stage, after some
time from the start of the propagation, the virus is detected at some rate γ.
Two quantities are studied: the number of infectious nodes and the duration of
propagation. The model incorporates virus throttling by dividing the nodes into
two groups—throttled and un-throttled. If a throttled node is infected, it does
not spread the virus, and immediately enters the detected state. The result of
this study show that when more than half of the nodes have throttles, even a
late signature will result in a small outbreak.

Susceptible-Infectious-Removed-Susceptible (SIRS) model: Wang
et al. [40] used a modification of SIS model (4) to study the node’s vigilance
against infection: Once an infectious node is removed, it remains in this state
for a length of time ν, called vigilance period, after which the removed node
becomes susceptible again. Here, the susceptibility of a node is modeled via
a parameter φ that takes values between 0 (indicating complete susceptibility)
and 1 (indicating immunity). The model is described by the non-linear delay
differential equation (11):

di (t)
dt

= βd


1− i (t)−

t∫

t−ν

i (t)


 i (t)− γi (t) (11)

whose solution shows that the number of infectious nodes decreases as the vigi-
lance period increases. It is worth noting the node’s vigilance has no impact on
the epidemic threshold.

Compartmental epidemiological models: Compartmental epidemiolog-
ical models are used with stratified population. The topology in this models is
the Macroscopic Internet graph, where every node represents a dense region—
Autonomous System (AS). These models can be used to study intra-AS prop-
agation, with the assumption that within an AS (with nj nodes) the worm
propagates as on a complete graph Knj . The infectious attempts can then be
modeled as being external or internal to an AS. If the macroscopic Internet
graph has k nodes, the SI compartmental model can be written as:

dij (t)
dt

=

[
k∑

l = 1

β
nl

N
il (t)

]
(1− ij (t)) , (12)

where 1 ≤ j ≤ k. Here, the parameter N denotes the total number of IP ad-
dresses. Serazzi et al. [33] used model (12) to derive equations for the bandwidth
consumption at each node. For the SIR compartmental model, Liljenstam et al.
[23] obtained:

dij (t)
dt

=
[

k∑
l = 1

β
nl

N
il (t)

]
(1− ij (t))− γij ,

drj (t)
dt

= γij (t) ,

(13)

where, again, 1 ≤ j ≤ k. Liljenstam et al. [23] used model (13) to study
the destabilizing effects of worm propagation on the network infrastructure,
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since the compartmental approach allows for inclusion of limited details about
communication protocols. In this simulation study, the scan traffic is modeled
by using a combination of the average scan rate, individual infection rates, and
size of address space for each AS.

Discrete-time approximation models: Chen et al. [6] developed a de-
terministic approximation model of propagation on a complete graph Kn. If
σ is the average scanning rate, with the assumption that the total number
of nodes is 232, the average number of newly-infected nodes at step (t + 1) is
(S (t)− I (t))

[
1− (

1− 1
/
232

)σ I(t)
]
. If the probability of removal is γ, in the

next time step γI (t) nodes will become susceptible. Thus, the propagation
can be described by a system of recurrences for the number of infectious and
susceptible nodes.

4 Pair-approximation model on Scale-Free Net-
works

The existing epidemiological models on scale-free graphs [30, 49] do not explic-
itly give the system of differential equations for the propagation dynamics. The
comparative studies include either simulation of worm’s propagation on a macro-
scopic level or a system of differential equation for propagation on Erdös-Renyi
and regular graphs. Thus, in all models described in Section 3, it is not evident
how a realistic, scale-free network structure might affect the worm propagation.

Worm propagation is a random process that takes place on networks, such
as: the Internet, World Wide Web, e-mail network, modeled as large scale-free
random graphs. Using the salient features of the underlying scale-free graphs,
here, we develop a realistic model of worm’s propagation and techniques for
dynamic quarantining. Cast in the SI framework, our model can be used to
study the worst-case propagation and determine the optimal time for undertak-
ing preventive action. On the other hand, cast in the SIR framework, this model
can be used in the study of quarantining techniques against network worms.

Our model of worm’s propagation belongs to the class of pair-approximation
network models. The benefit of this class of models is that it can incorporate
the spatial structure that the existing epidemiological models of propagation
ignore. A survey of pair-approximation models is given by Rand [32]. In the
pair-approximation model, the variables are the fractions of pairs of nodes in
certain states. Usually, these equations contain higher-order correlations (e.g.,
triples of nodes in certain states) which are approximated by the lower-order
correlations. For the most part, previous work on pair-approximation models
describes processes on regular-lattices. Our model extends the work by Earnes
and Keeling [12] (for triangle-free networks) and Bauch [2] (for dynamic partner-
ships), and makes pair-approximation applicable to various scale-free topologies.

Next, we present the derivation of the system of differential equations de-
scribing the propagation in the SIS framework. Let N (u) be the neighborhood
of a node u, pt (iu) the probability that, at time t, node u is infectious, and let
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pt (su, iv) be the joint probability that two adjacent nodes u and v are suscepti-
ble and infectious, respectively. The time evolution of the state of a single node
in the SIS epidemic process can be written in the following form:

dpt (iu)
dt

= β
∑

v∈N(u)

pt (su, iv)− γpt (iu) ,

pt (su) + pt (iu) = 1.

(14)

One can also develop an equation for the time evolution of pt (su, iv) which
in turn involves higher-order correlations. To solve this problem, we resort
to some approximation scheme: For instance, the SIS epidemiological model
assumes that pt (su, iv) = pt (su) pt (iv), and thus neglects correlation between
states of nodes. In our approach, pt (iu) and pt (su, iv) are kept as variables of
interests while the higher-order correlations are expressed, via some appropriate
approximation, in terms of these quantities. The time evolution of pt (su, iv) can
be derived by using the Kolmogorov forward equation:

dpt (su, iv)
dt

= − (β + γ) pt (su, iv)− β
∑

w∈N(u)−v

pt (iw, su, iv)

+β
∑

w∈N(v)−u

pt (su, sv, iw) + γpt (iu, iv) .
(15)

Let Λa be the set of integers, representing the degrees of the neighbors for all
nodes of degree a, and [ab] be the number of edges incident on nodes of degrees a
and b. Furthermore, let X, Y , and Z represent a state of a node (e.g., susceptible
and infectious).

Given a node u of degree a and a node v of degree b, define

Pt (Xa, Y ) =
1
a

∑
d(u)=a,d(v)∈Λa

Pt (xu, yv), and

Pt (Xa, Yb, Z) =
1

[ab]
∑

d(u)=a,d(v)=b,d(w)∈Λb

Pt (xu, yv, zw).

Remark :
Pt (Xa, Y ) =

∑
k∈Λa

Pt (Xa, Yk) and Pt (Xa, Yb, Z) =
∑

k∈Λb

Pt (Xa, Yb, Zk).

Let E [ Xa ] denote the number of nodes of degree a in state X, E [XaYb] the
number of pairs of nodes of degree a, in state X, adjacent to nodes of degree b,
in state Y , and E [XaYbZc] denote the number of triples where a node of degree
b, in state Y , is adjacent to a node of degree a and a node of degree c, in state X
and Z, respectively. By multiplying equation (14) by na, the number of nodes
of degree a in the graph G, one can obtain the following equation:

dE [Ia]
dt

= β
∑

k∈Λa

E [SaIk]− γ E [Ia] , (16)

where E [Sa]+E [Sb] = na. Similarly, one can transform equation (15) to obtain:

dE [SaIb]
dt

= − (β + γ) E [SaIb]−β
∑

k ∈Λa

E [IkSaIb]+β
∑

k ∈ Λb

E [SaSbIk]+γE [IaIb] .

(17)
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Let ϕabc denote the transitivity among nodes of degree a, b, and c, i.e., the ratio
of the number of 3-cycles to the number of connected triples whose nodes are
of degree a, b, and c. To approximate the third moment E [XaYbZc], one can
use the definition of multiplicative moments of two variables [17, 32] and the
transitivity ϕabc, to find:

E [XaYbZc] =
b− 1

b

E [XaYb] E [YbZc]
E [Yb ]

(
(1− ϕabc) + ϕabc

n2

2m

E [XaZc]
E [Xa] E [Zc]

)
.

(18)
Similarly, one can derive formulae for the other second moments and appropriate
approximation of the third moments to obtain the following pair-approximation
for the SIS framework:

dE [Ia]
dt

= β
∑

k∈Λa

E [SaIk]− γE [Ia] ,

dE [Sa]
dt

= γE [Ia]− β
∑

k∈Λa

E [SaIk],

dE [SaSb]
dt

= −β

(
∑

k∈Λa

E [IkSaSb] +
∑

k∈Λb

E [SaSbIk]

)
+ γ (E [SaIb] + E [IaSb])

dE [SaIb]
dt

= − (β + γ)E [SaIb]− β

(
∑

k∈Λa

E [IkSaIb]−
∑

k∈Λb

E [SaSbIk]

)

+γE [IaIb] ,
dE [IaIb]

dt
= β

(
E [SaIb] + E [IaSb] +

∑
k∈Λa

E [IkSaIb] +
∑

k∈Λb

E [IaSbIk]

)

−2γE [IaIb] .
(19)

Now, the system of differential equations (19) can be numerically solved by using
the approximation given in equation (18). Note that our model differs from the
one presented in [2] and [12] since we take into consideration the transitivity
ϕabc, which turns out to have a significant effect on the outcome of the model
(see Section 5).

Model (19) can be altered to obtain the system of differential equations (20),
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describing the dynamics of propagation in the SIR framework:

dE [Ia]
dt

= β
∑

k∈Λa

E [SaIk]− γE [Ia] ,

dE [Sa]
dt

= −β
∑

k∈Λa

E [SaIk],

dE [Ra]
dt

= γE [Ia] ,

dE [SaSb]
dt

= −β

(
∑

k∈Λa

E [IkSaSb] +
∑

k∈Λb

E [SaSbIk]

)
,

dE [SaIb]
dt

= − (β + γ)E [SaIb]− β

(
∑

k∈Λa

E [IkSaIb]−
∑

k∈Λb

E [SaSbIk]

)
,

dE [SaRb]
dt

= −β
∑

k∈Λa

E [IkSaRb] + γE [SaIb] ,

dE [IaIb]
dt

= β

(
E [SaIb] + E [IaSb] +

∑
k∈Λa

E [IkSaIb] +
∑

k∈Λb

E [IaSbIk]

)

−2γE [IaIb] ,
dE [IaRb]

dt
= β

∑
k∈Λa

E [IkSaRb] + γ (E [IaIb]− E [IaRb]) .

(20)

5 Pair-approximation Model vs. Individual-based
Simulation

Our goal is to test the accuracy of the pair-approximation model (19) in com-
parison to: (1) the individual-based simulation of the worm propagation on a
Macroscopic Internet graph (on n nodes and average degree d), and (2) the
standard SIS model (which ignores correlation) on two topologies: the com-
plete graph on n nodes (model (5)) and the Erdös-Renyi graph on n nodes with
average degree d (model (4)).

The empirical study is conducted on Macroscopic Internet graphs. To ob-
tain the Macroscopic Internet graphs, we used the data for inter-connectedness
of the Internet on the Autonomous System level collected by the University of
Oregon Route View Project and made available by NLANR (National Labora-
tory of Applied Network Research). We considered snapshots of the Internet
of various order and size, shown in Figure 1. The pre-processing step consists
of determining parameters for model (19): for given degrees a, b, and c, the
number of adjacent nodes of degree a and b, the set Λa, and the transitivity
ϕabc are determined.

Next, we developed an individual-based simulation of the stochastic propaga-
tion process on a Macroscopic Internet graph. The individual-based simulation
has two advantages: First, the propagation process and the underlying topol-
ogy can be controlled to simulate different scenarios. Second, this simulation
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Date Order Size

08.11.1997 3015 5156
02.04.1998 3522 6324
03.07.1998 3797 6936
02.10.1998 4180 7768
14.01.1999 4517 8376
02.04.1999 4885 9276
02.07.1999 5357 10328
02.10.1999 5861 11313
02.01.2000 6474 12572
03.04.2000 7246 14629
02.07.2000 7956 15943
02.10.2000 8836 17823
02.01.2001 9048 18172
16.03.2001 10515 21455

Figure 1: Macroscopic Internet graphs used in simulations

provides very precise and detailed information about the propagation dynamics
without any biases which might be present in real data. The individual-based
simulation combines Monte Carlo simulation of events, taking place at given
rates, with an event-scheduler that determines the order in which events hap-
pen in the system. The scheduler is implemented as a priority queue. The
system is composed of nodes that can be either susceptible or infectious. There
are two types of events that can take place: infection and curing. If a node u
is infectious, it attempts infection of each of its neighbors at rate β. Node u
might be cured, and, thus, become susceptible, at rate γ. Let as assume that u
has been cured at time t, and has been re-infected at time t + dt. Any infection
generated by the node u in the time interval [t, t + dt) can be discarded by the
scheduler. The event of u attempting infection of an already infectious neighbor
v at time t is also discarded by the scheduler.

We simulated worm propagation in the Susceptible-Infectious framework in
order to determine the time the worm takes to infect all nodes of a given graph G.
Simulations were performed on ten Macroscopic Internet graphs (the results for
four graphs, identified by the top entry in the left-most column appear in Figure
2). To determine how choice of the initial node influences the propagation, we
first determined the labels of three nodes with smallest degrees and three nodes
with highest degree, shown in the first and second column of each table in Figure
2. The rest of the entries show the average time over 100 simulations for the
worm to propagate on all nodes by starting from a pre-specified initial node and
spreading with infectious rate β. The general results of the experiments can be
summarized as follows:

1. The time to propagate to all nodes decreases with the increase of the degree
of the initial node.
As an infectious node of higher degree has bigger pool of susceptible nodes,
it gives the worm the possibility to establish a considerable fraction of in-
fectious nodes in the early stages of the propagation. On average, the
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propagation to all nodes of G initiated from a node of maximum degree
takes time by 5% shorter compared to the propagation that starts from a
node of minimum degree.

2. The time to propagate to all nodes increases with the increase of the order
of the graph.
Given two graphs G1 and G2, |V (G1) | < |V (G2) |, whose degree distrib-
utions follow the same scale-free distribution, have diameters D (G1) and
D (G2), respectively, such that D (G1) < D (G2). Therefore, on a graph
with greater diameter the worm takes longer time to infect all nodes.

3. The time to propagate to all nodes does not strictly decreases with the in-
crease of the infectious rate β.
In other words, there is a value of the infectious rate β at which the func-
tion t (β) has a local minimum, as shown in Figure 3. According to the
simulation results shown in Figure 2, the value of β = 1.5 seems to be
invariant and depends only on the exponent of the scale-free degree dis-
tribution of the graph G. The reason for such behavior is that, at the
local minimum, rapidly-building correlations between the states of adja-
cent nodes hinder the propagation by lowering the number of available
susceptible nodes. This observation is of particular interest as it provide
the means to “control” the propagation of a fast-spreading worm by re-
ducing its rate to the threshold value.

Figures 4 and 5 below, show the number of infectious nodes as a function of
time, comparing the three deterministic models with two results of the stochastic
individual-based simulation. Neither the mean-field model nor the Erdös-Renyi
(or a d-regular graph on n nodes) satisfactorily predicts the level of propagation
(i.e., the number of infectious nodes at a given time). The second-order Runge-
Kutta numerical solution of the proposed pair-approximation model (18), (19)
with results of the second pre-processing task as input, performs matches the
results of the individual based simulation.

The model on d-regular graphs underestimates the equilibrium level because
it does not include the nodes of high degrees (i.e., the core of the scale-free
graph). The mean-field model consistently over-estimates the number of in-
fectious nodes because the correlations and graph structure, that may inhibit
propagation, are ignored. In contrast, our pair-approximation model includes
both nodes of various degrees and correlations between states of nodes, and
gives an accurate representation of the stochastic propagation process.

Remark : Two numerical algorithms for solving the system of differential
equations—Euler’s method and Runge-Kutta method—were compared. For
small values of dt, such as 0.001 used in the simulation, even the Euler’s method
produces good results.
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6 Conclusion

Developing an accurate model for the worm propagation is of critical importance
not only for understanding better the worm’s behavior but also for devising
techniques to contain such cyber attacks. The existing studies include either
simulation of worm propagation on a macroscopic level or a system of differential
equation for propagation on Erdös-Renyi and regular graphs. Moreover, in
all existing models of worm propagation, it is not evident how the network
structure might affect the dynamics of the stochastic propagation process. Our
contribution here is twofold: (1) a model of propagation on a scale-free graph G
which takes as input: the number of nodes, number of edges, number of edges
incident on nodes of certain degrees, and transitivity of the graph, and (2)
implementation of an individual-based simulation for worm propagation that
can be cast in different epidemiological frameworks. The accuracy of the model
is tested by comparing the numerical solution (by second-order Runge-Kutta
method) of the pair-approximation model to the results from the individual-
based simulation on scale-free Macroscopic Internet graphs. Our model has the
potential to be used in developing realistic techniques for propagation control—
topic of an ongoing research.
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0.2 0.5 0.9 1.5 1.8

min degree node
1 47 18.3675 7.89627 4.74167 3.20504 3.55996
2 17 18.0627 7.91097 4.6643 3.19542 3.46717
3 22 18.4302 7.76855 4.69197 3.14913 3.33457

max degree node
590 5 17.158 7.73703 4.45511 3.01981 3.34582
524 12 16.9676 7.37089 4.50048 2.96612 3.39495
355 10 17.2982 7.48106 4.5871 3.10994 3.2987

AS graph 02.10.1998
beta

1pt
 

0.2 0.5 0.9 1.5 1.8

min degree node
1 63 18.3734 7.98559 4.81368 3.24062 3.42445
2 19 18.5593 8.17793 4.70665 3.19895 3.48956
3 15 18.5207 7.93869 4.74685 3.18794 3.343

max degree node
1193 2 17.4871 7.43152 4.44526 2.98155 3.39874

674 10 17.6827 7.58919 4.57659 3.11 3.41901
588 7 17.5386 7.70924 4.63347 3.10909 3.38447

AS graph 02.07.1999
beta

1pt

min degree node

1 15 19.8676 8.42701 5.11502 3.42114 3.71483
2 18 20.1391 8.62913 5.15767 3.41545 3.56204
3 23 19.4788 8.44671 5.05909 3.3409 3.5603

max degree node
1772 2 18.9615 8.0676 4.97258 3.29313 3.48871

961 9 19.2357 8.28964 4.90184 3.33247 3.49154
802 7 18.9133 8.24647 4.96538 3.34996 3.47815

AS graph 02.07.2000 beta
0.2 0.5 0.9 1.5 1.8

1pt

min degree node

1 44 21.0673 8.91663 5.35035 3.57629 3.76316
2 37 21.385 8.90863 5.35318 3.47916 3.74718
3 34 20.6299 8.93965 5.33861 3.54236 3.64725

max degree node
2277 2 20.1728 8.44475 4.98278 3.37857 3.58247
1231 13 20.3132 8.67817 5.248 3.46303 3.62322

899 15 20.4644 8.87768 5.2025 3.42517 3.69419

betaAS graph 16.03.2001
0.2 0.5 0.9 1.5 1.8

Figure 2: Time to propagate to all nodes of a Macroscopic Internet graph for
five different values of the parameter β.
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Figure 3: Time to infect all nodes as a function of the rate β is not a strictly
decreasing function
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Figure 4: Susceptible-Infectious-Susceptible models of propagation—numerical
solution of pair-approximation model, individual-based simulation of propaga-
tion on an Internet graph n = 3015 and m = 5156, propagation on complete
graph n = 3015, propagation on Erdos-Renyi random graphs with d = 3.4202;
parameters of propagation β = 1.8, γ = 0.05
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Figure 5: Susceptible-Infectious-Susceptible models of propagation—numerical
solution of pair-approximation model, individual-based simulation of propaga-
tion on an Internet graph n = 10515 and m = 21455, propagation on complete
graph n = 10515, propagation on Erdos-Renyi random graphs with d = 4.0808;
parameters of propagation β = 0.9, γ = 0.02
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