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ABSTRACT

Cellular automata (CA) are an abstract model of a distributed dynamical
system, as well as of fine-grain parallelism in computing. In a classical cellular
automaton, all the nodes execute their operations in parallel and in perfect syn-
chrony. We consider herewith the sequential version of CA, called SCA, and
compare those SCA with the classical, parallel CA. In particular, we show that
there are 1D CA with very simple node update rules that cannot be simulated by
any comparable SCA, irrespective of the node update ordering. Consequently,
the granularity of the basic CA operations and, therefore, the fine-grain paral-
lelism of the classical, synchronous CA, insofar as the “interleaving semantics”
is concerned, turns out to be not fine enough. We also study in some detail the
properties of the cellular automata whose nodes update their states according to
the Majority update rule. Finally, we share some thoughts on how to extend the
presented results, and, in particular, we try to motivate the study of genuinely
asynchronous cellular automata.

Keywords: analysis and dynamics of complex networks, cellular automata, dis-
crete dynamical systems, configuration space properties, communication models

1. Introduction and Motivation

Cellular automata (CA) were originally introduced as an abstract mathematical model that
can capture the behavior of biological systems capable of self-reproduction [24]. Subsequently,
CA have been extensively studied in a great variety of application domains, mostly in the
context of complex physical or biological systems and their dynamics (e.g., [16, 36, 37, 38, 39]).
However, CA can also be viewed as an abstraction of massively parallel computers (e.g, [11]).
Herein, we study a particular simple yet nontrivial class of CA from the parallel and distributed
computing perspectives. In particular, we pose - and partially answer - some fundamental
questions regarding the nature of cellular automata’s parallelism.

It is well known that CA are an abstract architecture model of fine-grain parallelism, in
that the elementary operations executed at each node are rather simple and hence comparable
to the basic operations performed by the computer hardware. In a classical, parallel CA, all
the nodes execute their operations in parallel and in perfect synchrony, that is, logically
simultaneously: in general, the state of a node xi at time step t + 1 is some simple function of
the states of the node xi and a set of its pre-specified neighbors at time t.

We consider herewith the sequential version of CA, that we shall abridge to SCA in the
sequel. We shall compare SCA with the perfectly synchronous parallel (or concurrent) CA. In
particular, we will show that there are 1D CA with very simple state update rules that cannot
be simulated by any comparable SCA, irrespective of the node update ordering. While the
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result would be trivial if one considers a single (S)CA computation, we argue that the result is
both nontrivial and important when applied to all possible inputs (starting configurations) and
to the entire classes of CA and SCA. Hence, the granularity of the basic CA operations, insofar
as the (im)possibility of simulating their concurrent computation via appropriate sequential
interleavings of these basic operations, turns out not to be quite fine enough. Furthermore, we
will characterize in some detail the possible computations of certain types of threshold cellular
automata. Last but not least, we will also share some thoughts on how to extend the work
presented in this paper. In particular, we will try to motivate the study of genuinely asyn-
chronous cellular automata, where the asynchrony applies not only to the local computations
at individual nodes, but also to communication among different nodes.

An example of asynchrony in the local node updates (i.e., asynchronous computation at dif-
ferent “processors”) is when, for instance, the individual nodes update one at a time, according
to some random order. This is a kind of asynchrony found in the literature, e.g., in [19, 20]. It is
important to understand, however, that even in the case of what is referred to as asynchronous
cellular automata (ACA) in the literature, the term asynchrony there applies to local updates
(i.e., computations) only, but not to communication, since a tacit assumption of the globally
accessible global clock still holds. We prefer to refer to this kind of (weakly asynchronous)
(A)CA as to sequential cellular automata, and shall consistently keep the term asynchronous
cellular automata only for those CA that do not have a global clock (see Section 4).

Throughout, we use the terms parallel and concurrent as synonyms. Many programming
languages experts would strongly disagree with this convention. However, a complete agreement
in the computer science community on what exactly concurrency means, and how it relates to
parallelism, is lacking. According to Chapter §12 of [31], “concurrency in the programming
language and parallelism in the computer hardware are independent concepts. [...] We can have
concurrency in a programming language without parallel hardware, and we can have parallel
execution without concurrency in the language. In short, concurrency refers to the potential
for parallelism” (italics ours). Clearly, our convention herein does not conform to the notions
of concurrency and parallelism as defined in [31]. In contrast, [29] uses the term concurrent
“to describe computations where the simultaneously executing processes can interact with one
another”, and parallel for “[...] computations where behavior of each process is unaffected
by the behavior of the others”. [29] also acknowledges that many authors do not discriminate
between ‘parallel’ and ‘concurrent’. We shall follow this latter convention throughout and,
moreover, by a parallel (concurrent) computation we shall mean actions of several processing
units that are carried out logically (if not necessarily physically) simultaneously. That is,
when referring to parallel (or, equivalently, concurrent) computation, we shall always assume
perfect synchrony.

1.1. Capturing Concurrency via Sequential Interleavings

While our own brains are massively parallel computing devices, we seem to (consciously)
think and approach problem-solving rather sequentially. In particular, when designing a paral-
lel algorithm or writing a parallel computer program, we prefer to be able to understand such
an algorithm or program at the level of sequential operations or executions. It is not surprising,
therefore, that a great deal of research effort has been devoted to interpreting parallel compu-
tation in the more familiar, sequential terms. One of the most important contributions in that
respect is the (nondeterministic) sequential interleaving semantics of concurrency (see, e.g.,
[10, 12, 18, 22, 23]).

When interpreting concurrency via interleaving semantics, a natural question arises: Given
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a parallel computing model, can its parallel execution always be captured by such sequential
nondeterminism, so that any given parallel computation can be faithfully reproduced via an ap-
propriate choice of a sequential interleaving of the operations involved? For most theoreticians
of parallel computing the answer is apparently “Yes” - provided that we simulate concurrent
execution via sequential interleavings at a sufficiently high level of granularity of the basic
computational operations.

We shall illustrate the concept of sequential interleaving semantics of concurrency with a
simple exercise. Let’s consider the following question from a sophomore parallel programming
class: Find an example of two instructions such that, when executed in parallel, they give a
result not obtainable from any corresponding sequential execution sequence.

A possible answer: Assume x = 0 initially and consider the following two programs
x ← x + 1; x ← x + 1

vs.
x ← x + 1 || x ← x + 1

where “||” stands for the parallel, and “;” for the sequential composition of instructions or
programs, respectively. Sequentially, one always gets the same answer: x = 2. In parallel
(when the two assignment operations are executed synchronously), however, one gets x = 1. It
appears, therefore, that no sequential ordering of operations can reproduce parallel computation
- at least not at the granularity level of high-level instructions as above.

The whole “mystery” can be readily resolved if we look at the possible sequential executions
of the corresponding machine instructions:

LOAD x, ∗m LOAD x, ∗m
ADD x, #1 ADD x, #1
STORE x, ∗m STORE x, ∗m
There certainly exist choices of sequential interleavings of the six machine instructions

above that lead to “parallel” behavior (i.e., the one where, after the code is executed, x = 1).
Thus, by refining granularity from the high-level language instructions down to the machine
instructions, we can certainly preserve the “interleaving semantics” of concurrency.

As a side, we remark that it turns out that the example above does not require finer granu-
larity quite yet, if we allow that some instructions be treated as no-ops. Indeed, if we informally
define Φ(P ) to be the set of possible behaviors of program P, then the example above only
shows that, for S1 = S2 = (x ← x + 1),

Φ(S1||S2) * Φ(S1; S2) ∪ Φ(S2; S1) (1)

However, it turns out that, in this particular example, it indeed is the case that

Φ(S1||S2) ⊆ Φ(S1; S2) ∪ Φ(S2; S1) ∪ Φ(S1) ∪ Φ(S2) (2)

and no finer granularity is necessary to model Φ(S1||S2), assuming that, in some of the sequen-
tial interleavings, we allow certain instructions not to be executed at all.

However, one can construct more elaborate examples where the property (2) does not hold.
The only way to capture the program behavior of parallel compositions of the form Φ(P1||P2)
via sequential interleavings in such cases would then be to find a finer level of granularity.

We address in this work the (in)adequacy of the sequential interleavings semantics when
applied to CA where the individual node updates are considered to be elementary operations.
It is tacitly assumed that the complete node update operation includes, in addition to computing
the local update function on appropriate inputs, also the necessary reads of the neighbors’ values
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preceding the local rule computation, as well as the writes of one’s new value following the local
computation. These points will become clear once the necessary definitions and terminology
are introduced in Section 2; see also discussion in Sections 4 and 5.

In particular, we will show that the perfect synchrony of the classical CA’s node updates
causes the interleaving semantics, as captured by the SCA and NICA sequential CA models
(see Section 2), to fail rather dramatically even in the context of the simplest nonadditive CA
node update rules.

2. Cellular Automata and Types of Their Configurations

We will follow [11] and formally define classical (that is, synchronous and concurrent) CA
in two steps: we shall first introduce the notion of a cellular space, and then define a cellular
automaton over an appropriate cellular space.
Definition 1 A Cellular Space, Γ, is an ordered pair (G,Q), where

• G is a regular undirected Cayley graph that may be finite or infinite, with each node
labeled with a distinct integer; and
• Q is a finite set of states that has at least two elements, one of which being the special
quiescent state, denoted by 0.

We denote the set of integer labels of the nodes (vertices) in Γ by L. That is, L may be
equal to, or be a proper subset of, the set of all integers.
Definition 2 A Cellular Automaton A is an ordered triple (Γ, N, M), where

• Γ is a cellular space;
• N is a fundamental neighborhood; and
• M is a finite state machine such that the input alphabet of M is Q|N |, and the local
transition function (update rule) for each node is of the form δ : Q|N |+1 → Q for CA
with memory, and δ : Q|N | → Q for memoryless CA.

The fundamental neighborhood N specifies which of the near-by nodes provide inputs to
the update rule of a given node. In the classical CA, Γ is a regular graph that locally “looks
the same everywhere”; in particular, the local neighborhood N is the same for each node in Γ.

The local transition rule δ specifies how each node updates its state (that is, value), based
on its current state and the current states of its neighbors in N . By composing together the
application of the local transition rule to each of the CA’s nodes, we obtain the global map on
the set of (global) configurations of a cellular automaton.

Insofar as the CA “computer architecture” is concerned, one important characteristic is
that the memory and the processors are not truly distinguishable, in stark contrast to Turing
machines, (P)RAMs, and other standard abstract models of digital computers. Namely, each
node of a cellular automaton is both a processing unit and a memory storage unit; see, e.g., the
detailed discussion in [33]. In particular, the only memory content of a CA is a tuple of the
current states of all its nodes. Moreover, as a node can “read” (but not “write”) the states of
its neighbors, we can view the architecture of classical CA as a very simplistic, special case of
distributed shared memory parallel model, where every processor (that is, each node) “owns”
one cell (typically, one bit) of its local memory, physically separated from other similar local
memories - yet this local memory is directly accessible (for read accesses) to some of the other
processors. In particular, the “reads” from any memory cell are restricted to an appropriate
neighborhood of that shared value’s owner processor, while the “writes” are restricted to the
owner processor alone.

Since our main results in this paper will pertain to a comparison and contrast between the
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classical, concurrent threshold CA and their sequential counterparts, we formally introduce two
types of the sequential CA next. First, we define SCA with a fixed (but arbitrary) sequence
specifying the order according to which the nodes are to update. We then introduce a kind of
sequential automata whose purpose is to capture the “interleaving semantics”, that is, where
all possible sequences of node updates are considered at once.
Definition 3 A Sequential Cellular Automaton (SCA) S is an ordered quadruple (Γ, N,M, s),
where Γ, N and M are as in Definition 2, and s is an arbitrary sequence, finite or infinite,
all of whose elements are drawn from the set L of integers used in labelling the vertices of Γ.
The sequence s is specifying the sequential ordering according to which an SCA’s nodes update
their states, one at a time.

However, when comparing and contrasting the concurrent CA with their sequential counter-
parts, rather than making a comparison between a given CA with a particular SCA (that is,
some concrete SCA with a particular choice of the update sequence s), we would like to com-
pare the parallel CA computations with the computations of the corresponding SCA for all
possible sequences of node updates. For that purpose, the following class of nondeterministic
sequential cellular automata is introduced:
Definition 4 A Nondeterministic Interleavings Cellular Automaton (NICA) I is defined to
be the union of all sequential automata S whose first three components, Γ, N and M are fixed.
That is, I = ∪s (Γ, N, M, s), where the meanings of Γ, N, M , and s are the same as before,
and the union is taken over all (finite and infinite) sequences s : {1, 2, 3, ...} → L, where L is
the set of integer labels of the nodes in Γ.

We next introduce some terminology from physics that we find useful for characterizing all
possible computations of a parallel or a sequential cellular automaton. To this end, a (discrete)
dynamical system view of CA is helpful. A phase space (also called configuration space) of a
dynamical system is a directed graph where the vertices are the global configurations (or global
states) of the system, and directed edges correspond to the possible direct transitions from one
global state to another.

As for any other kind of dynamical systems, we can define the fundamental, qualitatively
distinct types of global configurations that a cellular automaton can find itself in. We first
define these qualitatively distinct types of dynamical system configurations for the parallel CA,
and then discuss how these definitions need to be modified in the case of SCA and NICA.

The classification below is based on answering the following question: starting from a given
global configuration, can a cellular automaton return to that same configuration after a finite
number of parallel computational steps?
Definition 5 A fixed point (FP) is a configuration in the phase space of a CA such that, once
the CA reaches this configuration, it stays there forever. A cycle configuration (CC) is a state
that, once reached, will be revisited infinitely often with a fixed, finite temporal period of 2 or
greater. A transient configuration (TC) is a state that, once reached, is never going to be
revisited again.

In particular, a FP is a special, degenerate case of a recurrent state with period 1. Due to
deterministic evolution, any configuration of a classical, parallel CA is either a FP, a proper
CC, or a TC. Throughout, we shall make a clear distinction between FPs and proper CCs.

On the other hand, if one considers SCA and NICA, so that arbitrary node update orderings
are permitted, then, given the underlying cellular space and the local update rule, the resulting
phase space configurations, due to the nondeterminism that results from different choices of
possible sequences of node updates (“sequential interleavings”), are more complicated. In a
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particular SCA, a cycle configuration is any configuration revisited infinitely often - but the
period between different consecutive visits, assuming an arbitrary sequence s of node updates,
need not be fixed. We call a global configuration that is revisited only finitely many times (under
a given ordering s) quasi-cyclic. Similarly, a quasi-fixed point is an SCA configuration such
that, once the SCA’s dynamic evolution reaches this configuration, it stays there “for a while”,
and then leaves. For example, a configuration of an SCA can simultaneously be both an FP and
a quasi-CC, or both a quasi-FP and a CC (see the related discussion and examples in [34])).

For simplicity, heretofore we shall refer to a configuration C of a NICA as a (weak) fixed
point if there exists some infinite sequence of node updates s such that C is a FP in the usual
sense when the automaton’s nodes update according to the ordering s. A strong fixed point of a
NICA automaton is a configuration that is fixed (stable) with respect to all possible sequences
of node updates. Similarly, we consider a configuration C ′ to be a cycle state, if there exists
an infinite sequence of node updates s′ such that, if NICA nodes update according to s′, then
C ′ is a cycle state of period 2 or greater in the usual sense (see Definition 5). In particular, in
case of the NICA automata, a single configuration can simultaneously be a weak FP, a CC and
a TC; see reference [34] for a simple example.

3. 1D Parallel vs. Sequential CA Comparison for Simple Threshold Rules

After the introduction, motivation and the necessary definitions, we now proceed with our
main results and their meaning. Technical results are given in this section. Discussion of
the implications and relevance of these results, as well as some possible generalizations and
extensions, will follow in Section 4.

We will compare and contrast the classical, parallel CA with their sequential counterparts,
SCA and NICA, in the context of the simplest nonlinear and nonaffine local update rules possi-
ble, namely, the CA in which the nodes locally update according to linear threshold functions.
Moreover, we choose these threshold functions to be symmetric, so that the resulting (S)CA
are also totalistic (see, e.g., [11] or [38]). We show the fundamental difference in the config-
uration spaces, and therefore possible computations, between the parallel threshold CA and
the sequential threshold CA: while the former can have temporal cycles (of length two), the
computations of the latter always either converge to a fixed point, or otherwise fail to finitely
converge to any recurrent pattern whatsoever.

For simplicity, but also in order to indicate how dramatically the sequential interleavings
of NICA fail to capture the concurrency of the perfectly synchronous CA, we restrict the
underlying cellular spaces to one-dimensional Γ. We formally define the class of 1D (S)CA
of a finite radius below:
Definition 6 A 1D (sequential) cellular automaton of radius r ≥ 1 is a (S)CA defined
over a one-dimensional string of nodes, such that each node’s next state depends on the current
states of its neighbors to the left and to the right that are no more than r nodes away. For the
(S)CA with memory, the next state of a node also depends on that node’s own current state.

Thus, for the Boolean (S)CA with memory defined over a one-dimensional cellular space Γ,
each node’s next state depends on exactly 2r + 1 input bits, while in the memoryless (S)CA
case, the local update rule is a function of 2r input bits. The underlying 1D cellular space is a
string of nodes that can be a finite line graph, a ring (corresponding to the “circular boundary
conditions”), a one-way infinite string, or, in the most common case, Γ is a two-way infinite
string (or “line”).

We fix the following conventions and terminology. Throughout, only Boolean CA, SCA and
NICA are considered; in particular, the set of possible states of any node is {0, 1}. The phrases
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“monotone symmetric” and “symmetric (linear) threshold” functions / update rules / automata
are used interchangeably. Similarly, “(global) dynamics” and “(global) computation” are used
synonymously. Unless stated otherwise, CA denotes a classical, parallel cellular automaton,
whereas a cellular automaton where the nodes update sequentially is always denoted by SCA
(or NICA, when appropriate). Also, unless explicitly stated otherwise, (S)CA with memory
are assumed. The default infinite cellular space Γ is a two-way infinite line. The default finite
cellular spaces are finite rings. The terms “phase space” and “configuration space” are used
synonymously throughout, as well, and sometimes abridged to PS for brevity.

3.1. On the Existence of Cycles in Parallel and Sequential Threshold Cellular Automata

We begin by defining linear threshold functions and simple threshold functions, and the
CA, SCA and NICA whose updates rules are restricted to such threshold functions.
Definition 7 A Boolean-valued linear threshold function of m inputs, x1, ..., xm, is any
function of the form

f(x1, ..., xm) =

{
1, if

∑
i wi · xi ≥ θ

0, otherwise
(3)

where θ is an appropriate threshold constant, and w1, ..., wm are arbitrary (but fixed) real
numbers, called weights.

In general, weights wi in the definition above can be both positive and negative. This is
esp. common in the neural networks literature, where negative weights wi indicate an inhibitory
effect of, e.g., one neuron on the firings of another, near-by neuron. In most studies of discrete
dynamical systems, however, the weights wi are required to be nonnegative - that is, only
excitatory effects of a node on its neighbors are allowed; see, e.g., [5, 6, 34, 36, 37].
Definition 8 A threshold automaton (threshold (S)CA) is a (parallel or sequential) cellular
automaton whose node update rule δ is a Boolean-valued linear threshold function.

Therefore, given an integer k ≥ 0, a k-threshold function, in general, is any function of
the form as in Definition 8 with θ = k and an appropriate choice of weights wi, i = 1, ...,m.
Heretofore we consider monotonically nondecreasing Boolean threshold functions only; this, in
particular, implies that the weights wi are always nonnegative. We also additionally assume δ
to be a symmetric function of all of its inputs. That is, the (S)CA we analyze have symmetric,
monotone Boolean functions for their local update rules. We refer to such functions as to
simple threshold functions, and to the (S)CA with simple threshold node update rules as to
simple threshold (S)CA [5, 6, 34].
Definition 9 A simple threshold (S)CA is a cellular automaton whose local update rule δ is
a monotone symmetric Boolean (threshold) function.

In particular, if all the weights wi are positive and equal to one another, then, without loss
of generality, we may set them all equal to 1; obviously, this normalization of the weights wj

may also require an appropriate adjustment of the threshold value θ.
Throughout, whenever we say a threshold automaton or a threshold (S)CA, we shall mean

a simple threshold automaton (threshold (S)CA), unless explicitly stated otherwise. That is,
the 1D threshold (S)CA studied in the sequel will have the node update functions of the general
form
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δ(xi−r, xi−r+1, ..., xi, ..., xi+r−1, xi+r) =

{
1, if

∑r
j=−r xi+j ≥ k

0, otherwise
(4)

where k is a fixed integer from the range {0, 1, ..., 2r + 1, 2r + 2}.
Due to the nature of the node update rules, cyclic behavior intuitively should not be expected

in such simple threshold cellular automata. This is, generally, (almost) the case, as will be shown
below. We argue that the importance of the results in this subsection largely stems from the
following three factors:

• the local update rules are the simplest nonlinear totalistic rules one can think of;
• given the rules, the cycles are not to be expected - yet they do exist, and in the case of

synchronous parallel CA only; and, related to that observation,
• it is, for this class of automata, the parallel CA that have more diverse possible dynamics

than any of their sequential counterparts, and, in particular, while qualitatively there is
nothing among the possible sequential computations that is not present in the parallel
case, the parallel threshold CA do exhibit a particular qualitative behavior that cannot
be reproduced by any threshold SCA or NICA.

The results that follow hold for two-way infinite 1D (S)CA, as well as for finite (S)CA with
the circular boundary conditions (i.e., for the (S)CA whose cellular spaces are finite rings).
Lemma 1 The following dichotomy holds for (S)CA with δ = MAJ and r = 1:

(i) Any 1D parallel CA with r = 1, the Majority update rule δ = MAJ , and an even
number of nodes, has finite temporal cycles in the phase space (PS); the same holds for the
two-way infinite 1D Majority CA.

(ii) 1D Sequential CA with r = 1 and δ = MAJ do not have any temporal cycles in their
phase spaces, irrespective of the sequential node update ordering s.
Proof. To show (i), we exhibit an actual two-cycle. Consider either an infinite 1D CA, or

a finite one, with circular boundary conditions and an even number of nodes, 2n. Then the
configurations (10)ω and (01)ω in the infinite case ((10)n and (01)n in the finite ring case) form
a 2-cycle. A proof of part (ii) based on a straight-forward case analysis can be found in our
prior publication [34]. 2

We remark that, insofar as the infinite SCA as in Lemma 1 are concerned, a nontrivial
temporal cycle configuration cannot exist even in the limit.

Part (ii) of Lemma 1 above can be readily generalized: even if we consider local update
rules δ other than the Majority rule, yet restrict δ to monotone symmetric (Boolean)
functions, that is, the simple threshold functions [5, 6, 34], such sequential CA still do not
have any proper cycles.
Theorem 1 For any Simple Threshold 1D Sequential CA A with r = 1, and any sequence
s of the node updates, the phase space PS(A) is temporal cycle-free.
Proof. Since r = 1 and 2r + 1 = 3, there are only five simple threshold functions on three

inputs. Two of those five functions are utterly trivial (the constant functions 0 and 1). The
“at-least-1-out-of-3” simple threshold function is the Boolean OR on three inputs; similarly, the
“at-least-3-out-of-3” simple threshold function is the Boolean AND. It is straight-forward to
show that the CA (sequential or parallel, as long as they are with memory) with δ ∈ {OR, AND}
cannot have temporal cycles. The only remaining simple threshold update rule on three inputs
is δ = MAJ , for which we have already argued that the corresponding parallel CA have
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temporal two-cycles, but all the corresponding SCA (and therefore the NICA) have cycle-free
configuration spaces. 2

Similar results to those in Lemma 1 and Theorem 1 hold for the 1D CA with radius r = 2:
Lemma 2 The following dichotomy holds for (S)CA with δ = MAJ and r = 2:

(i) There are 1D parallel CA with r = 2 and δ = MAJ that have finite temporal cycles.
(ii) Any 1D SCA with r = 2 and δ = MAJ, for any sequential order s of the node updates

whatsoever, has a cycle-free configuration space.
The proof of this Lemma can be found in our earlier work [34].
Generalizing Lemmata 1 and 2, part (i), we have the following

Corollary 1 For all r ≥ 1, there exists a monotone symmetric CA A such that A has
finite temporal cycles in the phase space.

Namely, given any r ≥ 1, a parallel CA with δ = MAJ and Γ = infinite line has at least
one two-cycle in the PS: {(0r1r)ω, (1r0r)ω}. If r ≥ 3 is odd, then such a threshold automaton
has at least two distinct two-cycles, since {(01)ω, (10)ω} is also a two-cycle. Analogous results
hold for the more general simple threshold CA defined on finite 1D cellular spaces, provided
that such automata have sufficiently many nodes, that the number of nodes is appropriate (see
[35] for more details), and assuming circular boundary conditions. Moreover, the result extends
to many finite and infinite CA in the higher dimensions, as well; in particular, threshold CA
with δ = MAJ that are defined over the 2D Cartesian grids or hypercubes also have two-cycles
in their respective phase spaces.

It turns out that the two-cycles in the PS of concurrent CA with δ = MAJ are actually
the only type of (proper) temporal cycles such cellular automata can have. Indeed, for any
symmetric linear threshold update rule δ, and any finite regular Cayley graph as the underlying
cellular space, the following general result holds [11, 15]:
Proposition 1 [15] Let a parallel simple threshold CA A = (Γ, N,M) be given, where Γ
is any finite cellular space, and let this cellular automaton’s global map be denoted by F .
Then for all configurations C ∈ PS(A), there exists a finite time step t ≥ 0 such that
F t+2(C) = F t(C).

In particular, this result implies that, in case of any finite simple threshold CA, for any
starting configuration C0, there are only two possible kinds of orbits: upon repeated iteration,
the computation either converges to a fixed point configuration after finitely many steps, or else
it eventually arrives at a two-cycle.

It is almost immediate that, if we allow the underlying cellular space Γ to be infinite, if
computation from a given starting configuration converges after any finite number of steps at
all, it will have to converge either to a fixed point or to a two-cycle (but never to a cycle of, say,
period three - or any other finite period). The result also extends to finite and infinite SCA,
provided that we reasonably define what is meant by a single computational step in a situation
where the nodes update one at a time. The simplest notion of a single computational step of
an SCA is that of a single node updating its state. Thus, a single parallel step of a classical
CA defined on an infinite underlying cellular space Γ includes an infinite amount of sequential
computation and, in particular, infinitely many elementary sequential steps. Discussing the
implications of this observation, however, is beyond the scope of this work.

Additionally, in order to ensure some sort of convergence of an arbitrary SCA (esp. when
the underlying Γ is infinite), and, more generally, in order to ensure that all the nodes get a
chance to update their states, an appropriate condition that guarantees fairness needs to be
specified. That is, an appropriate restriction on the allowable sequences s of node updates is
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required. As a first step towards that end, we shall allow only infinite sequences s of node
updates through the rest of the paper.

For SCA defined on finite cellular spaces, one sufficient fairness condition is to impose a
fixed upper bound on the number of sequential steps before any given node gets its “turn” to
update again. This is the simplest generalization of the fixed permutation assumption made in
the work on Sequential Dynamical Systems (SDSs); see, e.g., [5, 6, 7, 8]. In the infinite SCA
case, on the other hand, the issue of fairness is nontrivial, and some form of dove-tailing of
sequential individual node updates may need to be imposed. In the sequel, we shall require
from the sequences s of node updates of SCA and NICA to be fair in a sense defined below,
without imposing any further restrictions or investigating how are such fair sequences of node
updates to be generated in a distributed setting. For our present purposes, the following simple
notion of fairness will suffice:
Definition 10 An infinite sequence s : N → L is fair if (i) the domain L is finite or
countably infinite, and (ii) every element x ∈ L appears infinitely often in the sequence of
values s1 = s(1), s2 = s(2), s3 = s(3), ...

Let s : N → L be an arbitrary infinite sequence of elements from some domain L. Let
s[q] denote the q-tail of s, i.e., s[q] = (sq+1, sq+2, sq+3, ...), We state the following alternative
characterizations of fair sequences:
Lemma 3 Let an infinite sequence s : N → L be given, where the set L is countable. Then
the following four properties are all equivalent to one another:

(i) s is fair;
(ii) ∀n ∈ N , s[n] is fair;
(iii) (∀x ∈ L)(∀n ∈ N)(∃n′ ∈ N)(n′ > n ∧ s(n′) = x)
(iv) ∀n ∈ N , s[n] : {n + 1, n + 2, ...} → L is onto.
Now that we have defined what we mean by a single step of a sequential CA, as well as

adopted some reasonable notion of fairness, we have set the stage for the following generaliza-
tion of Proposition 1 to both finite and infinite 1D CA and 1D SCA:
Proposition 2 Let a parallel CA or a sequential SCA be defined over a finite or infinite 1D
cellular space, with a finite rule radius r ≥ 1. Let this cellular automaton’s local update rule be a
simple threshold function. Let’s also assume, in the sequential cases, that the fairness condition
from Definition 10 holds. Then for any starting configuration C0 ∈ PS(A) whatsoever, and
any finite subconfiguration C ⊆ C0, there exists a time step t ≥ 0 such that

F t+2(C) = F t(C) (5)

where, in the case of fair SCA, the Eqn. (5) can be replaced with

F t+1(C) = F t(C) (6)

In the case of δ = MAJ (S)CA, a computation starting from any finitely supporteda initial
configuration necessarily converges to either a FP or a two-cycle [15]:
Proposition 3 Let the assumptions from Proposition 2 hold, and let the underlying threshold
rule be δ = MAJ . Then for all configurations C ∈ PS(A) whatsoever in the finite cases, and
for all configurations C ∈ PS(A) such that C has a finite support when Γ(A) is infinite,
there exists a finite time step t ≥ 0 such that F t+2(C) = F t(C). Moreover, in the sequential
cases with fair update sequences, there exists a finite t ≥ 0 such that F t+1(C) = F t(C).

aAlso sometimes called compactly supported; see, e.g., [15]. A global configuration of a cellular automaton
defined over an infinite cellular space Γ is said to be compactly supported if all except for at most finitely many
of the nodes are quiescent (i.e., in state 0) in that configuration.
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Furthermore, if arbitrary infinite initial configurations are allowed in Propositions 2 − 3,
and the dynamic evolution of the full such global states is monitored, then the only additional
possibility is that the particular (S)CA computation fails to finitely converge altogether. In
that case, and under the fairness assumption in the case of SCA, the limiting configuration
limt→∞F t(C) = C lim can be shown to be a fixed point.

To summarize, if the computation of a SCA starting from some configuration C converges
at all (that is, to any finite recurrent structure), it actually has to converge to a fixed point.

To convince oneself of the validity of Proposition 2, two basic facts have to be established.
One, convergence to finite temporal cycles of length three or higher is not possible. Indeed,
Proposition 1 establishes that the only possible long-term behaviors of the finite simple thresh-
old CA are (i) the convergence to a fixed point and (ii) the convergence to a two-cycle. The
only possibility for fair finite SCA is the convergence to a fixed point. If infinite cellular spaces
are considered, it is straight-forward to see that the only new possibility is that the long-term
dynamics of a (S)CA fails to (finitely) converge altogether. In some cases with infinite Γ such
divergence indeed takes place - even when the starting configuration is finitely (compactly)
supported: consider, e.g., the δ = OR CA and the starting configuration ...00100... on the
two-way infinite line.

Two, in the sequential cases (that is, for the simple threshold SCA and NICA), temporal two-
cycles are not possible. That is, a generalization of Lemmata 1, 2 and Theorem 1 to arbitrary
finite r ≥ 1, and arbitrary symmetric threshold update rules, holds. This generalization is
provided by an appropriate specialization of a similar result in [6] for a class of sequential graph
automata called Sequential Dynamical Systems that we have already mentioned. In particular,
part (ii) in the Theorem 2 below and its proof are directly based on [6]:
Theorem 2 The following dichotomy holds:

(i) All 1D (parallel) CA with any odd r ≥ 1, the local rule δ = MAJ, and cellular space
Γ that is a finite ring with an even number of nodes, or a two-way infinite line, have finite
cycles in their phase spaces. The same holds for arbitrary (even or odd) r ≥ 1 provided that
Γ is either a finite ring with a number of nodes divisible by 2r, or a two-way infinite line.

(ii) Any 1D SCA with any monotone symmetric Boolean update rule δ, for any finite
r ≥ 1, defined over a finite or infinite 1D cellular space, and for an arbitrary sequence s
(finite or infinite, fair or unfair) as the node update ordering, has a cycle-free phase space.

Remark: There are also CA defined over finite rings and with even r ≥ 2 such that the
number of nodes in those rings is not divisible by 2r yet temporal two-cycles exist. However, a
more detailed discussion on what properties the number of nodes in such CA has to satisfy is
required; we leave this discussion out, however, for the sake of clarity and space constraints.
Proof.

Part (i): Consider first Γ = infinite line. For the special case when r = 2, consider the
configurations (1100)ω and (0011)ω; it is easy to verify that these two configurations form a
cycle for the corresponding parallel CA. Similar reasoning readily generalizes to arbitrary r ≥ 2.
Thus, the “canonical” temporal two-cycle for 1D Majority CA defined over an infinite line
with r ≥ 1 is {(1r0r)ω, (0r1r)ω}, with the obvious modification for the finite CA with 2n
nodes (and assuming the circular boundary conditions).

Part (ii) (proof sketch): The proof of this interesting property is based on a slight mod-
ification of a similar result in [6] for the aforementioned SDSs. A simple symmetric SDS is
a sequentially updating graph automaton with (possibly different) k-threshold update rules at
different nodes, and with the node update ordering given by a fixed permutation of the nodes.
The central idea of the proof is to assign nonnegative integer potentials to both nodes and
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edges in the functional graph of the given SCA. In this functional graph, for any two nodes xi

and xj , the unordered pair {xi, xj} is an edge if and only if these two nodes provide inputs to
one another, i.e., in the 1D SCA case, if and only if distance(xi, xj) ≤ r (that is, assuming
the canonical labelling of the nodes, so that the consecutive nodes always get labeled by the
consecutive integers, iff |i − j| ≤ r). The potentials are assigned in such a way that, each
time a node changes its value from 0 to 1 or vice versa, the overall potential of the resulting
configuration is strictly less than the overall potential of the configuration before the node flip.
Since all individual node and edge potentials are initially nonnegative, and since the total po-
tential of any configuration (that is, the sum of all individual node and edge potentials in this
configuration) is always bounded, the fact that each “flip” of any node’s value strictly decreases
the overall potential by integer amounts implies that, after a finite number of node flips, an
equilibrium where no nodes can further flip is reached; this equilibrium will be a fixed point
configuration. 2

To summarize, simple threshold CA, depending on the starting configuration, may converge
to a fixed point or to a temporal two-cycle; in particular, they may end up “looping” in finite
(but nontrivial) temporal cycles. In contrast, the corresponding classes of SCA (and therefore
NICA) can never cycle. We also observe that, given any sequence of node updates of a finite
threshold SCA, if this sequence satisfies the fairness condition from Definition 10, then it
can be shown that the computation of such a threshold SCA A is guaranteed to converge to a
fixed point (sub)configuration on any finite subset of the nodes in Γ(A).

The cycle-freeness of the threshold SCA and NICA holds irrespective of the choice of a
sequential update ordering; moreover, extending to infinite SCA, temporal cycles cannot be
obtained even in the limit. Hence, we conclude that no choice of a “sequential interleaving” can
capture the perfectly synchronous parallel computation of simple threshold CA. Consequently,
the “interleaving semantics” of NICA fails to capture the synchronous parallel behavior of the
classical CA even for this, simplest nonlinear class of totalistic CA update rules.

3.2. Characterizing Configuration Spaces of 1D (S)CA with δ = Majority

Next, we specifically focus on δ = Majority 1D CA, and characterize the configuration
spaces of such threshold cellular automata. In particular, in the Γ = infinite line case, we show
that the cycle configurations are rather rare, that fixed point configurations are quite numerous
(there are uncountably many of them) yet still relatively rare in a precise mathematical sense to
be discussed below, and that almost all configurations of these threshold (S)CA are transient.

In the sequel, for the finite 1D (S)CA circular boundary conditions will be assumed by
default. Thus, the cellular spaces in this section will be either infinite lines, or finite rings. In
the case of SCA, the fairness condition based on Definition 10 will be assumed. Also, when we
refer to FPs of NICA, we mean weak fixed points. (Recall that a weak FP is a configuration
such that there exists an infinite sequence of individual node updates that satisfies the fairness
condition and so that, with respect to this sequence, the particular configuration is a “proper”
FP - but the same configuration may be, for example, a proper TC with respect to other
sequences of node updates).

We begin with some observations about the nature of various configurations in the (S)CA
with δ = MAJ and r = 1. We shall subsequently generalize several of these results to arbitrary
r ≥ 1. We first recall that, for such (S)CA with r = 1, two adjacent nodes of the same
value are stable. That is, 11 and 00 are stable subconfigurations. Consider now the starting
subconfiguration xi−1xixi+1 = 101. In the parallel case, at the next time step, xi → 1. Hence,
no FP configuration of a parallel CA can contain 101 as a subconfiguration. In the sequential
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case, assuming fairness, xi will eventually have to update. If, at that time, it is still the case
that xi−1 = xi+1 = 1, then xi → 1, and xi−1xixi+1 → 111, which is stable. Else, at least one
of xi−1, xi+1 has already “flipped” into 0. Without loss of generality, let’s assume xi−1 = 0.
Then xi−1xi = 00, which is stable; so, in particular, xi−1xixi+1 will never go back to the
original 101. By symmetry of δ = MAJ with respect to 0 and 1, the same analysis applies to
the subconfiguration xi−1xixi+1 = 010. In particular, the following properties hold:
Lemma 4 A fixed point configuration of a 1D-(S)CA with δ = MAJ and r = 1 cannot
contain subconfigurations 101 or 010. Similarly, a cycle configuration of such a 1D-(S)CA
cannot contain subconfigurations 00 or 11.
Proof. In any configuration that contains 101 as a subconfiguration, at the very next parallel
update the 0 in between the two 1s will flip to 1, regardless of how many other nodes are
present, and what are their current states. Analogous argument applies to configurations that
contain 010. Hence, FPs of CA with δ = MAJ and r = 1 are solely made of consecutive blocks
of two or more 1s and/or similar blocks of two or more 0s.

As for the claim about the cycle configurations, notice that 00 and 11 are stable subcon-
figurations. Without loss of generality, assume a CC of a parallel Majority CA contains a
block of two or more consecutive 0s. Consider, say, the node adjacent to the rightmost 0 in that
block. Let’s denote that node by xj . This node xj is, by assumption, in the state 1. There are
two cases to consider. If our node’s right neighbor, xj+1, is in the state 0, then, at the very next
parallel step, the node xj , that has at least two out of three of its input bits equal to 0, will
itself flip to 0. Since xj is adjacent to xj+1 = 0, it will have joined an expanded stable block of
zeros, and consequently xj will remain at 0 thereafter. Hence, the starting configuration cannot
be a CC.

The other possibility is that xj+1 is also in the state 1; that is, the configuration is of the
form ...xj−2xj−1xjxj+1 = ...0011.... Then the block of (at least) two consecutive 1s is stable,
and so is the block of two or more 0s to the left from it. That such a configuration cannot be a
cycle state now follows by induction: proceeding moving along the line (or ring) of nodes from
the assumed block of zeros to the right, either eventually a block of the form ...010 or ...101
is encountered, in which case this configuration is transient, or else no such subconfiguration
exists, in which case the entire configuration is made solely of the stable blocks of two or more
0s and similar stable blocks of 1s, and thus this configuration must be a fixed point. Either
way, the assumption that this configuration was actually a cycle configuration cannot hold. 2

Lemma 5 The FPs of the 1D-(S)CA with δ = MAJ and r = 1 are precisely of the form
(000∗ + 111∗)∗. The CCs of such 1D-CA may exist only in the parallel case, and the temporal
cycles are precisely of the form {(10)∗, (01)∗}. The TCs of CA are all other configurations,
that is, precisely the configurations that contain both (i) 000∗ or 111∗ (or both), and (ii) 101 or
010 (or both) as their subconfigurations. In addition, the CCs in the parallel case become TCs
in all corresponding sequential cases.

The claim of Lemma 5 follows by the result of Lemma 4 and an elementary case analysis.
We observe that, for r ≥ 2, there exist cycle configurations that actually contain stable

subconfigurations. Similarly, there exist FPs that are characterized by spatial periodicity, and
are not entirely made of the consecutive stable blocks of 0s and/or 1s. Likewise, giving a similar
characterization for the higher dimensional cellular spaces is also not as straight-forward as the
results in the Lemmata above. Therefore, the nice and clean partition of the configurations into
FPs, CCs and TCs obtained in this section is attributable to the peculiarity of the 1D cellular
spaces, as well as the assumption that the rule radius is r = 1.

However, some generalizations to arbitrary (finite) rule radii r can be readily deducted.
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For instance, given any such r ≥ 1, the finite subconfigurations 0r+1 and 1r+1 are stable with
respect to δ = MAJ update rule applied either in parallel or sequentially; consequently, any
configuration of the form (0r+10∗ + 1r+11∗)∗, for a finite or infinite CA with an appropriate
number of nodes, is a fixed point. This characterization, only with a considerably different
notation, has been known for the case of configurations with compact support for a relatively
long time; see, e.g., Chapter 4 in [15]. On the other hand, fully characterizing CCs (and,
consequently, also TCs) in case of finite or infinite (parallel) CA is more complicated than in
the simplest case with r = 1. For example, for r ≥ 1 odd, {(10)∗, (01)∗} is a two-cycle, whereas
for r ≥ 2 even, each of (10)∗, (01)∗ is a fixed point. However, for all r ≥ 1, the corresponding
(parallel) CA are guaranteed to have some temporal cycles, namely, given r, the set of states
{(1r0r)∗, (0r1r)∗} forms a two-cycle.

Back to the r = 1 case, we also establish the following property:
Lemma 6 Given any (finite or infinite) simple threshold (S)CA with memory and with the
rule radius r = 1, one of the following two properties always holds:

(i) this simple threshold (parallel or sequential) cellular automaton does not have any proper
temporal cycles and cycle configurations at all; or else

(ii) if there are cycle configurations in the PS of this CA, then none of those cycle configu-
rations has any incoming transients.
Proof. Let’s assume a threshold CA with r = 1 has a cycle configuration. Then the update

rule δ of this CA cannot be either Boolean AND or Boolean OR and, consequently, since r = 1,
it follows that it must be the case that δ = MAJ .

Now, if any CC of this CA actually had an incoming transient, then there would exist a
predecessor configuration of this cycle configuration such that this predecessor configuration is
transient. Let C ′ denote this transient configuration, and let C denote the cycle configuration
in question (so that F (C ′) = C where F , as before, stands for this cellular automaton’s
global map). By Lemmata 4 and 5, configuration C ′ must contain both stable and unstable
subconfigurations. In particular, C ′ contains either a stable block of the form 00... or of the
form 11...; however, this implies that F (C ′) also contains such a stable block and, consequently,
by Lemma 4, F (C ′) cannot be a cycle configuration. Therefore, it follows that any predecessor
of a cycle configuration cannot be a TC; hence, such a predecessor itself also has to be a cycle
configuration, and the claim of the Lemma follows. 2

We strongly suspect that the property in Lemma 6 actually holds for arbitrary rule radii
r ≥ 1, but do not have a proof - nor do we know of a counterexample - as of yet:
Conjecture: Given any (finite or infinite) simple threshold parallel or sequential CA with
any rule radius r ≥ 1, exactly one of the following two properties always holds:
(i) either this simple threshold (S)CA does not have proper cycles and cycle configurations,

or else
(ii) if there are cycle configurations in the PS of this cellular automaton, then none of those
temporal cycles has any incoming transients.

Next, we show that the fixed points of simple threshold cellular automata may be quite
numerous when δ = MAJ . Infinite sequential and parallel MAJ CA alike have infinitely many
FPs, and this property holds for every rule radius r ≥ 1. Moreover, the cardinality of the set of
FPs, in the case of δ = MAJ and the (countably) infinite cellular spaces, equals the cardinality
of the entire PS:
Theorem 3 An infinite 1D-(S)CA with δ = MAJ and any r ≥ 1 has uncountably many
fixed points.
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Proof. For the notational convenience, let us consider one-way infinite (S)CA. Similar proof
can be constructed for the usual, two-way infinite (S)CA on the line.

Let us consider FPs of the form 1r+k10r+k21r+k3 ... with all ki being integers such that
ki ≥ 1 (i = 1, 2, 3, ...). Let a string of r + ki consecutive 1s or 0s as above be mapped into
decimal digit ki − 1 (mod 10). We now construct a mapping from a subset of the set of all
FPs of such an automaton to the real numbers in the unit interval [0, 1]. Let the length of the
m-th block of consecutive 0s or 1s be denoted by Lm. Then Lm ≥ r + 1 gets mapped into
Lm − 2 (mod 10). For instance, if r = 1, then 11100111110000111111... = 1302150411... gets
mapped to 0.1032..., and 11502817... gets mapped to 0.365..., etc.

It is immediate that this mapping is constructed so that it is onto the real line unit interval
[0, 1], which has uncountable many “points” (real numbers), that is, this interval is of cardinality
2ℵ0 . Since the set of infinite 1D (S)CA configurations that includes all configurations made of
stable blocks only (and no other configurations) is, in general (for arbitrary r ≥ 1) a (proper)
subset of the set of all fixed points of such an infinite (S)CA, it follows that any such (S)CA
with δ = MAJ has at least as many FPs as there are real numbers in the unit interval on the
real line. Therefore, an infinite 1D-(S)CA with δ = MAJ and any r ≥ 1 has uncountably
many fixed points. 2

The above result is another evidence that “not all threshold (S)CA are born equal”. It suffices
to consider only 1D, infinite CA to see a rather dramatic difference. Namely, in contrast to
the δ = Majority CA, the CA with memory and with δ ∈ {OR,AND} (i) do not have
any temporal cycles, and (ii) have exactly two FPs, namely, 0ω and 1ω. Other threshold CA
may have temporal cycles, as shown in the previous subsection, but they still have only a finite
number of FPs.

We return to the analysis of the PS of Majority 1D infinite (S)CA. We have just shown
that there are uncountably many FPs of such sequential and parallel automata. However, the
FPs are, when compared to the transient states, still but “a few and far in between”. To see
this, the basics of probability theory are needed. In particular, let’s assume that a random
global configuration is obtained by picking each bit (i.e., each site’s value) to be either 0 or 1
at random, with equal probability, and so that assigning a bit-value to one site is independent
of the bit assignment to any of the other sites. Then the following result holds:
Lemma 7 If a global configuration of an infinite threshold CA is selected at random, that is,
by assigning each node’s value independently and according to a toss of a fair coin, then, with
probability 1, this randomly picked configuration will be a transient state.

Moreover, the “unbiased randomness”, while sufficient, is certainly not necessary. In partic-
ular, assigning bit values according to outcomes of tossing a coin with a fixed bias also yields
transient states being of probability one.
Proposition 4 Let p be any real number such that 0 < p < 1, and let the probability of a site
in a global configuration of an infinite simple threshold (S)CA being in the state 1 be equal to p.
If a global configuration of this threshold automaton is selected at random according to p, then,
with probability 1, this randomly selected configuration will be transient.
Proof. Since the cellular space is assumed infinite, and since the probability p of a randomly
selected node being in state 1 is fixed, and hence bounded away from both 0 and 1, the following
properties hold of a randomly selected infinite configuration:

- with probability 1, any finite substring of 0s and 1s appears somewhere in this infinite
configuration;

- in particular, stable blocks 1r+k and 0r+l (for some r, l ≥ 1) appear with probability 1
somewhere in the infinite configuration;
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- the same holds of any unstable finite subconfiguration, such as, e.g., 10101 or 01010101.
Consequently, since such a randomly selected configuration contains unstable subconfigura-

tions with probability 1, it follows that, with probability 1, it cannot be a fixed point. Moreover,
for any fixed integer m, each of the strings of 0s and 1s of length m appear infinitely often in
such a random configuration. In particular, with probability 1, somewhere in the configuration,
some finite unstable subconfiguration, let’s denote it Cu, is squeezed in between some two
stable subconfigurations, say, Cs1 and Cs2. Therefore, regardless of whether the nodes update
synchronously in parallel, or sequentially according to an arbitrary fair sequence s, the nodes
in Cu will eventually get their turn to update, and at least one of those nodes is going to flip,
causing it to join the (expanded) stable block, either Cs1 or Cs2. It therefore follows that the
overall (infinite) configuration C that contains the concatenation Cs1 · Cu · Cs2 as its finite
subconfiguration, cannot be a cycle configuration. 2

In case of the finite threshold (S)CA, as the number of nodes, N , increases, the fraction of
all 2N global configurations that are TCs also grows. In particular, under the same assumptions
as in Lemma 7 and Proposition 4 above, in the limit, as N → ∞, the probability that a
randomly picked configuration, C, is a transient state approaches 1:

limN→∞ Pr(random C is transient) = 1 (7)

Thus, a fairly complete characterization of the configuration spaces of threshold (S)CA over
1D cellular spaces can be given. In particular, in the infinite threshold CA cases, almost every
configuration is a TC. However, a striking contrast between the Majority CA on the one, and
the CA with any other threshold rule on the other hand, remains: the former have uncountably
many FPs, whereas all other simple threshold CA can have only finitely many FPs.

4. Discussion and Future Directions

The results in Section 3 show that the very existence of temporal two-cycles in simple
threshold CA can be ascribed entirely to the assumption of perfect synchrony of the parallel
node updates. In the actual engineering, physical or biological systems that can be modeled
by CA, however, such perfect synchrony is usually hard to justify. In particular, when CA
are applied to modeling of various complex physical or biological phenomena (such as, e.g.,
crystal growth, forest fire propagation, information or gossip diffusion in a population, or signal
propagation in an organism’s neural system), one ought to primarily focus on the underlying
CA behaviors that are, in some sense, robust. This robustness may require, for instance, a low
sensitivity to small perturbations in the initial configuration. From this standpoint, temporal
cycles in the parallel threshold CA are, indeed, an idiosyncrasy of the perfect synchrony, that
is, a peculiarity that is anything but robust. Likewise, it makes sense to focus one’s qualitative
study of the dynamical systems modeled by the threshold CA to those properties that are
statistically robust [3]. It can be readily argued in a rigorous, probabilistic sense that the
typical, statistically robust behavior of threshold (S)CA computations is a relatively short
transient chain, followed by convergence to a fixed point. In particular, the non-fixed-point
temporal cycles of the threshold CA with r = 1, for example, not only lack any nontrivial
basins of attraction (in terms of the incoming transient ’tails’), but are themselves statistically
negligible for all sufficiently large finite, as well as for all infinite CA.

We now briefly discuss some possible extensions of the results presented thus far. In par-
ticular, we are considering extending our study to non-homogeneous threshold CA, where not
all the nodes necessarily update according to one and the same threshold update rule. Like-
wise, we are interested in exploring the implications of heterogeneity of the underlying network
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structure, that is, what are the effects on the possible behaviors of threshold automata whose
underlying cellular spaces are not necessarily one-dimensional, or, more generally, not even
regular graphs. We remark that the two particular classes of graph automata defined over arbi-
trary (not necessarily regular, or Cayley) finite graphs, namely, the sequential and synchronous
dynamical systems (SDSs and SyDSs, respectively), and their various phase space properties,
have been extensively studied; see, e.g., [5, 6, 8, 30] and references therein.

Another future direction is to consider other communication models in cellular automata.
We argue that the classical parallel CA can be viewed, if one is interested in node-to-node
interactions among the nodes that are not close to one another, as a class of computational
models of bounded asynchrony. Namely, if nodes x and y are at distance k (i.e., k nodes apart
from each other), and the radius of the CA update rule δ is r, then any change in the state
of y can affect the state of x no sooner, but also no later than after about k

r (parallel node
update) computational steps.

In the most general setting, we would like to consider various types of asynchronous cellular
and graph automata, where the nodes are not assumed any longer to update in unison and,
moreover, where no global clock is assumed. We again emphasize that such cellular automata
would entail what can be viewed as communication asynchrony, thus going beyond the kind of
asynchrony in local computations at different nodes only, that has been studied since at least
1984 [19, 20].

What would, then, such genuinely asynchronous CA be like? How do we specify the
local update rules, that is, computations at different nodes, given the possible “communication
delays” in what was originally a multiprocessor-like, rather than a distributed system-like,
parallel model? In the classical, parallel case where a perfect communication synchrony is
assumed, any given node xi of a 1D CA of radius r ≥ 1 updates according to

xt+1
i = f(xt

i, x
t
i1 , ..., x

t
i2r

) (8)

for an appropriate local update rule δ = f(xi, xi1 , ..., xi2r), whereas, in the asynchronous case,
the individual nodes would update according to

xt+1
i = f(xt

i, x
t1
i1

, ..., xt2r
i2r

) (9)

We observe that t in Eqn. (8) pertains to the global time, which of course in this case
also coincides with the node xi’s (and everyone else’s) local time. However, in case of Eqn.
(9), each tj (for j ∈ {1, ..., 2r}) pertains to an appropriate local time, in the sense that each
x

tj
ij

denotes the node xij ’s value that was most recently received by the node xi. That is,

x
tj
ij

is a local view of the node xij ’s state, as seen by the node xi. Thus, the nonexistence of
a global clock has considerable implications. The challenge arises, how to meaningfully relate
these different local times, so that one can still mathematically analyze such ACA - yet without
making the model’s description too complicated, that is, while staying away from introducing
the explicit sends and receives, message buffers, etc.? Yet, if we want to study genuinely
asynchronous CA models (rather than arbitrary sequential models with global clocks), changes
along the indicated general lines in the definition of the node update rules seem unavoidable.

We point out that this, genuine (that is, communication) asynchrony in CA (see Eqn. (9))
can also be readily interpreted in the nondeterministic terms: at each time step, a particular
node updates by using its own current value, and also nondeterministically choosing the current
or one of the past values of its neighbors. Such a “past value” of a node xij used by the node
xi would be only required not to be any “older” than the particular value of xij that xi
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had used as its input on its most recent previous turn to update. That is, insofar as what are
the current inputs to any given node’s update function δ, there is a natural nondeterministic
interpretation of the fact that the nodes have different clocks.

Many interesting questions arise in this context. One is, what kinds of the phase space
properties remain invariant under this kind of nondeterminism? Given a triple (Γ, N, M),
it can be readily shown that the fixed points are invariant with respect to the fair node
update orderings in the (synchronized) sequential CA, and, moreover, the FPs are the same
for the corresponding parallel CA. On the other hand, as the results in Section 3 indicate,
neither cycle configurations nor transient configurations are invariant with respect to whether
the nodes are updated sequentially or concurrently (and, in case of the former, in what order).
It can be readily observed that, indeed, the FPs are also invariant for the asynchronous CA
and graph automata, as well - provided that all the nodes have reached their respective states
corresponding to the same fixed point global configuration, and that they all locally agree what
(sub)configuration they are in, even if their individual local clocks possibly disagree with one
another. Therefore, earlier results in [5] on the FP invariance for sequential and parallel graph
automata are just special cases of this, more general result.
Theorem 4 Given an arbitrary asynchronous cellular or graph automaton, any fixed point
configuration is invariant with respect to the choice of a node update ordering, provided that
each node xi has an up-to-date knowledge of the current state of its neighborhood, Ni.

In addition to studying invariants under different assumptions on asynchrony and concur-
rency, we also consider a broad qualitative comparison-and-contrast of the asynchronous CA
that we propose, with the parallel CA and the sequential SCA and NICA. Such a study would
shed more light on those emerging collective behaviors that are solely due to network delays.

5. Summary and Conclusions

We have presented in this paper some early steps in studying cellular automata when the
unrealistic assumptions of perfect synchrony and instantaneous unbounded parallelism are
dropped. Motivated by the well-known model of the sequential interleaving semantics of concur-
rency, we have tried to apply this metaphor to parallel CA, thereby motivating the study of se-
quential cellular automata (SCA) and the sequential interleavings cellular automata (NICA). In
particular, we have undertaken a comparison and contrast between the sequential SCA/NICA
and the classical, parallel CA models when the node update rules are restricted to simple
threshold functions. Concretely, we have shown that, even in some very simplistic cases, the
sequential “interleaving semantics” of NICA fails to capture concurrency of the parallel CA.
One lesson is that, simple as they may be, the basic local operations of the classical CA cannot
always be considered atomic. It then appears reasonable - indeed, necessary - to consider a
single local node update to be made of an ordered sequence of the finer elementary operations:

• Fetching all the neighbors’ values (“receiving” or “reading shared variables”);
• Updating one’s own state according to the update rule δ (that is, performing the local

computation); and
• Informing the neighbors of the update, i.e., making available one’s new state/value to the

neighbors (“sending” or “writing a shared variable”).

Motivated by the early results on the sequential and parallel threshold CA, and some of
the implications of those results, we next consider various extensions. The central idea is to
introduce a class of genuinely asynchronous CA (ACA) and to formally study their properties.
Our hope is that the models along the lines of ACA would lead to some significant future insights
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into the fundamental issues related to bounded vs. unbounded asynchrony, formal sequential
semantics for parallel and distributed computation, and, on the dynamical systems side, to the
identification of many of those parallel CA, SCA, NICA and/or ACA phase space properties
that are solely or primarily due to the assumed communication model, that is, the (a)synchrony
in both the local node updates and the inter-node interactions.

To conclude, we find appropriate extensions of the basic CA model to provide a simple,
elegant and useful framework for a high-level study of various global qualitative properties
of distributed, parallel and real-time systems at an abstract, yet mathematically elegant and
comprehensive level.
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