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Abstract

Selfish routing of traffic over alternative routes wastes available street capacities, as indi-
viduals tend to generate an equilibrium state (a ‘Wardrop’ and ‘Nash equilibrium’) with
higher overall travel times than in the optimal state. This system optimum is character-
ized by coherent oscillatory patterns rather than a stationary behaviour. Here, we study
the time-dependent decision behaviour in a day-to-day route choice setting by means
of experimental and simulation results. While there is a tendency towards establishing
the Nash equilibrium in the beginning, we often find a transition to coherent oscillatory
behaviour after a long transient time period. In spite of the complex dynamics leading
to co-ordinated oscillations, we have identified mathematical relationships quantifying
the observed transition process. Moreover, the main discoveries are reproduced by a
reinforcement algorithm, which may help to establish more efficient data traffic on the
internet.
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Game theory has been very successful in describing strategic interactions in social, eco-
nomic, and biological systems, but it has also attracted great attention among theoretical
physicists [1]. This includes the minority game [2] and cyclic behaviour in predator-prey
or rock-scissors-paper games [3]. Another interesting field is the spontaneous estab-
lishment of cooperation in repeated games. The prisoner’s dilemma game, for example,
reflects many situations, in which individuals are tempted to defect (see Fig. 1). However,
cooperation would be better for both and can emerge, if the game is repeated frequently
enough, as defection can be punished later on (“shadow of the future”) [5, 6]. Apart
from future expectations [7, 8], cooperation may be supported by kinship relations [9],
reciprocity [10] or similarity [11], small populations [12], spatial interactions [13, 14], or
variation in behaviour [15].

The route choice game discussed in the following reflects situations, where the outcome
of a decision depends on the independent decisions of many others. It describes the
problem of choosing among two alternative routes i ∈ {1, 2} between the same origin
and destination. As the travel times are monotonously increasing with road occupancy,
we specify the payoffs Pi(Ni) as a function of the number Ni of vehicles on road i
by a linearly decreasing function Pi(Ni) = Ci − DiNi. Experimental results for this
setup [16, 17] have shown that groups of many persons tend to establish the Wardrop
equilibrium [18] characterized by equal travel times T1 = T2. This state corresponds
to a Nash equilibrium of the one-shot game with P1(N1) = P2(N2), where no single
individual can reach a better payoff by changing the strategy, when all others stick to
their strategy. However, street capacity would be better used, if people would establish
the system optimum characterized by a maximization of the average group payoff P =
[N1P1(N1) + N2P2(N2)]/(N1 + N2). The problem of this usage pattern is that some
individuals will get less payoff than in the user equilibrium and less than others, i.e. the
system optimum is felt to be “unfair”.

Nevertheless, there is a fair and system-optimal solution of the iterated route choice
problem: an alternating cooperative usage pattern, where everyone uses the faster road in
a certain fraction of cases, while otherwise using the slower road. The question is whether
this pattern will actually evolve in the course of time and how coordination would take
place. In order to study this experimentally, we have focused on the two-person route-
choice game with the payoffs P11 = P1(2) = 0, P12 = P1(1) = 300, P21 = P2(1) = −100,
and P22 = P2(2) = −200 (see Fig. 1c, d). Altogether we have carried out more than
80 route choice experiments, all with different participants. In the 24 two-person [12
four-person] experiments evaluated here (see Figs. 2 to 4), test persons were instructed
to choose between two possible routes between the same origin and destination. They
knew that route 1 would correspond to a ‘freeway’ (which may be fast or congested),
while route 2 would represent an alternative route (a ‘side road’). Test persons were
also informed that, if two [three] participants would choose route 1, everyone would
receive 0 points, while if half of the participants would choose route 1, they would
receive 100 points on average. but 1-choosers would profit at the cost of 2-choosers.
Finally, participants were told that everyone could reach an average of 100 points per
round with variable, situation-dependent decisions, and that the (additional) individual
payment after the experiment would depend on their cumulative payoff points reached
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Figure 1: Symmetrical two-person games can be represented by a payoff matrix of the form P = (Pij),
where Pij is the success (“payoff”) of person 1 in a one-shot game when choosing strategy i and meeting
strategy j. The respective payoffs of the second person are given by the symmetrical values Pji. (a)
Payoff matrix corresponding to the prisoner’s dilemma. (b) General payoff matrix for symmetrical two-
person games with two alternatives. The payoffs P11 and P22 can, for example, be transformed to the
values 0 and -200, while the two parameters P12 and P21 are variable [4]. (c) Payoff matrix P = (Pij) of
the one-shot route choice game defined by the conditions P12 > P11 > P21 > P22. A strategical conflict
results when P12 + P21 > 2P11, so that the system optimum differs from the user equilibrium. Despite
some common features, this game has to be distinguished from the minority game [2], as a minority
decision for alternative 2 is less profitable than a majority decision for alternative 1. (d) Extended

Eriksson-Lindgren scheme of two-person games [4]. (e) Payoff matrix (P
(2)

(i1i2),(j1j2)) = (Pi1j1 + Pi2j2) of
the route choice super game with two-period decisions. The analysis of the one-shot two-person route
choice game, see c), suggests that the user equilibrium (with both persons choosing route 1) would
establish. Once the user equilibrium is reached, no-one can get a higher payoff by changing the decision,
if the other person does not change as well. For two-period decisions, see e), the system optimum
(strategy 12 meeting strategy 21) corresponds to a user equilibrium, but one person can increase the
payoff at the cost of the other (see arrow 1). A change of the other person’s decision can punish this
egoistic behaviour (arrow 2), which is likely to establish the user equilibrium with payoff 0. In order
to leave this state again in favour of the system optimum, one person will have to make an “offer” at
the cost of a reduced payoff (arrow 3). If the other person reciprocates this offer (arrow 4), the system
optimum is established again. The time-averaged payoff of this cycle lies below the system optimum.
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Figure 2: (a) Experimentally observed 1- and 2-decisions of both individuals in a two-person route
choice experiment with the parameters specified in Fig. 1c, and corresponding number N1 of 1-decisions.
The system optimum is reached for N1 = 1, the user equilibrium for N1 = 2. Despite the initial
preference for route 1 corresponding to a tendency to establish the user equilibrium (see Fig. 4a), route
2 was sometimes checked out in a more or less random way. The irregular changes indicate that most
individuals did not have the idea that their average payoff would be maximized by a periodic oscillatory
behaviour. However, sooner or later individuals chose routes in a way that a change to route 2 (an
“offer”) was reciprocated by a cooperative move by the other individual, while in the same iteration
the offering individual changed back to route 1. (b) Representative example of route choice decisions
simulated with the reinforcement learning model described in the text. For ν0

l = ν1
l = 0, no emergent

cooperation is found. ν0
l > 0 or odd values of nl produce intermittent breakdowns of cooperation. A

small, but finite value of ν1
l is important to find a transition to persistent cooperation. Here, we have

chosen ν1
l = 0.08, ql = 1, ν0

l = 0, and nl = 2. (c) Experimentally observed decision behaviour when
two groups of two-person experiments afterwards played a four-person game with C1 = 900, D1 = 300,
C2 = 100, D2 = 100. Instead of oscillations of period 2, another alternating patterns corresponding to
n-period decisions with n > 2 emerged in one of the two-person games. After all persons had learnt
oscillatory cooperative behaviour, the four-person game just required synchronization (coordination), but
not the invention of a cooperative strategy. Therefore, persistent cooperation was quickly established
(in contrast to our four-person experiments with new participants). It is clearly visible that the test
persons continued to apply similar decision strategies as in the previous two-person experiments.
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in 300 rounds (100 points = 0.01 EUR).
The user equilibrium of the 2-person game corresponds to both individuals using route

1 (the ‘dominant strategy’), resulting in a payoff of 0. However, in order to reach the
system optimum of (−100 + 300)/2 = 100 per iteration, one individual has to leave the
freeway for one iteration, which yields a reduced payoff of -100 in favour of a high payoff
of 300 for the other individual. To be profitable also for the first individual, the other
one should reciprocate this “offer” by switching to route 2 in the next iteration, while the
first individual returns to route 1. Establishing this oscillatory cooperative behaviour
yields 100 extra points on average. If the other individual is not cooperative, both will
be back to the user equilibrium of 0 points only, and the uncooperative individual has
temporarily profited at the cost of the offering individual (see Fig. 1e). This makes offers
for cooperation and, therefore, the establishment of the system optimum unlikely. In
spite of this, many experimental time series show a transition to coherent oscillatory
behaviour after some time period (see Fig. 2). These cooperative oscillations are to be
distinguished from oscillations with reduced system performance due to coordination
problems [19] and from cycles in the predator-prey- or rock-paper-scissors games [3],
which are predicted by the corresponding game-dynamical equations [20].

The innovation of oscillatory behaviour requires not only a gain in average payoff, but
also random changes (“trial-and-error behaviour”) and the consideration of multi-period
decisions. Instead of just 2 one-period alternative decisions 1 and 2, there are 2n different
n-period decisions. In the two-person route choice game, an encounter of the two-period
decision 12 with 21 establishes the system optimum and yields equal payoffs for everyone
(see Fig. 1e). Such an optimal and fair solution is not possible for one-period decisions.
Yet, the interaction of 12 with 21 (“cooperative episode”) is not stable, as individuals can
temporarily increase their own payoff by changing their decision to 11 (see Fig. 1e). For
this reason, the first cooperative episodes do often not persist (see Fig. 3). However,
selfish behaviour can be punished by the other individual by changing to route 1 as
well (see Fig. 1e). In this way, persistent cooperation is established after a number
of cooperative episodes. In our two-person experiments, the cumulative distribution of
required cooperative episodes could be mathematically described by the logistic curve

F (n) = 1/[1 + cN exp(−dNn)] (1)

with c2 = 3.4 and d2 = 0.17 (see Fig. 3a). Moreover, if the system optimum corresponds
to an equal distribution over both alternatives, based on a stochastic model, the expected
time interval T until a cooperative episode among N = N1 +N2 participants occurs can
be statistically estimated by the formula

T = 2N
(N/2)!2

N !

N∏

l=1

1

νl

, (2)

where νl denotes the average changing rate of individual l until persistent cooperation
starts (see Fig. 3b).

Our observations can be qualitatively reproduced by a reinforcement learning model
reflecting success- and history-dependent individual decision behaviour [21] (see Figs. 2b
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Figure 3: (a) Cumulative distribution of required cooperative episodes until persistent cooperation is
established, given that cooperation occurs within 300 time periods (as in 17 out of 24 two-person ex-
periments). The experimental data are well approximated by a logistic curve. (b) Comparison of the
required number of cooperative episodes with the expected number of cooperative episodes (approx-
imated as occurence time of persistent cooperation, divided by the expected time interval T until a
cooperative episode occurs by chance). The linear regression to the empirical data points supports for-
mula (2), which is also consistent with our 4-person experiments and with the results of our reinforcement
learning model.
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Figure 4: (a) Proportion pl(1, t) of 1-decisions of both participants l in the two-person route choice
experiment displayed in Fig. 2a. (b) Transition probability pl(2|1, 1; t) of person l from route 1 (the
“freeway”) to route 2, when the other person has chosen route 2, averaged over a time window of 50
time periods. The steep transition from small values to 1 for the experiment displayed in Fig. 2a is
characteristic and illustrates the evolution of cooperativeness. (c) Proportion pl(1, t) of 1-decisions of
both participants in the simulated route choice game shown in Fig. 2b. The simulation is based on the
reinforcement learning model described in the text. (d) Transition probability pl(2|1, 1; t) of person l for
the simulation result shown in Fig. 2b.
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and 4). In contrast to mixed strategies, the description of coherent decisions and per-
sistent cooperation requires an almost deterministic model, but some weak stochasticity
is needed for the exploration of innovative strategies and the emergence of cooperation.
We denote person l’s probability to choose decision j at time t+1 by pl(j|i,N1; t), when i
was selected at time t and N1(t) persons had chosen alternative 1. Moreover, we assume
that pl is either 0 or 1, corresponding to clear (deterministic) preferences. The decision
behaviour is assumed to be switched with probability ql, if the average payoff since the
last comparable situation with i(t′) = i(t) and N1(t

′) = N1(t) at time t′ < t is less than
the average individual payoff P l(t) during the last nl time periods. This replacement of
dissatisfactory strategies orients at historical long-term profits and avoids short-sighted
changes after temporary losses. Moreover, the decision behaviour is randomly switched
with probability

νl(t) = ν0

l + ν1

l max[0, 1− P l(t)/100] (3)

(‘trial and error behaviour’). ν0

l
≈ 0 denotes the individual mutation rate in the system

optimum, while ν1

l
> 0 reflects the mutation rate in the user equilibrium. In our simula-

tions, we varied only the parameter ν1

l
, while we chose the simplest possible specification

of the other parameters ν0

l
= 0, ql = 1, nl = 2 and initial conditions pl(2|1, N1; 0) = 0

and pl(1|2, N1; 0) = 1. The simulation results reflect many features of our route choice
experiments (see Figs. 2b, 4).

Formula (2) gives a good estimate of the time interval T needed for persistent coop-
eration and its variation with the changing rate and the number N of persons. Route
choice experiments confirm that T strongly increases with the system size N . Therefore,
spontaneous cooperation is unlikely to emerge in real traffic systems, in accordance with
observations. However, cooperation could be rapidly established by means of novel trav-
eller information systems, which would avoid the slow learning process (2). Moreover,
while we do not recommend conventional congestion charges, a charge for unfair usage
patterns would support the compliance with individual route choice recommendations.
It would substitute the inefficient individual punishment mechanism. In systems with
many similar routing decisions, a Pareto optimum characterized by coherent oscillations
could be spontaneously established by suitable reinforcement mechanisms. This may
help to enhance data routing [22]. and to resolve Braess-like paradoxes [23] in networks
[24].

For a more detailed analysis see [25].

References

[1] Berg J, Engel A: Matrix Games, Mixed Strategies, and Statistical Mechanics. Phys
Rev Lett 1998;81:4999–5002. Ebel H, Bornholdt S: Coevolutionary games on net-
works. Phys Rev E Stat Nonlin Soft Matter Phys 2002;66:056118. Metzler R, En-
gel A: Jamming transitions and avalanches in the game of Dots-and-Boxes. Phys
Rev E 2002;65:066108. Tomochi M, Kono M: Spatial prisoner’s dilemma games
with dynamic payoff matrices. Phys Rev E 2002;65:026112. Choe SC, Johnson NF,
Hui PM: Error-driven global transition in a competitive population on a network.

8



Phys Rev E 2004;70:055101. Fort H, Viola S: Self-organization in a simple model
of adaptive agents playing 2 x 2 games with arbitrary payoff matrices. Phys Rev E
2004;69:036110.

[2] Challet D, Zhang Y-C: Emergence of cooperation and organization in an evolution-
ary game. Physica A 1997;246:407–418. Challet D, Marsili M: Relevance of memory
in minority games. Phys Rev E 2000;62:1862–1868. Marsili M, Mulet R, Ricci-
Tersenghi F, Zecchina R: Learning to coordinate in a complex and nonstationary
world. Phys Rev Lett 2001;87:208701. Mansilla R: Algorithmic complexity in the
minority game. Phys Rev E 2000;62:4553–4557. Lo TS, Hui PM, Johnson NF: The-
ory of the evolutionary minority game. Phys Rev E 2000;62:4393–4396. Lo TS, Chan
HY, Hui PM,Johnson NF: Theory of networked minority games based on strategy
pattern dynamics. Phys Rev E 2004;70:056102. Yuan B, Chen K: Evolutionary dy-
namics and the phase structure of the minority game. Phys Rev E 2004;69:067106.
Chen K, Wang B-H, Yuan B: Adiabatic theory for the population distribution in
the evolutionary minority game. Phys Rev E 2004;69:025102.

[3] Szolnoki A, Szabo G: Phase transitions for rock-scissors-paper game on different
networks. Phys Rev E 2004;70:037102. Ravasz M, Szabo G, Szolnoki A: Spreading
of families in cyclic predator-prey models. Phys Rev E 2004;70:012901. Szabo G,
Sznaider GA: Phase transition and selection in a four-species cyclic predator-prey
model. Phys Rev E 2004;69:031911.

[4] Eriksson A, Lindgren K: Cooperation in an unpredictable environment; in
Standish RK, Bedau MA, Abbass HA (eds): Proceedings of Artificial
Life VIII. Sidney, MIT Press, 2002 pp 394–399 (and poster available at
http://frt.fy.chalmers.se/cs/people/eriksson.html).

[5] Axelrod R, Hamilton WD: The evolution of cooperation. Science 1981;211:1390–
1396.

[6] Axelrod R, Dion D: The further evolution of cooperation. Science 1988;242:1385–
1390.

[7] Glance NS, Huberman BA: Dynamics with expectations. Physics Letters A
1992;165:432–440.

[8] Glance NS, Huberman BA: The outbreak of cooperation. Journal of Mathematical
Sociology 1993;17(4):281–302.

[9] Queller DC: Kinship is relative. Nature 2004;430:975–976.

[10] Nowak MA, Sigmund K: Evolution of indirect reciprocity by image scoring. Nature
1998;393:573–577.

[11] Riolo RL, Cohen MD, Axelrod R: Evolution of cooperation without reciprocity.
Nature 2001;414:441–443.

9



[12] Nowak MA, Sasaki A, Taylor C, Fudenberg D: Emergence of cooperation and evo-
lutionary stability in finite populations. Nature 2004;428:646–650.

[13] Schweitzer F, Behera L, Muehlenbein H: Evolution of cooperation in a spatial pris-
oner’s dilemma. Advances in Complex Systems 2002;5(2/3):269–299.

[14] Szabo G, Hauert C: Phase transitions and volunteering in spatial public goods
games. Physical Review Letters 2002;89:118101.

[15] McNamara JM, Barta Z, Houston AI: Variation in behaviour promotes cooperation
in the prisoner’s dilemma game. Nature 2004;428:745–748.

[16] Schreckenberg M, Selten R (eds): Human Behaviour and Traffic Networks. Berlin,
Springer, 2004.

[17] Helbing D, Schoenhof M, Kern D: Volatile decision dynamics: Experiments, stochas-
tic description, intermittency control, and traffic optimization. New Journal of
Physics 2002;4:33.1–33.16.

[18] Wardrop JG: Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers II 1952;1:325–378.

[19] These cooperative oscillations are to be distinguished from the interesting
heterogeneity-related oscillations due to coordination problems which are reported
by Iwanaga S, Namatame A: The complexity of collective decision. Nonlinear Dy-
namics, Psychology, and Life Sciences 2002;2:137–158.

[20] Hofbauer J, Sigmund K: The Theory of Evolution and Dynamical Systems. Cam-
bridge, Cambridge University Press, 1988.

[21] Macy MW, Flache A: Learning dynamics in social dilemmas. Proc Natl Acad Sci
U S A 2002;99(3):7229–7236.

[22] Wolpert DH, Tumer K: Collective intelligence, data routing and Braess’ paradox.
Journal of Artificial Intelligence Research 2002;16:359–387.
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