
Chemotaxis-Inspired Load Balancing

Geoffrey Canright1 ??, Andreas Deutsch2, and Tore Urnes1

1 TELENOR Reseach and Development, Fornebu, Norway.
geoffrey.canright,tore.urnes@telenor.com

2 Center for High Performance Computing, Dresden University of Technology, Dresden, Germany.
deutsch@zhr.tu-dresden.de

Abstract

We present an approach to the problem of load balancing on networks of nodes. Our approach
is inspired by the phenomenon of negative chemotaxis in living systems. We use a diffusing signal
(which is emitted by load, and moves faster than the load) to guide the movement of load towards
the balanced state. Our reference system (for comparison) is unguided, diffusing load, moving at
the same speed. Our tests show that the chemotaxis system can give large improvements over the
reference system in convergence speed, as well as showing much reduced sensitivity to variations
in network topology and in initial load distribution.

Short title: Chemotaxis-Inspired Load Balancing
Keywords:Load balancing, diffusion, chemotaxis, adaptivity, bio-inspired engineeering

1 Introduction

The problem of load balancing is quite general. Technological applications include balancing process-
ing jobs among parallel processors [1]; balancing processing among distributed computers in a grid
processing system—either peer-to-peer [2], or otherwise [3]; and balancing storage among networked
storage devices [4]. There are also non-technological instances of load balancing. One of the very
simplest may be taken from physics. That is,diffusionis a primitive mechanism which quite reliably
seeks to distribute particles so as to move them from non-uniform states to uniform states. Fur-
thermore, this is accomplished in a fully decentralized, even “unintelligent”, manner, using only the
random thermal motion of the particles.

One finds load balancing also in biological systems. One example is the use of chemical repellents
to prevent growth of yeast colonies into one another’s space [5]. The fact that bacteria are able
to communicate with each other changed our general perception of many single, simple organisms
inhabiting our world. As well as releasing the signalling molecules, yeast cells are also able to measure
the number (concentration) of the molecules within a population. The term ’Quorum Sensing’ (QS) is
used to describe the phenomenon whereby the accumulation of signalling molecules enable a single
cell to sense the number of bacteria (cell density) and to behave accordingly.

This kind of territorial load balancing also occurs with larger organisms. In most cases, some kind
of signal (urine, bird songs) is used to maintain distance between individuals or groups. Hence, in
general, load balancing in biological systems is moreactivethan the correspondingly passive, physical
mechanism of diffusion. We note also that living systems are distinguished from most nonliving ones

??Corresponding author’s address:Telenor R&D, B6d, Snarøyveien 30, 1331 Fornebu, Norway
Phone:+47-91815638
Fax: +47-96211086
Email: geoffrey.canright@telenor.com

by being able to perform theoppositeof load balancing. That is—again using active mechanisms—
living systems can establish and maintain highly non-homogeneous states; examples include processes
such as aggregation, morphogenesis, and self-repair.

We are interested in the problem of designing distributed, self-managing systems for solving tech-
nological problems. Also, as members of the BISON [6] project, we focus on biologically-inspired
solutions to such problems. In this work, we wish to explore and evaluate a mechanism for load
balancing in distributed systems. This mechanism is rather directly inspired by a common biolog-
ical mechanism for controlling the aggregate behavior of many small entities, namely, chemotaxis.
Chemotaxis means the control of movement (taxis) via diffusive chemical signals. It is used in bi-
ology both for bringing about homogeneous distributions (negative or repulsive chemotaxis), and for
inducing highly non-homogeneous aggregates (positive chemotaxis) [7, 8]. In particular, chemotaxis
is essential for guiding cells in biological development, the process of wound healing, and tumour an-
giogenesis (a process by which a tumour is able to guide the growth of neighbouring vasculature into
its own direction). Here we will implement a form of repulsive chemotaxis on a networked system,
with the aim of bringing about time-efficient load balancing.

An essential aspect of chemotaxis is that the signal can diffuse faster than the bodies which are
guided by the signal. In other words, there aretwo distinct time scalesin operation in chemotaxis.
This notion of two time scales is central to our thinking. Specifically, we assume that the load (which
we specify only as an abstract, real-valued quantity at each node of the network) has a natural rate
of movement that is significantly lower than that for the signal. We believe that, when this two-time-
scale picture is correct, the use of signal can significantly speed up the movement of load towards a
uniform (balanced) distribution. To put this picture into more relevant technological terms, we might
suppose that the load is stored data, on the order or megabytes or gigabytes, while the signal is an
indicator requiring only a few bytes. Then—possibly with the addition of prioritized queueing—we
can assume that signalling data moves over the network much faster than load.

Given then that signal moves faster than load, we expect the effect of the signal to be a speedup
of convergence to the balanced state. That is, we can imagine a system without signal. Repulsion or
attraction can still be turned on whenever the bodies come into direct contact with one another. For
example, the growing yeast colonies can stop growing when they contact others; or, in the attractive
case, the amoebae of slime molds [9,10] can stick together when they come into contact. Conceivably,
this mechanism can also achieve the desired distribution—but on a much longer time scale, since the
movement of the amoebae is “blind” until they actually contact others. In fact, the (load balancing
or aggregating) system, without signal, accomplishes redistribution viacollisions; hence it works in
much the same way as diffusion, with particle movement being completely “blind” between collisions.

Based then on our understanding of the utility of chemotaxis in living systems, we will use “blind”
movement of load as our reference system. That is, we will compare a signal-aided load balancing
system on a network with a passive load balancing process, which simply uses the network equivalent
of plain diffusion. Our aim in making this comparison is simple: we wish to test the hypothesis
that the mechanism of chemotaxis (with its two time scales) can significantly enhance the speed of
convergence of load to the uniform state, with respect to thesamesystem operating without signalling.
And we are saying here that the “same” system, without signals, is plain diffusion.

We will make this comparison more precise below. The principal idea is to ensure that the load
has the same time scale, or in other words the same speed of movement, both when it is influenced
by signal, and when it is not. We call this our “fairness criterion”. Given a precise prescription for
ensuring this kind of fairness, we can then test whether chemotactic signalling does in fact enhance
the approach to convergence for load balancing.

We are not aware of other works which have applied the idea of chemotaxis to load balancing.

2

The use of diffusion methods for load balancing on networks has however a considerable history.
One of the earliest works is that of Cybenko [11], who gave constraints for keeping the load strictly
positive, and then derived some stability criteria. Cybenko also looked at linear modifications of the
adjacency matrix as a way of speeding up convergence. There has been considerable subsequent
work on diffusion-like mechanisms for load balancing [12–18]. A recent survey of diffusive load
balancing may be found in [19]. It is in fact the simplicity and decentralized nature of diffusion that
makes it attractive for handling large and/or dynamic networks, where optimization based on global
information is not practical. Our aim here is to see if chemotaxis can retain the good features of
diffusion, while offering significant imporvement in performance and flexibility.

The remainder of this paper is organized as follows. In section 2 we develop equations for our
two algorithms—plain diffusion and chemotaxis. Also, we derive a fairness criterion in this section.
Then, in section 3, we specify a number of details which are needed to translate our general equa-
tions into specific implementations for discrete-time, networked systems. Section 3 gives our basic
algorithm for plain, slow diffusion, and then goes on to give a detailed discussion of our studies of
fast diffusion. This problem merits some attention, since we wish to find a stable method for fast
diffusion of signal; and it is known, at least since the work of Cybenko [11], that such a problem is
nontrivial for discrete-time systems on a discrete space (network). Finally, in this section, we give the
details for the two-component, coupled system that represents chemotactic load balancing. Next, in
Section 4, we evaluate the performance of chemotactic load balancing with respect to our reference
system (unguided diffusion of slow-moving load). Here we find some encouraging confirmation of our
hypothesis—that “smart” (signal-aided) diffusion can give faster, or even much faster, convergence
than “dumb” diffusion. Section 5 then addresses the question of theadaptivityof the chemotactic
system. That is: being both decentralized and “smart”, such a system might be expected to also be
adaptive—to variations in network topology, initial load distribution, etc. In section 5 we will offer
some limited answers to this question. We also include a section (section 6) on the remarkably com-
plex behavior over time that we have observed for this simple, two-component (chemotactic) system.
Its behavior stands in marked contrast to the smooth, predictable behavior of slow, single-component
diffusion for the same network topology. Finally, in section 7 we offer a summary.

2 Chemotaxis

First we define our terminology. We letφi represent the load at nodei. We will normally enforce
the constraint thatφi ≥ 0 for all i and for all times. We will also assign to each node acapacityCi.
Then the load balancing problem is to seek to minimize the difference between load and capacity at
each node. For this exploratory study, we set all capacities to one, and choose start distributions so
that total load equals total capacity for the network. Thus the converged state is a uniform distribution
with all φi = 1.

Now we address plain diffusion. The physical mechanism of diffusion, when mapped onto a
discrete (space and time) system, may be expressed quite simply: nodes simply send out a fraction
of what they have, at each time step, in all “directions” (to each neighbor). The fraction is then the
“diffusion constant”c; while what the nodes have to send is quantified asφi − Ci. Hence, for the
simplest version of plain diffusion, a nodei with loadφi and capacityCi will send a small fractionc
of its excess load(φi − Ci) to each of its neighbors, independent of node, of neighbor, and of time.
Each transfer of load to a neighbor nodej can then be captured by the following equation:

∆φi→j = c · (φi − Ci) (1)

3

This is our basic equation for discrete diffusion. In the next section, we will address a number of
modifications to this “most simple” form of diffusion, so as to keep the load at each node positive,
to enforce that transferred load is also positive, and also to allow for very fast diffusion without
instabilities.

Now we introduce signal. For the signal to be useful, it must (i) move faster than load, and (ii)
give information to distant nodes about the load distribution. Hence we want the load itself to “emit”
signal, which then diffuses away, bringing useful information to distant nodes. Let us defineSi to be
the signal level at nodei. Then our emission equation is

∆Semit
i = c2 · (φi − Ci) . (2)

This emission event occurs at every time step. In fact, each equation in this section is to be imple-
mented once in each time step.

It is clear from Eq. (2) that, unless total load equals total capacity, the total signal will grow
(in absolute value) steadily over time. Such growth may be useful in dynamic situations where the
local signal level (not the gradient) gives information which may guide a decentralized mechnism for
deciding how much new load may be accepted. However in this study we focus on the static case; and
to avoid divergence of the average signal level, we set total load equal to toal capacity.

Now we want the load to be guided by the signal. Specifically, we let the load respond to local
signal gradients, as follows:

∆φi→j = c3 · (Si − Sj) . (3)

This equation makes the movement of load less blind, and hence (we believe) more smart, than that
due to plain diffusion.

Finally, we need to arrange for fast diffusion of signal. The fast versions that we develop for plain
diffusion will be used to guide the movement of signal in the two-component case. Hence, the signal
diffusion equation may be written analogously to Eq. 1, as follows:

∆Si→j = c4 · Si . (4)

Note that no reference to capacity is needed here–signal in fact diffuses blindly.
Equation (1) thus defines our rule for the one-component case—plain diffusion of load. Equations

(2—4) give the rules for the two-component case. We require some more work however before we
can implement these rules. For one thing, we have, from these four equations, four free parameters.
Also, we need a way to ensure that the movement of load is “equally slow” in both the one-component
and the two-component case—this is our fairness criterion. Finally, we need to decide how we can
implement the notion of two time scales—signal moving faster than load. In physics, we can simply
setc4 � c; but for our wholly discrete system, ensuring stable fast diffusion is more problematic [11].

In the remainder of this section we will develop a fairness criterion, which will actually pin down
two of our four constants. We will then use the next section to develop two stable versions of fast
diffusion, involving some modification of Eq. (4). These two algorithms will in effect define our
“constant”c4. Also in that section we will give a simple working definition of slow diffusion, thus
determining the last constantc.

In order to develop a quantitative fairness criterion, we need a precise expression for the speed of
the load in both the one- and the two-component case. Naively, we would take these to be, respectively,
c andc3; hence our naive fairness criterion setsc = c3.

Let us now test this naive conclusion with more detailed reasoning. For plain diffusion, we define
the total load movedout from nodei, at a given time, to be

4

∆φdiff
i,out = cki(φi − Ci) , (5)

whereki is the degree of nodei. We will take this quantity (in some roughly averaged sense) to be
a measure of the “speed” of the load: it tells us (again, roughly) how much load the system, using
plain diffusion, can push out in a single time step. Hence, for our fairness criterion, we set (here ’CT’
means ’chemotaxis’)

∆φdiff
i,out ' ∆φCT

i,out . (6)

The RHS of this equation incorporates the dynamics of the signal. That is:

∆φCT
i,out =

∑
j=nn(i)

∆φi→j (7)

=
∑

j=nn(i)

c3(Si − Sj) (8)

= c3kiSi − c3

∑
j=nn(i)

Sj (9)

= c3ki(Si − Sav,i) , (10)

wherenn(i) means “nearest neighbor ofi”, and the last line defines the quantitySav,i.
Now, at any timet, the signal at nodei is the newly emitted signal, plus the signal that was present

at timet − 1, minus any signal diffused away in the time step fromt − 1 to t, plus any diffused in
from neighbors in that same time step. That is,

St
i = ∆Semit

i + (1− c4ki)St−1
i + c4

∑
j

St−1
j . (11)

From the work of Cybenko [11] (and also from our own experiments with fast diffusion—see next
section), we know that fast, but still stable, diffusion of signal will be defined roughly by sending out
everything in one time step—but not more! That is, fast stable diffusion involves letting the fraction
c4 sent to each neighbor be (roughly, or even exactly) equal to the inverse node degree. Furthermore,
we will choose a signal diffusion rule—again, out of consideration for speed and stability—so that the
node with more to send chooses its own inverse degree for all transfers (outandin) with its neighbors.
If we suppose then that nodei is in the role of sender (by this definition), we setc4 = 1/ki everywhere
in (11), thus obtaining

St
i = ∆Semit

i + St−1
av,i , (12)

so that

St
i − St

av,i = ∆Semit
i − (St

av,i − St−1
av,i) . (13)

Next we argue that the last two terms in (13) may be of any sign, and have a time average of zero.
Hence we will ignore them, in order to find a way of calibrating our chemotaxis rule against simple
diffusion. This gives

St
i − St

av,i ≈ ∆Semit
i (14)

= c2(φi − Ci) ; (15)

(16)

5

hence the RHS (10) of our fairness test becomes

∆φCT
i,out ≈ c3kic2(φi − Ci) . (17)

This equation is readily compared with the LHS of our fairness test, see Eq. (5). We can then give the
same “speed” (load-moving capacity) to both plain diffusion and our chemotactic system by setting

c = c3c2 . (18)

Now we can eliminate one unnecessary constant by setting

c2 = 1 ; (19)

that is, we measure signal in the same units as load and capacity. Our final result for enforcing fairness
is then

c = c3 . (20)

This is the same result as our naive guess. In fact, even more detailed arguments [20] still give the
same result. Hence we take (20) as our working fairness criterion for comparing plain diffusion to
diffusion aided by signal.

3 Algorithms

To implement the simple equations for plain and signal-aided diffusion of slow-moving load on a given
overlay network topology we must develop corresponding algorithms. We start by presenting our
algorithm for plain diffusion. This algorithm is used as a reference for comparison with chemotaxis-
inspired load balancing throughout the paper. Next, we turn to the development of our algorithm
for signal-aided diffusion. We exploit our assumption that signal can move fast, and propose two
algorithms for signal diffusion. We also present our simulation model for diffusion and compare the
plain diffusion algorithm for load to the fast signal diffusion algorithms. We are then ready to present
our algorithm for signal-aided diffusion.

3.1 Plain diffusion

Our equation for plain diffusion, Eq. (1), exhibits two questionable features: negative load is sent
whenever a node’s load is less than capacity, and a node’s load may become negative. Each of these
features is either unrealistic or meaningless; hence we introduce simple modifications to Eq. (1) to
address this. To remove the possibility of sending negative load we find the net difference(φi −
Ci) − (φj − Cj) for each node-neighbor linkij. Then the node with the largest (most positive)
difference between load and capacity is chosen as the sending node and only the net, positive quantity
of c · |(φi−Ci)− (φj−Cj)| is sent. To prevent a node’s load from becoming negative we must ensure
that no node sends more load than it has. If a nodei haski neighbors then the total load sent in one
time step is at mostc · ki · (φi − Ci). Hence, ifc is chosen to be less than1/ki for all nodesi then
loads will always remain positive.

We recall that we want the load to be slow-moving. Hence we see no reason to implement, for
plain diffusion, a “smart” strategy which chooses a local value forc that still satisfiesc < 1/ki.
Instead, for this study, plain diffusion is given a global value forc—which we set to be less than
1/kmax, wherekmax is the highest degree of any node in the system. We will however look at
“smart” strategies (with locally , time- and space-varying diffusion “constants”) for fast diffusion of
signal.

6

3.2 Signal diffusion

Signal and signal diffusion are not restricted in the same ways as load. Specifically, we assume that
signal can move quickly, that signal can take on negative values, and that signal diffusion mechanisms
need not be mass preserving. After considerable experimentation, exploring a range of algorithms, we
came up with two candidate algorithms for fast signal diffusion. The two algorithms are, for historical
reasons, named the “version 6” and “version 10” algorithms.

The version-6 algorithm is based on the algorithm for plain diffusion presented above. Though
employed by us as a signal diffusion algorithm, it is also suitable for diffusing load in systems that do
not have restrictions on how quickly load can move. The diffusion constantc is assigned a “default”
valuecdefault. Any nodei which discovers thatcdefault > 1/ki (whereki is its degree), will adjust
its own c value to be precisely1/ki in order to avoid negative load values. Hence, two neighborsi
andj who have both adjusted their values by this rule will have diffusion constants1/ki and1/kj , re-
spectively. This gives an asymmetry which can seemingly violate mass conservation. The problem is
solved by picking a sending node, and only transferring the net positive difference as in the algorithm
for plain diffusion. The effect is that the sending node forces its choice ofc on both ends of a given
link, making the version-6 algorithm mass conserving. An interesting feature of the version-6 algo-
rithm, that we exploit in our experiments below, is that its speed can be continuously tuned: maximum
speed is obtained by settingcdefault = 1, while decreasing values reduce the speed correspondingly.

The version-10 algorithm is only suitable for signal diffusion because it does not maintain a strictly
positive “load” (in our case, signal). There are similarities between the version-6 and version-10
algorithms, but contrary to version-6, version-10 has each sending nodei always choosing1/ki as its
diffusion constant. Also, the definition of sending node is modified to allow for the fact that the sent
quantity (signal) can be negative.

As noted in the previous section, we require that the total amount of signal in the network be zero.
This enables convergence of the signal to a fixed point (zero signal on each node). Knowing this fixed
point, we can define the “sending node” of two nodesi and j to be the node which has its signal
value farthest from zero, i.e., farthest from the signal value corresponding to the uniform fixed point
distribution. A sending nodei sends its neighbor nodej the amount of signal equal to(Si − Sj)/ki.

We have conducted simulation experiments that compare the performance of our plain diffusion
algorithm with that of our version-6 and version-10 signal diffusion algorithms. Before presenting
those results, we first briefly describe the simulation model that we used.

3.3 Simulation model

We used the Peersim simulator framework [21] to conduct all performance evaluations of diffusion
algorithms.

We recall that the aim of load balancing is to reach a state of convergence where nodes in a network
receive loads according to their capacities. Recall further that, to simplify our simulation model, we
require that all nodes have the same capacity, the capacity of1.0, and that total load equals total
capacity. To reach a state of absolute convergence, i.e., when all nodes have load equal to capacity,
typically takes a long time since smaller and smaller load amounts are moved as the system under
study approaches convergence. Our convergence criterion is therefore more relaxed than absolute
convergence.

It is our experience that faster algorithms for diffusion do not approach convergence in a smooth,
monotonic fashion. Typically the trend is clearly that of gradually converging smallest and largest
load values in the network, but occasionally the trend is broken with small intervals of surges. Taking

7

this jittery behavior into account, we propose the following definition of convergence.
Definition. Convergence of load balance protocol.At the end of each simulation cycle, letmin

be the smallest load value in the network andmax be the largest. Also, letthreshold be a small
number. For each simulation cycle where(max−min) < threshold holds, a convergence counter is
incremented by one. Also, for each simulation cycle where(max−min) >= threshold holds, the
convergence counter is decreased by10 or set to zero if a negative value would result. A load balance
protocol simulation is then said to converge when the convergence counter reaches the value of100.
All experiments presented in this paper used athreshold value of0.1.

Important simulation model parameters are the choice of overlay network topology and start dis-
tribution for load on nodes. Unless otherwise specified, all simulation runs reported on in this paper
used the same power-law network topology and random start distribution. We feel that the power-
law topology and the random start distrubution offer a fairly realistic context for simulations. Our
power-law topology consists of10, 000 nodes, with the most connected node having2200 neighbors.
The power-law topology was generated by the topology generator described in [22]. To generate our
random start distribution we simply divide the total load into10, 000 units, and place one unit at a
time on a randomly selected node until all units have been placed. This procedure gives a distribution
of initial loads over nodes varying from zero to about 6.

We have used our simulation model to conduct numerous experiments of plain diffusion using
multiple instances of both power-law topology and random start distribution. We choose the value
c = c3 = 1/2500 as our diffusion constant.

Figure 1 illustrates the differences in speed and behavior between our plain diffusion algorithm
and our two algorithms for signal diffusion. For the sample runs shown in Figure 1, plain diffusion
took15, 816 cycles to reach convergence, while the version-6 and version-10 algorithms took486 and
361 cycles, respectively. The instabilities that are characteristic of fast diffusion algorithms are evident
from the sample runs in Figure 1. The largest and smallest values of the random start distribution were
six and zero, respectively; the version-6 algorithm exhibited maximum load values as high as370,
while the version-10 algorithms saw an extreme maximum value of160 and an extreme minumum
value of−180. We also note that the largest amount of load transferred over a link was0.0024 for the
plain diffusion algorithm; for each of the two signal diffusion algorithms, the largest value transferred
over a link was about3. Thus we see a difference in this quantity by a factor of about 1000. In short:
the “fast” one-component diffusion algorithms have oscillations, sometimes very high load/signal
values at nodes, and sometimes very high transfers over the links.

3.4 Signal-aided diffusion

So far we have developed a single algorithm for slow diffusion of load (the plain diffusion algorithm)
and two algorithms for the fast diffusion of signal (the version-6 and version-10 algorithms). We now
present the practical details of our chemotaxis-inspired algorithm for load balancing: the signal-aided
diffusion algorithm.

We recall our basic assumption that signal speed can be very high. Thus, for the signal, we are free
to choose the fastest stable algorithm that we can find. After experimenting with half a dozen candidate
algorithms, we arrived at the version-6 and the version-10 algorithms as our preferred candidates for
fast signal diffusion algorithms.

Early experiments with signal-aided diffusion showed that when diffusion of load responds to
signal gradients according to Eq. 3, instabilities often resulted. A closer inspection of those early
results in addition to insights offered by the work of Cybenko [11] led us to believe that chemotaxis can
be made less prone to instabilities if nodes that contain less load are more constrained in their response

8

Plain, single-component diffusion

-1

0

1

2

3

4

5

6

7

1 1000

Time (cycles)

M
ax

 a
nd

 m
in

 lo
ad

 v
al

ue
s

Plain diffusionVersion-6

Version-10

Figure 1:Sample runs of the plain diffusion algorithm and the version-6 and version-10 diffusion algorithms.
Largest and smallest values at the end of each cycle are plotted for the first 1500 cycles . All simulation runs
used a random start distribution on a 10,000-node scale free topology.

to signal gradients. Our algorithm for Eq. (3) therefore incorporates the following two constraints.
First, only nodes with more load than capacity are allowed to send to neighbors. Secondly, the total
load sent must be less or equal to the difference between load and capacity of the sending node. The
effect of these constraints is that once a node receives more load than capacity, it will maintain a load
of at least capacity.

The main focus of our simulation experiments is to compare plain diffusion with signal-aided
diffusion. It is therefore important to ensure that comparisons between the two be fair. We showed in
section 2 that fairness means that the diffusion coefficient for load must be the same for both plain and
signal-aided diffusion, i.e., we choose the same value forc andc3. Hence,c andc3 must be network-
wide constants. We also recall thatc must be smaller than the inverse degree of the most connected
node in the topology.

We now have two load balancing algorithms for load that is restricted to move slowly. Plain
diffusion simply sends out load in all directions independent of the current load distribution. Signal-
aided diffusion, on the other hand, employs a fast-moving signal to guide load in directions that
contain less load.

4 Performance

In this section we report on results from simulations using the simulation model defined in the previous
section. We start by presenting our results regarding time to reach convergence, then we look at the
quantities of load that were moved between nodes.

9

0

5000

10000

15000

20000

25000

30000

35000

40000

Diffusion
V6, c=1/1024

V6, c=1/256
V6, c=1/64

V6, c=1/16
V6, c=1/4

V6, c=1

Signal speed

Ti
m

e
to

 c
on

ve
rg

e

V10

Figure 2: The effect of increasing signal diffusion speed on time to reach convergence for signal-aided load
diffusion. Each of the three graphs corresponds to a different instance of our random start distribution. The
convergence times for plain diffusion are plotted to the far left. All other plots show convergence times for
signal-aided diffusion.

Our convergence time experiments aim at both comparing plain diffusion with signal-aided diffu-
sion, and exploring the effect of different signal speeds on signal-aided diffusion performance. Recall
that the Version 6 signal diffusion algorithm allows its speed to be altered by choosing different val-
ues for the diffusion constantcdefault. The fastest signal diffusion speed is always obtained by our
Version 10 algorithm. Version 6 withcdefault = 1 gives the second fastest signal speed. Progressively
slower signal speeds are then obtainded by halving the value ofcdefault. We chose Version 6 with
cdefault = 1/2048 as our slowest signal diffusion algorthm.

Figure 2 plots the time to reach convergence for a few sample runs, both for plain diffusion and for
signal-aided diffusion with different signal speeds. Each of the three graphs in Figure 2 represents a
set of sample runs sharing a particular instance of the random start distribution. Signal speed increases
along the horizontal axis. Convergence times for plain diffusion are shown as the left-most plot of
each graph. Note that, for this graph and for all subsequent plots showing performance, our results
are based on only a small number of typical sample runs, and not on a statistical average over many
runs, for each load speed. Also note that with respect to classes of topologies and start distributions,
our experiments focus on only scale-free topologies and random start distributions. We revisit these
issues in the future work section below and suggest that a wider range of experiment configurations is
needed to provide stronger evidence that our algorithm behaves well in most situations.

As can be seen from Figure 2, convergence to a balanced load was achieved for all runs, even
when signal diffused very quickly compared to the load. It is also evident that signal-aided diffu-
sion exhibited shorter time to reach convergence than did plain diffusion for most simulation runs.

10

0

5000

10000

15000

20000

25000

30000

35000

Diffusion
V6, c=1/1024

V6, c=1/256
V6, c=1/64

V6, c=1/16
V6, c=1/4

V6, c=1

Signal speed

To
ta

l l
oa

d
m

ov
ed

V10

Figure 3:Total load moved to reach convergence as a function of signal speed. Each graph corresponds to a
different instance of the random start distribution. Total load moved numbers for plain diffusion are plotted to
the far left.

Several signal speeds produced reductions in convergence times of about 80%. (The shortest time
to reach convergence for signal-aided diffusion was1795 cycles; plain diffusion took about13, 000
cycles to reach convergence.) Interestingly, the shortest convergence times were obtained when signal
diffused at medium speeds. Signal-aided diffusion performed worse than plain diffusion when using
our slowest signal speed (version 6 withcdefault = 1/2048).

Figure 3 shows the total load moved for the simulation runs depicted in Figure 2. It is interesting
to see if the use of a guiding signal not only reduces the time to reach convergence but also leads to a
reduction in the total load moved. Figure 3 tells us that most signal-aided runs appear to move more
load in total than does plain diffusion. Also, we can observe a clear indication of an increase in total
load moved with increasing signal speed. Only signal-aided runs with slower signal speeds, ie, those
using the version-6 algorithm withcdefault < 1/128, resulted in less load moved, and even then the
reduction was modest compared to the increases experienced when using faster signal speeds.

Chemotaxis-inspired load balancing addresses systems where the ability to move load is limited.
Therefore, a key metric is the amount of load that is moved during a short interval, e.g., during a
single cycle. Figure 4 shows the largest amount of load that was moved in a single cycle during each
experiment. From Figure 4 we observe that loads guided by the speedier instances of the version-6
signal diffusion algorithm produced smaller values for the largest single-step load amount moved. The
smallest maximum is0.014. It is interesting to note the relatively poor performance resulting from
using the version-10 algorithm to diffuse signal: the maximum load amount moved in a single cycle
is about fifty times higher than for the best cases. Relative differences among different instances of
the version-6 algorithm are also rather big (up to a factor of seven).

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V6, c=1/2048
V6, c=1/512

V6, c=1/128
V6, c=1/32

V6, c=1/8
V6, c=1/2 V10

Signal speed

M
os

t l
oa

d
in

 s
in

gl
e

m
ov

e

Figure 4:Largest load amount moved during any single cycle, over an entire simulation run, as a function of
signal speed. Each graph represents a different instance of the random start distribution.

Though the results for largest single-step load amount moved are not as clear as the convergence
time results, our tests suggest that performance gains are possible while still maintaining slow load
movement. Also, it is worth noting that best results for the two-component algorithm, with version
6 for the signal, had a maximum link load moved that exceeded that for plain diffusion by a factor
of only about 7. This may be contrasted with the factor 1000 increase for this same cost figure that
we observed in the previous section (Figure 1), by increasing thesingle-componentspeed to the same
value thatsignaluses in Figure 4. In other words (very roughly), by using chemotaxis instead of brute
load speed, we obtain the same speed increase, but with much less penalty in maximum link load
moved.

5 Nice properties

One of the main motivations for studying mechanisms from biology is that living systems exhibit “nice
properties”: they are self-organizing, self-repairing, adaptive, etc. It is of course of great interest to
inquire whether engineered systems also have these nice properties. In this section we offer a limited
discussion of this kind of question for our chemotactic load balancing system.

We note that both our reference diffusion algorithm and our chemotaxis algorithm are self-organizing
systems, in that they make little reliance on global information—nodes only need updated informa-
tion about their neighbors’ load and signal values to carry out the algorithms. Our favored chemotaxis
rule—ie, the one based on version-6 diffusion for signal—does rely on one global parameter, namely,
the value forcdefault. On the other hand, Figures 2 and 4 show that these two performance measures
are rather insensitive to the value ofcdefault. (The total load moved is somewhat more sensitive.) In

12

0

10000

20000

30000

40000

50000

60000

70000

80000

Diffusion
V6, c=1/512

V6, c=1/64
V6, c=1/8

V6, c=1

Signal speed

Ti
m

e
to

 c
on

ve
rg

e

Node 100
Node 0
Random

Figure 5:Sample runs showing time to reach convergence from different initial load distribution as a function
of signal speed. Plain diffusion is plotted to the far left. Each graph represents a different start distribution. The
three start distributions are: all load placed on a poorly connected node (node 100), all load placed on the best
connected node (node 0), and random start distribution.

fact, we would argue that this type of insensitivity is in itself a kind of nice property. That is, insen-
sitivity of performance to parameter values allows a self-organized system to find parameters giving
good performance, without the necessity of fine tuning. Nevertheless we retain, as a goal for future
work, the task of finding a satisfactory, decentralized method for tuning to a good value forcdefault.

Figure 2 also shows, in a limited way, another type of insensitivity. In this figure, it is clear that
version-6 chemotaxis (for most speeds) and plain diffusion are each less sensitive to the particular ran-
dom start distribution than is version-10 chemotaxis. Figure 5 gives us more insight into the question
of this type of sensitivity. In the blue curve of this figure, the initial distribution consists of all the load
(10,000 units) being placed at a very poorly connectd node (node 100). The red curve is generated
from a start distribution with all load placed at the best connected node (node 0). Finally, the yellow
curve comes from a random start distribution, like that used in Figure 2.

Hence Figure 5 shows results for a considerably larger variation of initial distribution than Fig-
ure 2. We make three observations from Figure 5. First, version-10 chemotaxis is again more sensitive
to initial distribution than is version-6 chemotaxis. Second, plain diffusion ishighly sensitive to the
initial load distribution. We see that the insensitivity and relatively good convergence times shown by
plain diffusion for a random initial distribution are lost when we examine more extremely skewed start
distributions. Finally, we feel that the insensitivity shown by the “good” range of version-6 chemo-
taxis is remarkable: its convergence time is virtually indepedent of start distribution, even in the face
of such extreme variations. While we do not have a detailed explanation for this nice property, we
would claim that it merits the term “adaptivity”. In these words, we would say that (at least for this
performance measure) version-6 chemotaxis is by far the most adaptive of the three systems studied.

Although most of our test runs have been done using a power-law topology, we have performed a
limited series of tests with a random topology. This topology was generated using the Peersim plat-

13

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Diffusion
V6, c=1/1024

V6, c=1/256
V6, c=1/64

V6, c=1/16
V6, c=1/4

V6, c=1

Signal speed

Ti
m

e
to

 c
on

ve
rg

e

Powerlaw 1
Powerlaw 2
Random

Figure 6: Sample runs showing time to reach convergence on different topologies as a function of signal
speeds. Plain diffusion plotted on the far left. Two graphs correspond to different instances of a powerlaw
topology, the third graph corresponds to a random topology.

form [22], with a constant node degree (k = 20). Figure 6 shows some results for convergence time,
comparing the random topology with the power-law topology. This figure thus shows sensitivity (or
its inverse, adaptivity) to (rather large) topology variation. The two upper curves are for two distinct
instances of the power-law topology, while the bottom (yellow) curve is for the random topology.
Start distributions were random, generated for both topologies in the same way as outlined in section
4.

Our observations from this figure are roughly like those from Figure 5. That is: large sensitivity
(poor adaptivity) for plain diffusion, and also for version-10 chemotaxis; and relatively low sensitivity
for version-6 chemotaxis.

It is not so surprising that plain diffusion adapts poorly to changes in topology or initial distribu-
tion. Plain diffusion is after all blind: it treats every “direction” on the network as equal. Intuition says
that this blind approach should work best for (i) fairly uniform initial distributions, and (ii) a highly
mixing topology such as the random topology; and Figures 5 and 6 are consistent with this. The
news from these figures is then that our “smart” system is (at least, based on these tests) truly more
adaptive than the blind system: it is only relatively weakly affected by the change from a random to
a power-law topology, and virtually unaffected (in its best range) by changing from a fairly uniform
start distribution to a highly skewed one.

6 Complex behavior

We devote this section to the illustration of a number of striking behaviors exhibited by our chemotaxis
system. These behaviors are not adequately (or at all) revealed by our figures showing performance in
sections 4 and 5. We do however see some signs of complex behavior in Figure 1. This figure supports

14

Signal: version 6, c = 1/2048

0

1

2

3

4

5

6

7

1 2000

Time (cycles)

Ma
x a

nd
 m

in
loa

d

Signal: version 6, c = 1/64

0

1

2

3

4

5

6

7

1 2000

Time (cycles)

Ma
x a

nd
 m

in
loa

d

Signal: version 6, c = 1

0

1

2

3

4

5

6

7

1 2000

Time (cycles)

Ma
x a

nd
 m

in
loa

d

Signal: version 10

0

1

2

3

4

5

6

7

1 2000

Time (cycles)

Ma
x a

nd
 m

in
loa

d

Figure 7:Sample runs showing approach to convergence (largest and smallest load values in the system under
study) over time. Only the first 2500 cycles are plotted. Each sample run corresponds to a different signal
speed; the chosen signal speeds are: version-6 withcdefault = 1/2048, cdefault = 1/64, andcdefault = 1 in
addition to version-10. The time behavior of plain diffusion is included for reference in each plot. All runs use
the same power-law topology and random start distribution.

the intuitive notions that we extract from the work of Cybenko [11]. We see that slow systems (plain
diffusion in the figure) are stable, while the fastest stable one-component systems (version 10 in the
figure) are close to instability. Version-6 one-component diffusion then represents an intermediate
case.

Given the fact that the one-component diffusive system, when discretized, can give rise to oscilla-
tions and instability, it is to be expected that the two-component system should do the same. In fact,
our notion of two time scales corresponds, for continuous systems, to the notion of “stiff” coupled
differential equations. It is known, for such systems, that coupling a “fast” system to a “slow”, fol-
lowed by discretizing, can lead to oscillations, and even instability. Our chemotaxis system is such
a system—but one for which there is no opportunity to adjust the size of the time step (the com-
mon remedy for stiff systems). In this light, it is not surprising that the chemotaxis system exhibits
oscillations. Nor is it surprising that the best performance, in terms of convergence, is obtained for
intermediate (rather than maximal) values for the signal speed.

Nevertheless there are surprises in store from the study of the two-component system: the behavior
is even more complex than our intuition (based on the above) would guess. Figure 7 gives a sample of
the kinds of complex behavior we have observed for the chemotactic system. The four plots show the
time behavior of the load (in the same way as in Figure 1) for increasing signal speed, reading left to
right and top to bottom; also, each of the four plots show plain (one-component) diffusion in pink. The
first plot (cdefault = 1/2048) gave very slow convergence by our rather tight convergence criterion.
However, here we see that this system moves extremely rapidly to within 1 unit of convergence,
and that the long convergence time is due to the long-lasting, irregular behavior after this first, fast

15

plunge. Hence, a weaker convergence criterion would rank this value forcdefault considerably higher
in performance.

The second plot (cdefault = 1/64) is taken from the “good” range of signal speeds. The approach
to convergence is strikingly different from that in the first plot. In fact, the two systems are almost
complementary: one (cdefault = 1/2048) shows ahigh rate of approach to convergence whenfar
from convergence, and a low rate when close; while, for the other (cdefault = 1/64) the description is
essentially reversed.

Yet another surprise is revealed by the third plot. Here we see behavior for the “fastest” (cdefault =
1) version-6 chemotaxis—and yet we see no oscillations whatsoever. Furthermore, the behavior is
nearly identical to that of unaided diffusion, withc = 1/2500. We have no explanation for this
behavior. Finally, moving to the fastest signal diffusion rule (version 10), we see in the fourth plot
that the oscillations have returned.

This section is purely descriptive—we do not try to explain (yet) the complex behaviors seen here.
The main points from this section are then that (i) the coupled system (even leaving out the unstable
cases!) can exhibit highly complex behavior over time, on the way to convergence; and (ii) the nature
of this complex behavior varies, as a function of signal speed, in a way that is in itself highly complex.

7 Discussion and Conclusions

In this paper, we have presented a biology-inspired mechanism for improving the performance of
basic diffusion in load balancing. Diffusion is a widely studied approach that offers advantages of
being simple, decentralized, and flexible. Our goal has been then to see if a more active mechanism,
taken from biology, could give better results than the passive physics-inspired diffusion approach.

The mechanism that we borrow from biology ischemotaxis—a system in which diffusing chem-
ical signals guide the movement of the bodies emitting them. We have allowed the load at nodes on
a network to emit a signal, which follows a fast diffusion law for its motion. The motion of the load
itself is then guided by gradients of signal. We have used repulsive chemotaxis—load moving down
the gradient—to drive the load towards a uniform distribution. We have emphasized that chemo-
taxis makes sense when there aretwo time scalespresent: the slow movement of the emitting bodies,
coupled to the fast movement of the load. This idea may be technically useful when bandwidth con-
straints prevent the load from diffusing rapidly, while signal (a few bytes) may not be subject to such
constraints.

We have implemented a reference (plain diffusion) algorithm, and (after some experimentation)
settled on two algorithms for fast diffusion of signal. One of our fast algorithms in fact allows for the
continuous tuning of signal speed; hence we have been able to sample a wide range of signal speeds,
always holding the load speed to a fixed (low) value.

Results of our tests show that chemotaxis can give a large improvement in rate of convergence over
plain diffusion. These tests were performed on a scale-free topology with a random start distribution.
The same tests show that the total load moved by chemotaxis is typically somewhat higher than that
for plain diffusion (lower for some signal speeds, but up to a factor of two higher for others). Note that
our results, though covering a wide range of signal speed values, are only based on a small number
of runs. More work is needed to increase the number runs, each with a distinct instance of scale-free
topology and random start distribution.

We have also looked at the maximum value (over a run, and over all links) of the load moved over
a single link. This quantity is also higher for chemotaxis, for all signal speeds. Hence, it is not clear
that the advantages of chemotaxis will persist in a system with hard quotas on load movement over

16

the links. We intend to examine this question in future work. (In fact, we have begun such studies, but
cannot yet draw any definite conclusions.)

Our best algorithm for chemotaxis (“version 6”) has a tunable parameter (cdefault) which controls
the signal speed. This is a global parameter. Hence another item for future work is to find satisfactory
ways for the system itself to tunecdefault to a good working value.

We note in this context that our version-6 chemotaxis rule gives good performance over a rather
wide range ofcdefault values. This kind of insensitivity is encouraging—it should make the task
of decentralized self-tuning easier. Furthermore, we have observed other kinds of insensitivities for
version 6: insensitivity to wide variations in start distribution, and to large differences in network
topology. In fact, version-6 chemotaxis is clearly and unambiguously the best choice if this kind
of insensitivity (or adaptivity) is important; both plain diffusion and version-10 chemotaxis showed
much higher sensitivity to these two environmental perturbations.

The adaptivity that we see for version 6 is the kind of “nice property” that one hopes to achieve
from decentralized, bio-inspired technological systems. We have noted the high adaptivity of version-
6 chemotaxis. In particular, we find it remarkable that the convergence time for this rule, in the good
range ofcdefault values, is virtually unaffected by extreme variations in start distribution (Figure 5)—
from fairly uniform, to the most disadvantageously skewed distribution possible. We note here that
all three systems compared in this figure (plain diffusion, version 6, and version 10) are decentralized,
flexible, ’swarm-intelligence-like’ systems. Hence, the argument that nice properties ’simply arise’ in
such systems cannot help to explain the clear difference in adaptivity between these three. We leave
the understanding of this also to future work.

Our chemotaxis system involves the coupling of two discrete dynamical systems, each with its
own natural time scale (speed), and typically with a large difference between these two time scales.
One does not expect smooth behavior from such systems. In fact, even the one-component (diffusive)
system, because it is discrete, is subject to instabilities if it is too fast, and to oscillations when it is
stable but near the instability threshold (Figure 1). The two-component system shows highly complex
behavior (Figure 7). The good news is that simple precautionary rules, as reported in Section 3, can
ensure that stable convergence can be reliably achieved, in spite of the complexity. However, an
understanding of the complex behavior exhibited by our two-component system is lacking.

We have mentioned several topics for future work. Besides those mentioned, we plan on exploring
other topologies; on collecting more systematic and quantitative results on nice properties such as
adaptivity; and on seeking an understanding of the variations in adaptivity that we observe.

One further, outstanding, direction to take is to move the present approach towards practical ap-
plication. The present work represents a proof of principle: that signalling can strongly enhance the
convergence speed of a diffusive load balancing approach. We are interested in seeing whether this
principle will survive in practice—for example, in large, dynamic systems such as peer-to-peer, where
adaptivity is important, and central control is not practical.

Finally, we note that we have thus far only dealt withrepulsivechemotaxis. The idea of using
attractive chemotaxis should also be explored for possible technological applications. We mention
one, speculative, example. Suppose that a distributed file-sharing system could benefit (achieving
more efficient searching) if the documents in the system were clustered, meaning that similar files
were located close to one another in the network sense. One might then use attractive chemotaxis to
bring about this clustering. Of course, since information is multidimensional, one would need several
types of signals. In any case, we suggest that attractive chemotaxis is also worth looking into for
accomplishing technological ends.

17

8 Acknowledgments

We thank Niloy Ganguly for numerous helpful discussions. This work was partially supported by
the Future & Emerging Technologies unit of the European Commission through Project BISON (IST-
2001-38923).

References

[1] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J. Faik, J. E.
Flaherty, and L. G. Gervasio. New challenges in dynamic load balancing.Appl. Numer. Math.,
52(2–3):133–152, 2005.

[2] A. Oram, editor.Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology. O’Reilly &
Associates, Mar. 2001.

[3] I. Foster and C. Kesselman, editors.The Grid: Blueprint for a Future Computing Infrastructure,.
Morgan Kaufmann, 1999.

[4] E. Lee. Highly-available, scalable network storage. In40th IEEE Computer Society Interna-
tional Conference (COMPCON95), page 397, 1995.

[5] Z. Palkova, B. Janderova, J. Gabriel, B. Zikanova, M. Pospisek, and J. Forstova. Ammona
mediates communication between yeast colonies.Nature, 390:532–536, 1997.

[6] BISON. http://www.cs.unibo.it/bison/index.shtml.

[7] L. Benov and I. Fridovich. Escherichia coliexhibits negative chemotaxis in gradients of hydro-
gen peroxide, hypochlorite, and N-chlorotaurine: Products of the respiratory burst of phagocytic
cells. Proc. Nat. Acad. Sc. US, 93(10):4999–5002, 1996.

[8] J. C. Dallon, H. G. Othmer, C. v. Oss, A. Panfilov, P. Hogeweg, T. Höfer, and P. K. Maini.
Models of Dictyostelium discoideumaggregation. In W. Alt, A. Deutsch, and G. Dunn, editors,
Dynamics of cell and tissue motion, pages 193–202. Birkhäuser, Basel, 1997.

[9] P. N. Devreotes.Dictyostelium discoideum: A model system for cell-cell interactions in devel-
opment.Science, 245:1054, 1989.

[10] Y. Jiang, H. Levine, and J. Glazier. Possible cooperation of differential adhesion and chemotaxis
in mound formation of Dictyostelium. Biophys. J., 75:2615–2625, 1998.

[11] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.Journal of Par-
allel and Distributed Computing, 7:279–301, 1989.

[12] J. Boillat. Load balancing and poisson equation on a graph.Concurrency: Practice and Experi-
ence, 2:280–313, 1990.

[13] T. Decker, B. Monien, and R. Preis. Towards optimal load balancing topologies.Lecture Notes
in Computer Science, 1900:277–287, 2001.

[14] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load balanc-
ing. Parallel Computing, 25(7):789–812, 1999.

18

[15] Y. F. Hu and R. J. Blake. An improved diffusion algorithm for dynamic load balancing.Parallel
Computing, 25:417–444, 1999.

[16] M. Jelasity, A. Montresor, and O. Babaoglu. A Modular Paradigm for Building Self-Organizing
Peer-to-Peer Applications. In G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zam-
bonelli, editors,Engineering Self-Organising Systems: Nature-Inspired Approaches to Software
Engineering, number 2977 in Lecture Notes in Artificial Intelligence, pages 265–282. Springer-
Verlag, Apr. 2004.

[17] G. Karagiorgos and N. M. Missirlis. Accelerated diffusion algorithms for dynamic load balanc-
ing. Inf. Process. Lett., 84(2):61–67, 2002.

[18] P. Sanders. On the efficiency of nearest neighbor load balancing for random loads. InParcella
96, VII. International Workshop on Parallel Proccessing by Cellular Automata and Arrays, pages
120–127, 1996.

[19] R. Els̈asser and B. Monien. Diffusion load balancing in static and dynamic networks. InProc.
Internat. Workshop on Ambient Intelligence Computing, pages 49–62, Dec. 2003.

[20] A. Deutsch, N. Ganguly, G. Canright, M. Jelasity, and K. Engø-Monsen.
Models for advanced services in AHN, P2P Networks. Bison Deliverable,
www.cs.unibo.it/bison/deliverables/D08.pdf, 2003.

[21] G. P. Jesi. Peersim howto: build a new protocol for the peersim simulation framework, November
2004.

[22] G. P. Jesi. Peersim howto 2: build a topology generator, 2004.

19

