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1 Introduction

In recent times, the possibility of accessing, han-
dling and mining large-scale networks datasets has
revamped the interest in their investigation and the-
oretical characterization along with the definition of
new modeling frameworks. In particular, mapping
projects of the World Wide Web (WWW) and the
physical Internet offered the first chance to study
topology and traffic of large-scale networks. Gradu-
ally other studies followed describing population net-
works of practical interest in social science, critical
infrastructures and epidemiology [1, 3, 7, 10]. The
study of large scale networks, however, faces us with
an array of new challenges. The definitions of central-
ity, hierarchies and structural organizations are hin-
dered by the large size of these networks and the com-
plex interplay of connectivity patterns, traffic flows
and geographical, social and economical attributes
characterizing their basic elements.

In this paper, we propose the use of the k-core de-
composition to study the hierarchical properties of
large scale Internet maps. The k-core decomposi-
tion [4] consists in identifying particular subsets of
the network, called k-cores, each one obtained by re-
cursively removing all the vertices of degree smaller
than &, until the degree of all remaining vertices is
larger than or equal to k. Larger values of core-
ness clearly correspond to vertices with larger degree
and more central position in the network’s structure.
The k-core decomposition therefore provides a probe
to study the properties of the network’s regions of
increasing centrality. Here we analyze Internet net-
works at both the Autonomous Systems and router
level. In both cases we find that k-cores are always
made by a single connected component, indicating
the presence of a hierarchy of well defined regions of
which it is possible to investigate the statistical prop-
erties. Strikingly, the various distributions and quan-

tities analyzed appear to be invariant in the various
k-cores. This characteristic appears extremely impor-
tant in providing an operative definition of a topolog-
ical self-similarity of scale-free graphs and prompts to
the k-core decomposition as a suitable transformation
equivalent to a scale-change in the topological space
of networks non-embedded in the geometrical space.
Motivated by the previous finding we developed a
visualization algorithm based on the k-core decompo-
sition that allows the identification of networks’ fin-
gerprints, according to properties such as hierarchi-
cal arrangement, degree correlations and centrality,
etc. The distinction between networks with seem-
ingly similar properties is achieved by inspecting the
different layouts generated by the visualization algo-
rithm. The running time of the algorithm grows only
linearly with the size of the network, granting the
scalability needed for the visualization of very large
scale networks. We apply the proposed visualization
algorithm to real Internet maps and several computer
generated graphs aimed at their modeling. The visu-
alization algorithm appears to be a convenient tool
able to clearly pinpoint the differences of Internet
maps obtained at different granularities and with dif-
ferent experimental techniques. In addition, the in-
spection of computer generated networks provides a
first approach to models validation. The presented
visualization algorithm is publicly available [8].
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2 k-core decomposition

In this section, first we introduce the definition of
k-core decomposition, then we show how the applica-
tion of this decomposition can shed light on impor-
tant hierarchical properties of graphs, and finally we
present a visualization that aids to identify networks.



Let us consider a graph G = (V,E) of |[V]| = n
vertices and |E| = e edges, the definition from [4] of
k-cores is the following

Definition: A subgraph H = (C, E|C) induced by
the set C C V is a k-core or a core of order k iff
Yv € C : degreey (v) > k, and H is the mazimum
subgraph with this property.

A k-core of G can therefore be obtained by recur-
sively removing all the vertices of degree less than k,
until all vertices in the remaining graph have degree
at least k. It is shown by V. Batagelj and M. Zaver-
snik [4] that the complexity of this decomposition is
e, the number of edges.

2.1 Analyzing AS and IR graphs

We apply the k-core decomposition to Internet’s
maps. The autonomous system level is represented
by collected routes of Oregon route-views [9] project,
called AS from May 26, 2001. For the router level, we
use the graph obtained by an exploration of CAIDA
project [6] between April 21st and May 8th, 2003.

Figure 1 displays the cumulative degree distribu-
tion for the first k-cores, for two maps of Internet
(upper plots); namely, the probability Ps(d) that
any vertex in the networks has a degree larger than
d. Strikingly, the shape of the distribution, i.e. a
power-law with an exponential cut-off, is not affected
by the decomposition. In particular the exponent of
the power-law is robust although the range of vari-
ation of the degree decreases. This feature defines
a striking property of statistical self-similarity of the
network and the generated k-cores, which resemble
one with each other under the opportune rescaling of
the average degree.

Another relevant quantity is the clustering coeffi-
cient that measures the local group cohesiveness and
is defined for any vertex j as the fraction of con-
nected neighbors of j [11]: c¢; = 2-n1ine/(d;(d; —1)),
where njin is the number of links between the d;
neighbors of j. The study of the clustering spec-
trum cc(d) = - jjd;—aCCi - allows e.g. to un-
cover hierarchies in which low degree vertices belong
generally to well interconnected communities (high
clustering coefficient), while hubs connect many ver-
tices that are not directly connected (small cluster-
ing coeflicient). Figure 1 presents cc(d) in the lower
plots. Also in this case the shape of the spectrums is
preserved as the network is recursively pruned of its
low-degree vertices.
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Figure 1: Top: cumulative degree distribution of the various
k-cores. The degree is normalized by the average degree of each
k-core. Bottom: clustering coefficient spectrum of the various
cores.

2.2 Network fingerprints

Motivated by the previous analysis we propose a vi-
sualization algorithm based on k-core decomposition
that places vertices in 2 dimensions, the position of
each vertex depending on its coreness and on the core-
ness of its neighbors (see also [5]). A color code al-
lows for the identification of core numbers, while the
vertex’s original degree is immediately provided by
its size that depends logarithmically on the degree
(see Figs. 2 and 3). For the sake of clarity, our al-
gorithm represents a small percentage of the edges,
chosen uniformly at random. The aim is to provide a
clear visualization of the hierarchies, coreness shells
and self-similarity observed in the context of statis-
tical analysis presented in the previous section. As
mentioned, in the most general situation, indeed, the
recursive removal of vertices having degree less than
a given k can break the original network into various
connected components, each of which might even be
once again broken by the subsequent decomposition.
While this is not the case in the Internet maps that we
have analyzed, we cannot exclude this possibility and
a central role in our visualization method is played by
the possibility of a multi-components representation
of the k-core decomposition. The complete descrip-
tion of the algorithm can be found in [2]. The most
remarkable fact is that the IR is populated at all lev-
els, and it also has high degree nodes in low k-shells,



while the AS has few nodes in higher k-shells and it
has only high degree nodes in higher k-shells.

3 Conclusions

In this paper we have presented the application of
the k-core decomposition to the analysis and visual-
ization of large scale networks. The k-core decompo-
sition allows the progressive pruning of large networks
and the identification of subgraphs of increasing cen-
trality. The study of these subgraphs and their statis-
tical properties uncover the main hierarchical layers
of the network and allows for their statistical charac-
terization. Strikingly, we observe for heterogeneous
graphs such the Internet at the Autonomous System
(AS) and Router level a statistical self-similarity of
the topological properties for cores of increasing cen-
trality. We propose a general visualization algorithm
that allows for the graphical distinction of the k-core
hierarchy along with the degree of the vertices and
their relation with the hierarchical position of the
neighbors. The obtained results show the possibil-
ity of gaining clear insights on the architecture of
many real world and synthetic networks. Networks
with different topological properties and structural
arrangement can be distinguished and the hierarchi-
cal arrangements of the elements rationalized. The
present visualization strategy may be also used for
determining if a certain model fits or not with the real
data, providing a further interesting tool for models
validation.
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Figure 2: Graphical representation of the AS+ graph. The
color code for the coreness is given on the right of the represen-
tation, while the legend for the degree of the vertices is given
on the left, showing the maximum degree node. The following
figure use the same legend.

Figure 3: Graphical representation of the CAIDA IR graph.



