Games networks and elementary modules

M. Manceny*and F. Delaplace’

LaMI-Genopole. UMR 8042 CNRS, University of Evry, France

Abstract

In this paper we propose an original modular extension of game theory
named games network. The objective of games networks is to provide a
theoretical framework which suits to modular dynamics resulting from
different local interactions between various agents and which enables us
to describe complex system in a modular way. Games networks describes
situations where an agent can be involved in several different games, with
several different other agents at the same time.

However, several games networks can represent the same dynamics.
We focus on the determination of a global equilibria, resulting from the
composition of local Nash equilibria, which allows us to compute a games
network normal form. This normal form emphasizes the elementary mod-
ules which compose the games network.

Keywords: complex systems, modularity, game theory, networks.

1 Introduction

Analysis of complex systems is often based on the studies of relationships be-
tween components instead of elements themselves. It is the case in post-genomic
studies ([1, 2]). This puts the emphasize on the way to analyse interactions.
From modeling standpoints, networks provide a suitable framework to describe
interactions (edges) of components (vertices). With networks, the description
remains static and it is mainly focused on the structural analysis of the proper-
ties of the system ([3]).

In order to improve the framework by including dynamical aspects for the
analysis of interactions, we propose to mix two formalisms: network formal-
ism and game theory. Game theory has been pioneered by von Neumann and
Morgenstern to define a theoretical framework to model complex interactions
between agents or players ([4]). Game theory provides a modeling framework
to characterize complex interplays in a large variety of fields such as Biology
([5, 6]), Economy ([7, 8]), Computer Science ([9, 10]). For instance in social
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and economical fields, it aims at analyzing situations where agents take deci-
sions with the consciousness that outcomes of their own choices depends on
the others. Decisions aim at maximizing payoffs and choices are assumed to
be the result of a rational behavior. The rationality is however a metaphor
suited for human interactions. In biology, adaptation and Darwinian selection
are preferred to motivate the strategies of the agents.

Schematically, games networks can be viewed as a “network of games and
players” where players are connected to the games they participate to. The
representation corresponds to a bipartite graph where two categories of nodes are
available: nodes representing players and nodes representing games. By using
games networks, we describe the interactions as a set of modular activities where
each games represents a module of interactions. Module description differs from
usual representation such circuit devices, because components may belong to
different modules. Components are reused for different modules.

In post-genomic, recent analysis on gene expression ([11]) appear to confirm
this fact if we assume that each module corresponds to a coordinated set of
responses to a stress. So, module finding is shifted from components to interac-
tions.

Finding modules remains a challenging problem. The challenge relies on the
relevance of the functional analysis deduced from the modular design proposed
by the analysis. Modular analysis is important for biological applications such
as drug design because its definition relies on an association between a support
and a function. Hence, modules help identify targets for drugs. Whatever the
description of a module might took, they share common general properties:

e (enerative: each module is constitutive of a system of which it defines a
building block. From the assembly of the modules, the system is formed
and acquires its properties.

e Functional: subject to its unicity, the deterioration of a module leads to
the loss of the properties assigned to the module.

e FElementary: this property refers to the atomicity of a module, that is, the
impossibility to extract a sub module from a module.

Generative. Games networks theory provides a framework for (biological)
dynamics based module analysis by describing the complexity of the interplays
by games which are assimilated to modules. Essentially, modular dynamics relies
on locality assumptions (represented by games). From the local properties of
games, such as local equilibria, we compute global equilibria of a system by
“assembling” each compatible equilibria (section 5.3).

Functional. In games networks, relationships between games and functions
are determined by the modeling. Functions are described by interplays described
in a game. Local (Nash) equilibria is then determined from each game. And
the removal of a game induces the loss of the equilibria associated to a game.

Elementary. However the description may not represent a basic module,
according to the previous properties, because the initial description may not be



necessary elementary. Indeed, the property relies on the assumption that a game
cannot be splinted into two sub-games. This can be hard to deal with during
the design of the model. Hence, we propose an algorithm to automatically
decompose into elementary modules. The automatic decomposition highlights
new games structure of the former network and sometimes reveal another view
of the system.

The paper is organized as follows: Section 2 deals with related work. Section
3 presents notations and general definitions used in this article. Section 4 briefly
recalls the main result on strategic game theory. Section 5 presents the extension
of strategic games to games networks and define global equilibrium at the scale
of the whole network. Section 6 deals with structural modifications, that is the
notion of equivalence between two games networks, and the operators that allow
us to modify which agents participate to which games. Section 7 is interested in
finding a games network normal form, that is a network composed of elementary
modules (modules which can not be separated into smaller modules). We define
an separation algorithm based on the notion of dependence to automatically
computed normal form. We conclude in section 8.

2 Related work

Games with local interactions have been introduced to provide a framework to
express locality which reduce the complexity of the Nash equilibria computation.

Indeed, research of the steady states of a game, and so computation of Nash
equilibria, is certainly one of the most studied field in game theory. Moreover,
McKelvey and McLennan ([13]) note that the computation of Nash equilibria
in n-players games is much harder, in many important ways, that the computa-
tion in 2-players games. In games with local interactions, games are no longer
considered in their globality, but through the local interactions between the
players.

La Mura, in [14], to treat multi-agent decision problems, introduces a new
game representation, more structured and more compact than classical repre-
sentations in game theory. Considering the strategic separabilities in its repre-
sentation, La Mura presents convergence methods to compute Nash equilibria.

Kearns, Littman and Singh in [15] introduce a compact graph-theoretic rep-
resentation for multi-party game theory. Their main result is an efficient al-
gorithm for computing approximate Nash equilibria in one-stage games repre-
sented by trees or sparse graphs.

Interested in Bayesian networks and in the locality of interactions, Koller
and Milch in [16] propose a representation language for general multi-player
games named Multi-Agent Influence Diagrams. They insist on the importance
of dependence relationship among variables to detect structures in games and
decrease the computational cost of finding Nash equilibria.

In this paper, we focus on interactions localized to a given process. Our
games network representation, compared to La Mura, is not another game-



theoretic representation but an extension of strategic representation. The closest
representation is that of Kearns, Littman and Singh. However, in quite a some
way as Koller and Milch, we are interested in the influence of the network
organization, in terms of dependences between agents. We more particularly
focus on the research of elementary modules which compose a game.

3 Notations and definitions
In the paper, we use the following notations.
o [a:b] ={i € Z|a <i< b} denotes a discrete interval bounded by a and b.

Let A be a set, we note:
o |Al, the cardinal of A

e if i € A, i also denotes the singleton {3} if it is required by the context of
the operation

e we consider the lifted version Aug = A + {L} where the element Bottom
denoted by L is added to A

o Let X C Allp,n > 1, we denote by [X] the set of profiles (or vectors) of
X where each profile does not contain L, i.e.:

[X]={ce X|Vie[l:n],¢c; # L}

Let C = {C;}ica be a set of sets, we note:
o C_j=xiea-jCi,Vj€ A
e Ca = X;cal;
o O = ngA Cx, the set of all k—uples of C with0< k< n
e Given a profile (or vector) ¢ € Cy
—c i=(c1, " ,Ci1,Cit1, " ,Cn) € C_y; this excludes the it* compo-
nent of a profile.

— (c—i,eq) = (1,77 ,Cim1,Ciy Cit1, - - sCn) € Cy; the notation distin-
guishes the it" component of the profile from the others. This nota-
tion is extended to sets of indices, (c_x,cx), X C A.

Definition 1 (¢ operator)

We define the operator @ : Ayg X Ange — Auge as follows:
Va € A, a® L =1da=aqa,
Ya € Ajse,a® a = a,
V(ia,o!) € Algp,a#a' = ada = L.



The extension of the & operator to profiles and set of profiles is defined as
follows:

V(C, cl) € 0,247 cdc = (Ci D C;’)’ielzn;

Y(C,C") €24, CaC' ={cac|ce C,c e C'}.

Example 1 (¢ operator)
(a;b,¢) ® (a,d, L) = (a, L, ¢)
{(a7 b7 C), (a7 d7 C)} @ {(a7 d7 J_)7 ($7y7 C)} = {(a7 J_7 C)7 (a7 d7 C), (J_7 J‘? c)}

Definition 2 (nth operator)
nth denotes the rank of an integer in an integer subset according to the natural
order

N x 2 s N* onth(iA) = { HTEALISiY  ified
nth: Nt x 2" 5 N ,nth(z,A)—{ undefined otherwise

Example 2 (nth operator)
nth(5,{1,3,5,7}) = 3.

Definition 3 (Scatter) . .
We define the Scatter operator as follows: ¢ 15: C% x 2V x 2V s (C%) L,

if 3j € AN B such that nth(j,B) =

) Cnth(j
Vi € [1: max(B)], (e 14)i = { J_th(J’A) otherwise

Note: if B =[1:n] is an interval, and A C B, the definition becomes:

ified

. Cnth(s
Vi€ [l:n](c Tﬁ)i = { Lth( A otherwise

Example 3 (Scatter)
For instance, given the following profile (a, b, ¢, d), we have:

(a,b,0,d) 175 1= (a, 1,b, L, 1, Le, 1)

(a,b,¢,d) 11357 = (a, L, b, L, L, 1, 1)

(a,b,¢,d) 11580 = (@, L, 1, 1, 1, L, 1,1)

4 Strategic Games

In this section we give definitions of game theory used in the article. The reader
may refer to the books [17, 18, 19] for a complete overview of game theory and
its applications.



4.1 Definition of a strategic game

Strategic game is a model of interplays where each agent chooses its plan of
action (or strategy) once and for all, and these choices are made simultaneously.
Moreover, each agent is rational and perfectly informed of the payoff function
of other agents. Thus, they aim at maximizing their payoffs while knowing the
expectation of other agents.

Definition 4 (Normal or Strategic Representation)
A strategic game T is a 3—uple (A, C,u) where:
e A is a set of players or agents.

o C = {C;}ica is a set of strategy sets. Each C; represents the set of the
m; strategies available for agent i, C; = {c},--- ,cI"'}.

e u = (u;)ica is a vector of functions. Each u; : C — R,i € A represents
the payoff function of the agent i.

In order to conveniently combine sets of strategies, we define the strategy as
follows:

Definition 5 (Set of Strategies)
Let (A, C,u) be a strategic game, let ®* be a set of labels, The set of strategies
C = {C;}ica are defined as follows Vi € A,C; = {(i,p)|p € &*}.

By this definition, the fact that agents share the same strategies do not
interfere in the union of sets of strategies.

4.2 Mixed (or randomized) strategies

Given a strategic game I' = (A, C,u), a mized-strategy' for any player i is a
probability distribution over C;. We let A(C;) denote the set of all possible
mixed strategies for player .

Vi€l:m,0<p; <1ADY pj=1}

i=1

A(Ci) = {(pj)je[lzmi]

A mized-strategy profile? o is any vector that specifies one mixed strategy
o; € A(C;) for each agent i € A. We let A(C) denotes the set of all possible
mixed-strategy profiles.
A(C) = xicaA(Ci)

For any mixed-strategy profile ¢ € A(C), let u;(c) denotes the payoff for

player 3.
ui(o) = 3 ([ osles)uile), Vi€ A

ceC jeA

1If the distribution is such that only one probability is different to 0, then the mixed-
strategy is called pure strategy.
21f the strategy of each player is pure, the profile is said to be pure.



4.3 Nash equilibrium

Nash equilibrium is a central concept of game theory. This notion captures
the steady states of the play of a strategic game in which each agent holds the
rational expectation about the other players behavior. A mized Nash equilibrium
is defined as follows:

Definition 6 (Mixed Nash equilibrium of a strategic game)
Let (A, C,u) be a strategic game, and o* € A(C) a mixed-strategy profile. o*
is a mixed Nash equilibrium? iff:

Vi € A,Vo; € A(C;),u; (0™ ;,04) <ui(o”;,07)

In other words, no agent can unilaterally deviate of a mized Nash equilibrium
without decreasing its payoff.

Definition 7 (Set of mixed Nash equilibria)
Let G = (A, C,u) be a game, we define mne(G), the set of mixed Nash equilibria
for G:

mne(G) = {c" € A(C)|ui(c*;,0:) <wui(c”;,0}7),Vi e A No; € A(C;)}

5 Games Network

Games networks correspond to an extension of game theory which defines mod-
ular interactions localized to different subsets of agents. Each module corre-
sponds to a specific game defined by a payoff function. Parameters of the payoff
function are strategies of agents involved in the game. Agents are shared be-
tween different modules and played different games in parallel. However, they
have the same set of strategies for every games they played. In a games network,
several games are combined to form a more general structure of network. In
this section, we address the main definitions of a games network. The reader
may refer to [20] for a more complete overview.

5.1 Definition of a Games Network

The definition of a games network mainly consists of defining a set of agents
connected to a set of games.

Definition 8 (Games Network)
A games network is a 3—uple (A, C,U) where

e A is a set of agents or players.

o C = {C;}ica Is a set of sets of strategies.

3If the profile is pure, we speak about pure Nash equilibrium.



o U ={(A,u)} is a set of game nodes where each A C A is a set of agents
and u: A x C4q — R is a set of payoff functions such that u = {u; : C4 —
R}ica-

A games network offers a synthetic representation to define the different
interplays between several players. The structure (A,u) totally determines a
game played by a subset of agents since it useless to include the strategies which
are the same for any agent of the network. A games network is represented by
a bipartite graph (A,U,E),E C A x U where an edge (i,(A4,u)) is a member
of E if and only if ¢ € A (See fig. 1 for an illustration of a “4-agents/3-games”
games network).

5.2 Restriction

A game node can be viewed as a sub game of a larger game played by the whole
agents of the network. To focus on an arbitrary sub game, we equip the theory
with the restriction operator which restricts a mixed-strategy profile to relevant
values according to a subset of agents, named support of the sub game. A profile
of values defined by a restriction is considered as a local profile of a subset of
agents. Whatever the values associated to other agents are, they will not be
considered for a local profile.

Definition 9 (Mixed-strategy Profile Restriction)

Let A = [1 : n] be a discrete interval representing a set of agents, let C =
{C;}ica be a set of strategy sets. Given a mixed-strategy profile o € A(C)*, we
define its restriction to a subset A C A, denoted by o a: A(C) x 24 A(C)ise,
as follows® :

ifie A

otherwise

(0la)i = { j_i

We extend the restriction operator by removing bottom elements (L) of the
profile, but the order of the other values is conserved in the resulting profile.
We note the composition of the removals and restriction operation as follows:

olx

The restriction is obviously extended to a set of mixed-strategy profiles by
applying the operation to every elements.

Example 4
Let A = [1 : 4] and 0 = (01,02,03,04). Let A = {1,3}, we have o | 4=
(01,L,03,1) and o ya= (01, 03).

The restriction applied to mixed-strategy profiles will be used in section 5.3
to put the focus on a sub part of a profile which corresponds to a game node.

4Recall that A(C) denotes the set of all possible mixed-strategy profiles
51 stands for an irrelevant value



5.3 Mixed Games network equilibrium

We define global equilibria at the scale of the games network. Such an equilib-
rium is named the mized games network equilibria (MGne). A games network
equilibrium corresponds to a compatible association of local equilibria. We as-
sume that agents follow the single played strategy rule, that is an agent plays
the same strategy for every connected games. The definition of MGne can of
course be applied to the whole network, but the restriction to a subset of game
nodes allow us to define regions where equilibria are compatible.

Definition 10 (Mixed Games Network Equilibrium)

Let T' = (A,C,U) be a games network, let c* = (01,--- ,0,,) € A(C) be a
mixed-strategy profile of every agents®. o* is a mixed games network equilibrium
of a subset U C U (noted o* € MGner(U)) iff:

V(A,u) € U,o* 4 is a mixed Nash equilibrium of the game (A, (C;)ica,u)
Theorem 1 allows us to determine all the global equilibria of a games network.

Theorem 1 (Largest Set of Global Equilibria)

Let T' = (A,C,U) be a games network, let U C U,U = {g; = (Ai,u;)} be a
set of game nodes, and let A = |J; A;. Then, the largest set of Mixed Games
network equilibria for game nodes of U is”:

MGner(U) = ’769 mne(g;) Tﬁ;‘

5.4 An example of games network

Let us consider I' = (A, C,U) the games network of fig. 1. We have:
o A ={a1,a2,a3,a4}, the agents
o C; ={.F.;,.T;},Vi € A, the strategies of the agents

o U = {{A13,u"3),(A1,2,u"?), (A2 4,u>*)}, the game nodes where A4; 53 =
{a1,a3}, A1 = {a1,a2}, A4 = {a2,a4} and the payoffs functions are
shown in fig. 1.

To compute the M Gne of ', let us compute the mne of each sub game.
mne; 3 = mne((4; 3,u!?)) = {((1 0),(1 0)) ; ((%, %), (1,0))}
mne; s = mne(<A1,27 u172>) = {((17 0)7 (17 0)) ) ((07 1)7 (07 1)) ) ((%7 %)7 (
mne; s = mne((42.4,u>*)) = {((0,1),(1,0)) ; ((5,3),(1,0))}

Thus, we can compute the Mixed Games network equilibria of I':

12 12

ga g)a (55 g): (1,0), (150))}

W=
wl

)}

?

MGner (U) = {((

6Recall that by convention |A| = n.
"Definitions of [ ], @ and Tﬁi are given in section 3, page 4.



’U,1’3| .F.3 .T.3 u2’4| .F.q .T.4
Fa | (L,2) (1,0) Fo | (1,0) (0,4)
a1 | (1,00 (0,1) T | (1,2) (1,0
u1’2| F.o .T.o
@ T FL | (22) (0,0) @
Ta | (0,00 (1,1)

Figure 1: Games network from section 5.4

6 Structural modifications

The definition of games networks allows the combination of several games into
a single network. This puts the emphasis on the way that the network structure
is determined, because different structures can be proposed to model the same
situation.

The definition of MGne seen in previous section provides the ability to
define equivalence between different games networks in section 6.1. The equiva-
lence opens on the possibility of establishing structural modifications of a games
network. Operators allowing such modifications are detailled in section 6.2. We
will see in section 6.3 that this possibility reveals the importance of an observer
function used in the different operators.

6.1 Equivalence between Games Networks

Equivalence between two games networks is based on the equality of their equi-
libria. More precisely, the equivalence is based on the largest set of global sets
of equilibria:

Definition 11 (MGne Equivalence)

Let Ty = (A1,C1,U1) and Ty = (As, Co,Us) be two games networks such that
A1 = As,C1 = Cs. Ty and T’y are equivalent, denoted by I'y =mGne L2, if and
only if MGner (U;) = MGner,(Us)

Informally, it means that both games networks have the same dynamics if
we admit that equilibria represent steady states of the network.

10



6.2 Operators

Operators detailled here allow us to modify the structure of a games network.
Restructuring games networks is expressed in terms of substituting game nodes
by others. The join operation or, conversely, the separation are the basic oper-
ations for games networks reorganization.

However, the reorganization can be performed if the initial games network
and that resulting of the reorganization are equivalent in the sense of the defi-
nition 11.

6.2.1 Substitution

The operation of substitution is formally defines as follows:

Definition 12 (Substitution)

Let T = (A,C,U) be a games network, let U = {g; = (4;,u’)},U C U be a
set of game nodes, let U' = {(Ay,u’ )} be another set of game nodes such that
Vi', Ay C A, we define the substitution, denoted by I'[y;/u as follows:.

F[U/U’] = (.A,C,U -Uu UI>

6.2.2 Join operation

The join operation consists in joining two game nodes in one. It is formally
defined as follows:

Definition 13 (Join according to w)
Let T = (A, C,U) be a games network, let Gy = (A;,u') and Gy = (43,u?) be
two game nodes of ' (G1 € U,G2 € U), let w : R x R — R be a function, we
define: G1 /¥ G2 = (A1 U Ay, u) with :

Ve € Cia,uay), Vi€ Ar—As uic) =ubi(ca,)
Vie Ay — Ay U,’(C) = u2i(c ‘UAz)
Vie Ay NAy  wu(c) :w(uli(c l}fh)auzi(c Ja,))

The join operation depends on a function w. For instance, the maximum func-
tion max(vy,v2) can be a candidate for giving a concrete definition of \/ oper-
ation. If no specific property on w is required we omit it in the specification of
the operation.

6.2.3 Separation

Separation is the reciprocal operation of the join operation. It consists in spliting
a game node in two others. However, we imposes that equilibria are preserved
during the separation. The separation, according to a function w, is defined as
follows:

11



Definition 14 (Separation according to w)
Let T' = (A,C,U) be a games network, a game node G = (A,u) € U is said to
be separable (according to w) if:

3G, = (A1, u!),3G2 = (As,u?) such that
G1 V¥ G2 = G and mne(G; \/“ G2) = MGne({G1,G2})

6.3 Structural modifications and importance of the ob-
server

Join operation and separation provides a general condition to restructure games
networks based on the preservation of the equilibria. A special attention is paid
on the reciprocal operation of the join because it enables us to split a games
network into another one composed of more elementary games. This leads to
the following theorem which defines a basic condition to perform modifications
of the network.

Theorem 2 (Restructuration with separation)
Let T' = (A,C,U) be a games network, let G € U be a game node, and let
G1 = (A1,ul), G2 = (Aa,u?) be two game nodes such that A = A; U As.

If G is separable according to a function w to (G1,G2) then we have:

' =mGne L'la/{c1,c211

Implicitly, the structural modifications are dependant on a particular func-
tion w, called observer and used in join or separation. Different observers will
not allow or provide the same structural modifications.

Whereas separation preserves equilibria, it is not the case with the join
operation. Thus, considering a games networks, the resulting joint game can be
very different according to the observer we use.

For example, let us consider the games network I' from fig. 2 which is
composed of two game nodes g'2 and g?3. We use the join operator on these
two game nodes; we obtain I'M with the Maz function as observer, and I'™ with
the min function. As we see on fig. 2, none of the games network I' and its two
joint games '™ and I'™ has the same dynamics, i.e. the same equilibria.

On the other hand, separation preserves equilibria. So, if a games networks
can be separate using two different observers, the resulting games networks have
the same equilibria. However, observer influences the possibility of separation.
Different observers allow different games to be separated.

7 Elementary modules
In this section, given a games network I', we are interested in a games network I/,
called normal form, which have the same equilibria as I", and which is composed

of the smallest possible game nodes (in sense of number of agents involved in the
game node). Games nodes of such a games network are called elementary games

12



I = ({a1,a2,a3},{.F.;, -T-i}ie[1:3]: {91’2791’3})

u1’2 | .F.o .T.o

(a2
Fa | (1,4)  (0,0) az
.Ta | (0,0)  (1,1) N

2,3 |

F

T

F.
.T.

1) (0,0
0,00 (1.1

(1,1)

23 |(a5)

MGner = {((150):(150)a(150)) ; ((07 1)5 (Oa 1)5 (07 1))}

™ — g1,2 vMaz g2,3

m = gl \/min g2

ap  ay az | ul Wi ul ai  ax az | ul ul up
.F.q .F.o .F.3 1 4 1 F.q .F.o .F.3 1 -2 1
F.q1 .F.o .T.3 1 4 0 F.q F.o .T.3 1 0 0
F. .T.g .F.3 0 0 0 F.q .T.g .F.3 0 0 0
F.q1 .T.g .T.3 0 1 1 F.q .T.o .T.3 0 0 1
.T.q .F.o .F.3 0 0 1 T .F.g .F.3 0 -2 1
.T.q .F.o .T.3 0 0 0 .T.q .F.o .T.3 0 0 0
.T.q .T.o .F.3 1 1 0 T .T.g F.3 1 0 0
.T.q .T.o .T.3 1 1 1 T .T.o .T.3 1 1 1
MGnepn D MGner U{((%,32),(%,1),(0,1))}

MGner- = {((0,1),(0,1),(0,1)) }

Figure 2: Importance of the observer function
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or elementary modules. The normal form presented in section 7.1 is dependent
on a given function (as join operation or separation operator in previous section).
Section 7.2 extends the normal form to deal with a class of functions. Section
7.3 presents a new notion, dependence, which allows us to define, in section 7.4,
an algorithm to compute a normal form.

7.1 Normal Form
Games network normal form is defined as follows:

Definition 15 (Normal Form according to a function)
Let T be a games network, w : R? — R a function.
' is said to be w—normal if it is not separable according to w.

In normal form, each game node is called elementary game or elementary
module.

A normal form can be computed by successive separations, that is each sub-
game of a game is obtained by separation according to the considered function w.
When separation is applied, the agents are distributed in the two games resulting
from separation. In this case, they result from the impact that separation has
on the agents. According to definition 13, the problem is reduced to the way
in which the payoff function of each game node is computed from the payoff
function of the original game.

7.2 (—Normal Form

Structural modifications may generate infinite alternatives of games networks
from a given games network. For example, if we assume that w selects the
first argument regardless the value of the second one then given a game node
G = (A,u), we have G = G \/* G',G' = (A", u') providing mne(G) = mne(G’)
and A’ C A. Thus, without additional constraints there is no a priori unicity
of the normal form.

Moreover, it seems also desirable that a normal form addresses a class of
functions instead of a specific function because we obtain a more general process
for the reorganization. Indeed, if we admit that w formalizes the viewpoint of
the observer, then, by addressing a class of the functions 2, the reorganization
is compatible with the viewpoints of all the observers of this class.

Among possible classes of functions, some of them appear to be more relevant
for modeling. We address the computation of the normal form for functions with
neutral element which are defined as follows:

Definition 16 (Function with Neutral Element)
Let ) be the set of idempotent function with neutral element defined as follows:

Q={w:R — RFe, € RVr € Rw(z,e,)=we,,r) =1z}

In the sequel, the neutral element will be denoted by e if we do not consider
a specific function of Q) but a generic instance of them.
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The extension of the normal form to Q will be defined according to the
properties commonly shared by every functions of the class, that is, the neutral
property. It is based on a new definition of the join operator as follows:

Definition 17 (2-Join)

Let Q be the class of functions defined in 16. Let T' = (A, C,U) be a games
network, let Gi = (A;,u') and G2 = (A43,u?) be two game nodes of T' (G1 €
U,Gy € U), we define:

Q
Gy \/Gz = (A1 U A4y, u)
with :

VCEC(AluA2), Vie Ay — Ay uli(c ’UAl)
Vie Ay — A; ui(c) = u?i(c Ya,)
uZi(cda,)) ifuli(cda,) =ew
Vie AiNAr  ui(c) = Ulz’(C Ja,)) if UQz'(C Ja,) =ew
undefined  otherwise

The definition of the join operator, is now compatible with any functions of
the class. Hence the separation is the same whatever the function w is. This
provides the ability to compute a function regardless to the specificity of a
specific function.

Definition 18 (Games Network (2—Normal Form)

Let T be a games network, () the set of functions with neutral element.

I" is said to be Q—normal if any game node is inseparable according to the (2
join operator.

7.3 Dependence

With normal form, we are interested in finding elementary modules which com-
posed the network. Intuitively, agents involved in the same elementary module
are agents of the original network which are higly interacting. To precisely de-
scribe the interplays occurring in a game, we define the notion of dependence
between agents. Informally, an agent is dependent on another if its payoffs are
altered by the strategies of the other player.

Definition 19 (Agent dependence)
Let (A, C,u) be a strategic game, let j,i € A%, i # j be two agents. j is said to
be dependent on i, denoted by id,j, if:

Je; € C;,3c; € Cy,Fe—; € C_i,uj(c—i, ¢i) # uj(e—s, )

The dependences provide an overview of the interplays of the agents in a
game without having carefully studying the payoff function. To get an abstrac-
tion of the dependences according to a game, we introduce a new representation
named the agent dependence graph.
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Definition 20 (Agent Dependence Graph)
Let G = (A, C,u) be a strategic game, the agent dependence graph Dg = (A, E)
is a graph such that: E = {(i,7)|i6,j}

Definition 21 (Set of predecessors)
Let G = (A, C,u) be a strategic game. We denote by . (j), j € A, the set of
predecessors of j in the dependence graph of game G, that is

Vj €A, b, () = {ie Aliduj}

The dependence relation for a game is extended to the dependence relation
by considering a games network as follows:

Definition 22 (Dependence relation according to a games network)
Let T = (A, C,U) be a games network, let i € A and j € A be two agents,

i6yj < 3G = (A,u) € U such that id,j
(Definition of dependence graph is extended in the same way.)

Example 5
Let T' be a games network, we consider the following game node

g= ({a17a25a37a4}7u>

where u is defined as follows:

a1 a2 as a4 U1 u2 us U4
F.1 .F.o .F.3 F.4 0 0 1 1
.F. .F.o .F.3 .T.4 0 0 1 0
.F.1 .F.o .T.3 .F.4 0 0 0 1
.F.1 .F.2 .T.3 .T.4 0 0 0 0
F.a T.2 .F.3 .F.q 1 2 1 0
F.1 .T.o .F.3 .T.4 1 2 1 1
.F.1 .T.2 .T.3 .F.4 1 2 0 0
.F.1 .T.2 .T.3 .T.4 1 2 0 1
T.1 .F.2 .F.3 .F.q 2 1 0 1
T.1 .F.o .F.3 .T.4 2 1 0 0
.T.1 .F.o .T.3 F.4 2 1 1 1
.T.1 .F.o .T.3 .T.4 2 1 1 0
T.1 .T.2 .F.3 .F.q 0 0 0 0
T .T.o .F.3 .T.4a 0 0 0 1
T.1 .T.2 .T.3 .F.q 0 0 1 0
T.q .T.o .T.3 .T.4 0 0 1 1

From the table describing u, we can deduce the following dependencies:
010,03, 20,04, A10,a2 and asd, a1
The corresponding dependence graph is shown on fig. 3

7.4 Algorithm

Many normal forms are possible given a games network. With the notion of
dependence, we have find an algorithm which computes a specific normal form.
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Figure 3: Dependence graph for the games network from example 5

The algorithm considers each game node as a network reduced to this node and
computes a normal form with it. Then, the obtained networks will be assembled
to obtain a normal form of the complete network.

Figure 4 presents the separate function which computes a normal form from
a game node, and for a given function w € €.

Let G = (A, u) the starting game node and w the observer function. First,
the separate function research how many game nodes have to be created. The
dependence graph is used to emphasize the interactions between agents and thus
determine which agents participate to a same game node. The game nodes are
defined by the agents which are involved in. For each agent, a game node which
contains all its predecessors exists and, given two game nodes g1 = (A, u1) and
g2 = (As,us), we cannot have A; C Ay or Ay C A;.

Once we have the game nodes, we have to compute the payoffs. Let a € A
be an agent and g be a game node.

e If all the predecessors of a are in g, we can easily compute the payoffs for
a, because none of the absent agents in g have any influence on a’s payoffs.
In fact, for any game (A*, C*, u*), we have:

Vo,o' € A(C*)?,Vj e A*,o Yoo, = 0" Yoz, = u5(0) = uj(0)

u*(j)

Thus, given a pure profile ¢, of g, each pure profile cg of G such that the
restriction of c¢g to the agents of g equals ¢, gives the same payoffs for a.
The pick function in fig. 4 chooses one of these cg profile.

e If at least one of the predecessors of a is not in G, we cannot compute a’s
payoff. Thus, we give e, the neutral element of w, to a as payoff.

Example 6

According to the algorithm and from the dependence graph, we can deduce that
the game node from example 5 is separated into three game nodes, each one
having 2 agents. Figure 5 describes the resulting games network. Each game
node is denoted by g; ; = ({i,5},u).
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Being given a game node (A, u), we define:
6~ : A~ 2” the set of predecessors in the agent dependence graph
agent : N — 24 the set of agents connected to the game node.
pick :C4 x (Ca—R)— R,
pick(c’,u) gives a value u(c) such that the configuration ¢’ is contained in c.

function separate((A,u) : game node)
U :=0;g:=0;
/* Computation of the number of game nodes to be created*/
forall i € A
g=g9g+1
agent(g) :=i1Ud; (¢) ;
endforall
U=[1:g}]
forall g’ € [1: g]
U:=U - {g" € Ulagent(g"’) C agent(g') V (agent(g') = agent(g”’) A g’ < g')};
endforall

/* Attribution of the payoffs*/
forall g € U
forall j € agent(g)
if 6, (j) N agent(g) = & (j) then
forall c € Cagent(g) U? (C) = piCk(Cv u)
else
forall ¢ € Cagent(g) u]g (c):=e
endif
endforall
U = U' U {{agent(g),u)};
endforall
return U';

Figure 4: Normal Form Algorithm for a Game Node
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91,3 | F3 .T.3 g2,4 | .F .T.
Fa | (61) (e0) F. ‘(6,1) (e,0) 24
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g1,2| F. .T.
b F | (0,00 (1L,2) 12
O R

Figure 5: Normal form of the games network from example 6

8 Conclusion

In this paper we have propose an extension of game theory, named games net-
works, which provides a framework to model complex systems in terms of sets
of interacting agents. Whereas in game theory all the agents are interacting
together, games networks allow us to define local interactions which help us
understand the structure of complex systems.

In games networks, an agent can play several games with different sets of
agents; each game represents local interactions. These interactions define a
games network dynamics, which is caracterized by its observable states, i.e. its
steady states. We have defined the notion of global equilibria which are steady
states at the scale of the whole network, and which are a composition of local
equilibria (Nash equilibria of the different games composing the network).

Different compositions of local interactions can provide the same global in-
teractions. For that reason we have define a global-equilibria-based equivalence
in order to compare two games networks. We have define structure modification
operators (such as joint or separation) to transform a games network to another
equivalent network. We have particularly focus on the definition of a games
network normal form that is a network where each game can not be separated.
The games in a normal form games network are called elementary modules. We
define an algorithm which compute a normal form, using the separation oper-
ator. This algorithm is based on the notion of dependence, which allow us to
precisely study the interactions of a network.

Games networks have been used to model biological complex systems. In
[21], we deals with the Plasminogen Activation system (PAs). PAs is a process
of signal transduction implied in the migration of cancer cells. With games
networks, we have been able to model the system and to compute equilibria,
which correspond to biological observable states: a promigratory state, and a
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non-migratory one.

As perspectives of this work, we plan to deal with other biological systems (as
the A phage for example). But some theoretical questions have to be answered
such as the unicity of games network normal form or the use of class of functions
(different of the functions with neutral elements). We are also interested in the
dependence notion, more particularly in the link between self dependence agents
(agents which depend on themselves) and the existence of global equilibria [22].
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